| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #ifndef VP9_COMMON_VP9_BLOCKD_H_ |
| #define VP9_COMMON_VP9_BLOCKD_H_ |
| |
| #include "./vpx_config.h" |
| #include "vpx_scale/yv12config.h" |
| #include "vp9/common/vp9_convolve.h" |
| #include "vp9/common/vp9_mv.h" |
| #include "vp9/common/vp9_treecoder.h" |
| #include "vpx_ports/mem.h" |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_enums.h" |
| |
| #define MAX_MB_SEGMENTS 8 |
| #define MB_SEG_TREE_PROBS (MAX_MB_SEGMENTS-1) |
| #define PREDICTION_PROBS 3 |
| |
| #define DEFAULT_PRED_PROB_0 120 |
| #define DEFAULT_PRED_PROB_1 80 |
| #define DEFAULT_PRED_PROB_2 40 |
| |
| #define MBSKIP_CONTEXTS 3 |
| |
| #define MAX_REF_LF_DELTAS 4 |
| #define MAX_MODE_LF_DELTAS 4 |
| |
| /* Segment Feature Masks */ |
| #define SEGMENT_DELTADATA 0 |
| #define SEGMENT_ABSDATA 1 |
| #define MAX_MV_REFS 9 |
| #define MAX_MV_REF_CANDIDATES 2 |
| |
| typedef enum { |
| PLANE_TYPE_Y_WITH_DC, |
| PLANE_TYPE_UV, |
| } PLANE_TYPE; |
| |
| typedef char ENTROPY_CONTEXT; |
| |
| typedef char PARTITION_CONTEXT; |
| |
| static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a, |
| ENTROPY_CONTEXT b) { |
| return (a != 0) + (b != 0); |
| } |
| |
| typedef enum { |
| KEY_FRAME = 0, |
| INTER_FRAME = 1 |
| } FRAME_TYPE; |
| |
| typedef enum { |
| EIGHTTAP_SMOOTH, |
| EIGHTTAP, |
| EIGHTTAP_SHARP, |
| BILINEAR, |
| SWITCHABLE /* should be the last one */ |
| } INTERPOLATIONFILTERTYPE; |
| |
| typedef enum { |
| DC_PRED, // Average of above and left pixels |
| V_PRED, // Vertical |
| H_PRED, // Horizontal |
| D45_PRED, // Directional 45 deg = round(arctan(1/1) * 180/pi) |
| D135_PRED, // Directional 135 deg = 180 - 45 |
| D117_PRED, // Directional 117 deg = 180 - 63 |
| D153_PRED, // Directional 153 deg = 180 - 27 |
| D27_PRED, // Directional 27 deg = round(arctan(1/2) * 180/pi) |
| D63_PRED, // Directional 63 deg = round(arctan(2/1) * 180/pi) |
| TM_PRED, // True-motion |
| I4X4_PRED, // Each 4x4 subblock has its own mode |
| NEARESTMV, |
| NEARMV, |
| ZEROMV, |
| NEWMV, |
| SPLITMV, |
| MB_MODE_COUNT |
| } MB_PREDICTION_MODE; |
| |
| static INLINE int is_inter_mode(MB_PREDICTION_MODE mode) { |
| return mode >= NEARESTMV && mode <= SPLITMV; |
| } |
| |
| #define INTRA_MODE_COUNT (TM_PRED + 1) |
| |
| // Segment level features. |
| typedef enum { |
| SEG_LVL_ALT_Q = 0, // Use alternate Quantizer .... |
| SEG_LVL_ALT_LF = 1, // Use alternate loop filter value... |
| SEG_LVL_REF_FRAME = 2, // Optional Segment reference frame |
| SEG_LVL_SKIP = 3, // Optional Segment (0,0) + skip mode |
| SEG_LVL_MAX = 4 // Number of MB level features supported |
| } SEG_LVL_FEATURES; |
| |
| // Segment level features. |
| typedef enum { |
| TX_4X4 = 0, // 4x4 dct transform |
| TX_8X8 = 1, // 8x8 dct transform |
| TX_16X16 = 2, // 16x16 dct transform |
| TX_SIZE_MAX_MB = 3, // Number of different transforms available |
| TX_32X32 = TX_SIZE_MAX_MB, // 32x32 dct transform |
