| /* |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/common_data.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconintra.h" |
| |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encodeframe_utils.h" |
| #include "av1/encoder/rdopt.h" |
| |
| void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col, int *const rdmult) { |
| const AV1_COMMON *const cm = &cpi->common; |
| |
| const int bsize_base = BLOCK_16X16; |
| const int num_mi_w = mi_size_wide[bsize_base]; |
| const int num_mi_h = mi_size_high[bsize_base]; |
| const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; |
| const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; |
| const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; |
| const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; |
| int row, col; |
| double num_of_mi = 0.0; |
| double geom_mean_of_scale = 1.0; |
| |
| // To avoid overflow of 'geom_mean_of_scale', bsize_base must be at least |
| // BLOCK_8X8. |
| // |
| // For bsize=BLOCK_128X128 and bsize_base=BLOCK_8X8, the loop below would |
| // iterate 256 times. Considering the maximum value of |
| // cpi->ssim_rdmult_scaling_factors (see av1_set_mb_ssim_rdmult_scaling()), |
| // geom_mean_of_scale can go up to 4.8323^256, which is within DBL_MAX |
| // (maximum value a double data type can hold). If bsize_base is modified to |
| // BLOCK_4X4 (minimum possible block size), geom_mean_of_scale can go up |
| // to 4.8323^1024 and exceed DBL_MAX, resulting in data overflow. |
| assert(bsize_base >= BLOCK_8X8); |
| assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM); |
| |
| for (row = mi_row / num_mi_w; |
| row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { |
| for (col = mi_col / num_mi_h; |
| col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { |
| const int index = row * num_cols + col; |
| assert(cpi->ssim_rdmult_scaling_factors[index] != 0.0); |
| geom_mean_of_scale *= cpi->ssim_rdmult_scaling_factors[index]; |
| num_of_mi += 1.0; |
| } |
| } |
| geom_mean_of_scale = pow(geom_mean_of_scale, (1.0 / num_of_mi)); |
| |
| *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5); |
| *rdmult = AOMMAX(*rdmult, 0); |
| av1_set_error_per_bit(errorperbit, *rdmult); |
| } |
| |
| #if CONFIG_SALIENCY_MAP |
| void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi, |
| int *errorperbit, const BLOCK_SIZE bsize, |
| const int mi_row, const int mi_col, |
| int *const rdmult) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_mi_w = mi_size_wide[bsize]; |
| const int num_mi_h = mi_