| TX_SIZE_MAX_SB, // Number of transforms available to SBs |
| } TX_SIZE; |
| |
| typedef enum { |
| DCT_DCT = 0, // DCT in both horizontal and vertical |
| ADST_DCT = 1, // ADST in vertical, DCT in horizontal |
| DCT_ADST = 2, // DCT in vertical, ADST in horizontal |
| ADST_ADST = 3 // ADST in both directions |
| } TX_TYPE; |
| |
| #define VP9_YMODES (I4X4_PRED + 1) |
| #define VP9_UV_MODES (TM_PRED + 1) |
| #define VP9_I32X32_MODES (TM_PRED + 1) |
| |
| #define VP9_MVREFS (1 + SPLITMV - NEARESTMV) |
| |
| #define WHT_UPSCALE_FACTOR 2 |
| |
| #define VP9_BINTRAMODES INTRA_MODE_COUNT |
| |
| /* For keyframes, intra block modes are predicted by the (already decoded) |
| modes for the Y blocks to the left and above us; for interframes, there |
| is a single probability table. */ |
| |
| union b_mode_info { |
| struct { |
| MB_PREDICTION_MODE first; |
| } as_mode; |
| int_mv as_mv[2]; // first, second inter predictor motion vectors |
| }; |
| |
| typedef enum { |
| NONE = -1, |
| INTRA_FRAME = 0, |
| LAST_FRAME = 1, |
| GOLDEN_FRAME = 2, |
| ALTREF_FRAME = 3, |
| MAX_REF_FRAMES = 4 |
| } MV_REFERENCE_FRAME; |
| |
| static INLINE int b_width_log2(BLOCK_SIZE_TYPE sb_type) { |
| switch (sb_type) { |
| case BLOCK_SIZE_SB4X8: |
| case BLOCK_SIZE_AB4X4: return 0; |
| case BLOCK_SIZE_SB8X4: |
| case BLOCK_SIZE_SB8X8: |
| case BLOCK_SIZE_SB8X16: return 1; |
| case BLOCK_SIZE_SB16X8: |
| case BLOCK_SIZE_MB16X16: |
| case BLOCK_SIZE_SB16X32: return 2; |
| case BLOCK_SIZE_SB32X16: |
| case BLOCK_SIZE_SB32X32: |
| case BLOCK_SIZE_SB32X64: return 3; |
| case BLOCK_SIZE_SB64X32: |
| case BLOCK_SIZE_SB64X64: return 4; |
| default: assert(0); |
| return -1; |
| } |
| } |
| |
| static INLINE int b_height_log2(BLOCK_SIZE_TYPE sb_type) { |
| switch (sb_type) { |
| case BLOCK_SIZE_SB8X4: |
| case BLOCK_SIZE_AB4X4: return 0; |
| case BLOCK_SIZE_SB4X8: |
| case BLOCK_SIZE_SB8X8: |
| case BLOCK_SIZE_SB16X8: return 1; |
| case BLOCK_SIZE_SB8X16: |
| case BLOCK_SIZE_MB16X16: |
| case BLOCK_SIZE_SB32X16: return 2; |
| case BLOCK_SIZE_SB16X32: |
| case BLOCK_SIZE_SB32X32: |
| case BLOCK_SIZE_SB64X32: return 3; |
| case BLOCK_SIZE_SB32X64: |
| case BLOCK_SIZE_SB64X64: return 4; |
| default: assert(0); |
| return -1; |
| } |
| } |
| |
| static INLINE int mi_width_log2(BLOCK_SIZE_TYPE sb_type) { |
| int a = b_width_log2(sb_type) - 1; |
| // align 4x4 block to mode_info |
| if (a < 0) |
| a = 0; |
| assert(a >= 0); |
| return a; |
| } |
| |
| static INLINE int mi_height_log2(BLOCK_SIZE_TYPE sb_type) { |
| int a = b_height_log2(sb_type) - 1; |
| if (a < 0) |
| a = 0; |
| assert(a >= 0); |
| return a; |
| } |
| |
| typedef struct { |
| MB_PREDICTION_MODE mode, uv_mode; |
| MV_REFERENCE_FRAME ref_frame, second_ref_frame; |
| TX_SIZE txfm_size; |
| int_mv mv[2]; // for each reference frame used |
| int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES]; |
| int_mv best_mv, best_second_mv; |
| |
| int mb_mode_context[MAX_REF_FRAMES]; |
| |
| unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */ |
| unsigned char need_to_clamp_mvs; |
| unsigned char need_to_clamp_secondmv; |
| unsigned char segment_id; // Segment id for current frame |
| |
| // Flags used for prediction status of various bistream signals |
| unsigned char seg_id_predicted; |
| unsigned char ref_predicted; |
| |
| // Indicates if the mb is part of the image (1) vs border (0) |
| // This can be useful in determining whether the MB provides |
| // a valid predictor |
| unsigned char mb_in_image; |
| |
| INTERPOLATIONFILTERTYPE interp_filter; |
| |
| BLOCK_SIZE_TYPE sb_type; |
| } MB_MODE_INFO; |
| |
| typedef struct { |
| MB_MODE_INFO mbmi; |
| union b_mode_info bmi[4]; |
| } MODE_INFO; |
| |
| struct scale_factors { |
| int x_num; |
| int x_den; |
| int x_offset_q4; |
| int x_step_q4; |
| int y_num; |
| int y_den; |
| int y_offset_q4; |
| int y_step_q4; |
| |
| int (*scale_value_x)(int val, const struct scale_factors *scale); |
| int (*scale_value_y)(int val, const struct scale_factors *scale); |
| void (*set_scaled_offsets)(struct scale_factors *scale, int row, int col); |
| int_mv32 (*scale_motion_vector_q3_to_q4)(const int_mv *src_mv, |
| const struct scale_factors *scale); |
| int32_t (*scale_motion_vector_component_q4)(int mv_q4, |
| int num, |
| int den, |
| int offset_q4); |
| |
| convolve_fn_t predict[2][2][2]; // horiz, vert, avg |
| }; |
| |
| #if CONFIG_ALPHA |
| enum { MAX_MB_PLANE = 4 }; |
| #else |
| enum { MAX_MB_PLANE = 3 }; |
| #endif |
| |
| struct buf_2d { |
| uint8_t *buf; |
| int stride; |
| }; |
| |
| struct macroblockd_plane { |
| DECLARE_ALIGNED(16, int16_t, qcoeff[64 * 64]); |
| DECLARE_ALIGNED(16, int16_t, dqcoeff[64 * 64]); |
| DECLARE_ALIGNED(16, uint16_t, eobs[256]); |
| PLANE_TYPE plane_type; |
| int subsampling_x; |
| int subsampling_y; |
| struct buf_2d dst; |
| struct buf_2d pre[2]; |
| int16_t *dequant; |
| ENTROPY_CONTEXT *above_context; |
| ENTROPY_CONTEXT *left_context; |
| }; |
| |
| #define BLOCK_OFFSET(x, i, n) ((x) + (i) * (n)) |
| |
| typedef struct macroblockd { |
| struct macroblockd_plane plane[MAX_MB_PLANE]; |
| |
| struct scale_factors scale_factor[2]; |
| struct scale_factors scale_factor_uv[2]; |
| |
| MODE_INFO *prev_mode_info_context; |
| MODE_INFO *mode_info_context; |
| int mode_info_stride; |
| |
| FRAME_TYPE frame_type; |
| |
| int up_available; |
| int left_available; |
| int right_available; |
| |
| // partition contexts |
| PARTITION_CONTEXT *above_seg_context; |
| PARTITION_CONTEXT *left_seg_context; |
| |
| /* 0 (disable) 1 (enable) segmentation */ |
| unsigned char segmentation_enabled; |
| |
| /* 0 (do not update) 1 (update) the macroblock segmentation map. */ |
| unsigned char update_mb_segmentation_map; |
| |
| #if CONFIG_IMPLICIT_SEGMENTATION |
| unsigned char allow_implicit_segment_update; |
| #endif |
| |
| /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */ |
| unsigned char update_mb_segmentation_data; |
| |
| /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */ |
| unsigned char mb_segment_abs_delta; |
| |
| /* Per frame flags that define which MB level features (such as quantizer or loop filter level) */ |
| /* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */ |
| |
| // Probability Tree used to code Segment number |
| vp9_prob mb_segment_tree_probs[MB_SEG_TREE_PROBS]; |
| |
| // Segment features |
| signed char segment_feature_data[MAX_MB_SEGMENTS][SEG_LVL_MAX]; |
| unsigned int segment_feature_mask[MAX_MB_SEGMENTS]; |
| |
| /* mode_based Loop filter adjustment */ |
| unsigned char mode_ref_lf_delta_enabled; |
| unsigned char mode_ref_lf_delta_update; |
| |
| /* Delta values have the range +/- MAX_LOOP_FILTER */ |
| /* 0 = Intra, Last, GF, ARF */ |
| signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS]; |
| /* 0 = Intra, Last, GF, ARF */ |
| signed char ref_lf_deltas[MAX_REF_LF_DELTAS]; |
| /* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */ |
| signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS]; |
| /* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */ |
| signed char mode_lf_deltas[MAX_MODE_LF_DELTAS]; |
| |
| /* Distance of MB away from frame edges */ |
| int mb_to_left_edge; |
| int mb_to_right_edge; |
| int mb_to_top_edge; |
| int mb_to_bottom_edge; |
| |
| unsigned int frames_since_golden; |
| unsigned int frames_till_alt_ref_frame; |
| |
| int lossless; |
| /* Inverse transform function pointers. */ |
| void (*inv_txm4x4_1_add)(int16_t *input, uint8_t *dest, int stride); |
| void (*inv_txm4x4_add)(int16_t *input, uint8_t *dest, int stride); |
| void (*itxm_add)(int16_t *input, uint8_t *dest, int stride, int eob); |
| void (*itxm_add_y_block)(int16_t *q, uint8_t *dst, int stride, |
| struct macroblockd *xd); |
| void (*itxm_add_uv_block)(int16_t *q, uint8_t *dst, int stride, |
| uint16_t *eobs); |
| |
| struct subpix_fn_table subpix; |
| |
| int allow_high_precision_mv; |
| |
| int corrupted; |
| |
| int sb_index; // index of 32x32 block inside the 64x64 block |
| int mb_index; // index of 16x16 block inside the 32x32 block |
| int b_index; // index of 8x8 block inside the 16x16 block |
| int ab_index; // index of 4x4 block inside the 8x8 block |
| int q_index; |
| |
| } MACROBLOCKD; |
| |
| static int *get_sb_index(MACROBLOCKD *xd, BLOCK_SIZE_TYPE subsize) { |
| switch (subsize) { |
| case BLOCK_SIZE_SB64X64: |
| case BLOCK_SIZE_SB64X32: |
| case BLOCK_SIZE_SB32X64: |
| case BLOCK_SIZE_SB32X32: |
| return &xd->sb_index; |
| case BLOCK_SIZE_SB32X16: |
| case BLOCK_SIZE_SB16X32: |
| case BLOCK_SIZE_MB16X16: |
| return &xd->mb_index; |
| case BLOCK_SIZE_SB16X8: |
| case BLOCK_SIZE_SB8X16: |
| case BLOCK_SIZE_SB8X8: |
| return &xd->b_index; |
| case BLOCK_SIZE_SB8X4: |
| case BLOCK_SIZE_SB4X8: |
| case BLOCK_SIZE_AB4X4: |
| return &xd->ab_index; |
| default: |
| assert(0); |
| return NULL; |
| } |
| } |
| |
| static INLINE void update_partition_context(MACROBLOCKD *xd, |
| BLOCK_SIZE_TYPE sb_type, |
| BLOCK_SIZE_TYPE sb_size) { |
| int bsl = b_width_log2(sb_size), bs = (1 << bsl) / 2; |
| int bwl = b_width_log2(sb_type); |
| int bhl = b_height_log2(sb_type); |
| int boffset = b_width_log2(BLOCK_SIZE_SB64X64) - bsl; |
| int i; |
| |
| // update the partition context at the end notes. set partition bits |
| // of block sizes larger than the current one to be one, and partition |
| // bits of smaller block sizes to be zero. |
| if ((bwl == bsl) && (bhl == bsl)) { |
| for (i = 0; i < bs; i++) |
| xd->left_seg_context[i] = ~(0xf << boffset); |
| for (i = 0; i < bs; i++) |
| xd->above_seg_context[i] = ~(0xf << boffset); |
| } else if ((bwl == bsl) && (bhl < bsl)) { |
| for (i = 0; i < bs; i++) |
| xd->left_seg_context[i] = ~(0xe << boffset); |
| for (i = 0; i < bs; i++) |
| xd->above_seg_context[i] = ~(0xf << boffset); |
| } else if ((bwl < bsl) && (bhl == bsl)) { |
| for (i = 0; i < bs; i++) |
| xd->left_seg_context[i] = ~(0xf << boffset); |
| for (i = 0; i < bs; i++) |
| xd->above_seg_context[i] = ~(0xe << boffset); |
| } else if ((bwl < bsl) && (bhl < bsl)) { |
| for (i = 0; i < bs; i++) |
| xd->left_seg_context[i] = ~(0xe << boffset); |
| for (i = 0; i < bs; i++) |
| xd->above_seg_context[i] = ~(0xe << boffset); |
| } else { |
| assert(0); |
| } |
| } |
| |
| static INLINE int partition_plane_context(MACROBLOCKD *xd, |
| BLOCK_SIZE_TYPE sb_type) { |
| int bsl = mi_width_log2(sb_type), bs = 1 << bsl; |
| int above = 0, left = 0, i; |
| int boffset = mi_width_log2(BLOCK_SIZE_SB64X64) - bsl; |
| |
| assert(mi_width_log2(sb_type) == mi_height_log2(sb_type)); |
| assert(bsl >= 0); |
| assert(boffset >= 0); |
| |
| for (i = 0; i < bs; i++) |
| above |= (xd->above_seg_context[i] & (1 << boffset)); |
| for (i = 0; i < bs; i++) |
| left |= (xd->left_seg_context[i] & (1 << boffset)); |
| |
| above = (above > 0); |
| left = (left > 0); |
| |
| return (left * 2 + above) + bsl * PARTITION_PLOFFSET; |
| } |
| |
| static BLOCK_SIZE_TYPE get_subsize(BLOCK_SIZE_TYPE bsize, |
| PARTITION_TYPE partition) { |
| BLOCK_SIZE_TYPE subsize; |
| switch (partition) { |
| case PARTITION_NONE: |
| subsize = bsize; |
| break; |
| case PARTITION_HORZ: |
| if (bsize == BLOCK_SIZE_SB64X64) |
| subsize = BLOCK_SIZE_SB64X32; |
| else if (bsize == BLOCK_SIZE_SB32X32) |
| subsize = BLOCK_SIZE_SB32X16; |
| else if (bsize == BLOCK_SIZE_MB16X16) |
| subsize = BLOCK_SIZE_SB16X8; |
| else if (bsize == BLOCK_SIZE_SB8X8) |
| subsize = BLOCK_SIZE_SB8X4; |
| else |
| assert(0); |
| break; |
| case PARTITION_VERT: |
| if (bsize == BLOCK_SIZE_SB64X64) |
| subsize = BLOCK_SIZE_SB32X64; |
| else if (bsize == BLOCK_SIZE_SB32X32) |
| subsize = BLOCK_SIZE_SB16X32; |
| else if (bsize == BLOCK_SIZE_MB16X16) |
| subsize = BLOCK_SIZE_SB8X16; |
| else if (bsize == BLOCK_SIZE_SB8X8) |
| subsize = BLOCK_SIZE_SB4X8; |
| else |
| assert(0); |
| break; |
| case PARTITION_SPLIT: |
| if (bsize == BLOCK_SIZE_SB64X64) |
| subsize = BLOCK_SIZE_SB32X32; |
| else if (bsize == BLOCK_SIZE_SB32X32) |
| subsize = BLOCK_SIZE_MB16X16; |
| else if (bsize == BLOCK_SIZE_MB16X16) |
| subsize = BLOCK_SIZE_SB8X8; |
| else if (bsize == BLOCK_SIZE_SB8X8) |
| subsize = BLOCK_SIZE_AB4X4; |
| else |
| assert(0); |
| break; |
| default: |
| assert(0); |
| } |
| return subsize; |
| } |
| |
| // transform mapping |
| static TX_TYPE txfm_map(MB_PREDICTION_MODE bmode) { |
| switch (bmode) { |
| case TM_PRED : |
| case D135_PRED : |
| return ADST_ADST; |
| |
| case V_PRED : |
| case D117_PRED : |
| case D63_PRED: |
| return ADST_DCT; |
| |
| case H_PRED : |
| case D153_PRED : |
| case D27_PRED : |
| return DCT_ADST; |
| |
| default: |
| return DCT_DCT; |
| } |
| } |
| |
| static TX_TYPE get_tx_type_4x4(const MACROBLOCKD *xd, int ib) { |
| TX_TYPE tx_type = DCT_DCT; |
| if (xd->lossless) |
| return DCT_DCT; |
| if (xd->mode_info_context->mbmi.mode == I4X4_PRED) { |
| tx_type = txfm_map( |
| xd->mode_info_context->bmi[ib].as_mode.first); |
| } else if (xd->mode_info_context->mbmi.mode <= TM_PRED) { |
| tx_type = txfm_map(xd->mode_info_context->mbmi.mode); |
| } |
| return tx_type; |
| } |
| |
| static TX_TYPE get_tx_type_8x8(const MACROBLOCKD *xd, int ib) { |
| TX_TYPE tx_type = DCT_DCT; |
| if (xd->mode_info_context->mbmi.mode <= TM_PRED) { |
| tx_type = txfm_map(xd->mode_info_context->mbmi.mode); |
| } |
| return tx_type; |
| } |
| |
| static TX_TYPE get_tx_type_16x16(const MACROBLOCKD *xd, int ib) { |
| TX_TYPE tx_type = DCT_DCT; |
| if (xd->mode_info_context->mbmi.mode <= TM_PRED) { |
| tx_type = txfm_map(xd->mode_info_context->mbmi.mode); |
| } |
| return tx_type; |
| } |
| |
| void vp9_setup_block_dptrs(MACROBLOCKD *xd, |
| int subsampling_x, int subsampling_y); |
| |
| static TX_SIZE get_uv_tx_size(const MACROBLOCKD *xd) { |
| MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; |
| const TX_SIZE size = mbmi->txfm_size; |
| |
| switch (mbmi->sb_type) { |
| case BLOCK_SIZE_SB64X64: |
| return size; |
| case BLOCK_SIZE_SB64X32: |
| case BLOCK_SIZE_SB32X64: |
| case BLOCK_SIZE_SB32X32: |
| if (size == TX_32X32) |
| return TX_16X16; |
| else |
| return size; |
| case BLOCK_SIZE_SB32X16: |
| case BLOCK_SIZE_SB16X32: |
| case BLOCK_SIZE_MB16X16: |
| if (size == TX_16X16) |
| return TX_8X8; |
| else |
| return size; |
| default: |
| return TX_4X4; |
| } |
| |
| return size; |
| } |
| |
| struct plane_block_idx { |
| int plane; |
| int block; |
| }; |
| |
| // TODO(jkoleszar): returning a struct so it can be used in a const context, |
| // expect to refactor this further later. |
| static INLINE struct plane_block_idx plane_block_idx(int y_blocks, |
| int b_idx) { |
| const int v_offset = y_blocks * 5 / 4; |
| struct plane_block_idx res; |
| |
| if (b_idx < y_blocks) { |
| res.plane = 0; |
| res.block = b_idx; |
| } else if (b_idx < v_offset) { |
| res.plane = 1; |
| res.block = b_idx - y_blocks; |
| } else { |
| assert(b_idx < y_blocks * 3 / 2); |
| res.plane = 2; |
| res.block = b_idx - v_offset; |
| } |
| return res; |
| } |
| |
| typedef void (*foreach_transformed_block_visitor)(int plane, int block, |
| BLOCK_SIZE_TYPE bsize, |
| int ss_txfrm_size, |
| void *arg); |
| static INLINE void foreach_transformed_block_in_plane( |
| const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane, |
| foreach_transformed_block_visitor visit, void *arg) { |
| const int bw = b_width_log2(bsize), bh = b_height_log2(bsize); |
| |
| // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") |
| // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 |
| // transform size varies per plane, look it up in a common way. |
| const TX_SIZE tx_size = plane ? get_uv_tx_size(xd) |
| : xd->mode_info_context->mbmi.txfm_size; |
| const int block_size_b = bw + bh; |
| const int txfrm_size_b = tx_size * 2; |
| |
| // subsampled size of the block |
| const int ss_sum = xd->plane[plane].subsampling_x + |
| xd->plane[plane].subsampling_y; |
| const int ss_block_size = block_size_b - ss_sum; |
| |
| const int step = 1 << txfrm_size_b; |
| |
| int i; |
| |
| assert(txfrm_size_b <= block_size_b); |
| assert(txfrm_size_b <= ss_block_size); |
| for (i = 0; i < (1 << ss_block_size); i += step) { |
| visit(plane, i, bsize, txfrm_size_b, arg); |
| } |
| } |
| |
| static INLINE void foreach_transformed_block( |
| const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, |
| foreach_transformed_block_visitor visit, void *arg) { |
| int plane; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; plane++) { |
| foreach_transformed_block_in_plane(xd, bsize, plane, |
| visit, arg); |
| } |
| } |
| |
| static INLINE void foreach_transformed_block_uv( |
| const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, |
| foreach_transformed_block_visitor visit, void *arg) { |
| int plane; |
| |
| for (plane = 1; plane < MAX_MB_PLANE; plane++) { |
| foreach_transformed_block_in_plane(xd, bsize, plane, |
| visit, arg); |
| } |
| } |
| |
| // TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could |
| // calculate the subsampled BLOCK_SIZE_TYPE, but that type isn't defined for |
| // sizes smaller than 16x16 yet. |
| typedef void (*foreach_predicted_block_visitor)(int plane, int block, |
| BLOCK_SIZE_TYPE bsize, |
| int pred_w, int pred_h, |
| void *arg); |
| static INLINE void foreach_predicted_block_in_plane( |
| const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane, |
| foreach_predicted_block_visitor visit, void *arg) { |
| int i, x, y; |
| const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; |
| |
| // block sizes in number of 4x4 blocks log 2 ("*_b") |
| // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 |
| // subsampled size of the block |
| const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
| const int bh = b_height_log2(bsize) - xd->plane[plane].subsampling_y; |
| |
| // size of the predictor to use. |
| int pred_w, pred_h; |
| |
| if (mode == SPLITMV) { |
| pred_w = 0; |
| pred_h = 0; |
| } else { |
| pred_w = bw; |
| pred_h = bh; |
| } |
| assert(pred_w <= bw); |
| assert(pred_h <= bh); |
| |
| // visit each subblock in raster order |
| i = 0; |
| for (y = 0; y < 1 << bh; y += 1 << pred_h) { |
| for (x = 0; x < 1 << bw; x += 1 << pred_w) { |
| visit(plane, i, bsize, pred_w, pred_h, arg); |
| i += 1 << pred_w; |
| } |
| i -= 1 << bw; |
| i += 1 << (bw + pred_h); |
| } |
| } |
| static INLINE void foreach_predicted_block( |
| const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, |
| foreach_predicted_block_visitor visit, void *arg) { |
| int plane; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; plane++) { |
| foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg); |
| } |
| } |
| static INLINE void foreach_predicted_block_uv( |
| const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, |
| foreach_predicted_block_visitor visit, void *arg) { |
| int plane; |
| |
| for (plane = 1; plane < MAX_MB_PLANE; plane++) { |
| foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg); |
| } |
| } |
| static int raster_block_offset(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, |
| int plane, int block, int stride) { |
| const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
| const int y = 4 * (block >> bw), x = 4 * (block & ((1 << bw) - 1)); |
| return y * stride + x; |
| } |
| static int16_t* raster_block_offset_int16(MACROBLOCKD *xd, |
| BLOCK_SIZE_TYPE bsize, |
| int plane, int block, int16_t *base) { |
| const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
| const int stride = 4 << bw; |
| return base + raster_block_offset(xd, bsize, plane, block, stride); |
| } |
| static uint8_t* raster_block_offset_uint8(MACROBLOCKD *xd, |
| BLOCK_SIZE_TYPE bsize, |
| int plane, int block, |
| uint8_t *base, int stride) { |
| return base + raster_block_offset(xd, bsize, plane, block, stride); |
| } |
| |
| static int txfrm_block_to_raster_block(MACROBLOCKD *xd, |
| BLOCK_SIZE_TYPE bsize, |
| int plane, int block, |
| int ss_txfrm_size) { |
| const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
| const int txwl = ss_txfrm_size / 2; |
| const int tx_cols_lg2 = bwl - txwl; |
| const int tx_cols = 1 << tx_cols_lg2; |
| const int raster_mb = block >> ss_txfrm_size; |
| const int x = (raster_mb & (tx_cols - 1)) << (txwl); |
| const int y = raster_mb >> tx_cols_lg2 << (txwl); |
| return x + (y << bwl); |
| } |
| |
| static void txfrm_block_to_raster_xy(MACROBLOCKD *xd, |
| BLOCK_SIZE_TYPE bsize, |
| int plane, int block, |
| int ss_txfrm_size, |
| int *x, int *y) { |
| const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
| const int txwl = ss_txfrm_size / 2; |
| const int tx_cols_lg2 = bwl - txwl; |
| const int tx_cols = 1 << tx_cols_lg2; |
| const int raster_mb = block >> ss_txfrm_size; |
| *x = (raster_mb & (tx_cols - 1)) << (txwl); |
| *y = raster_mb >> tx_cols_lg2 << (txwl); |
| } |
| |
| #endif // VP9_COMMON_VP9_BLOCKD_H_ |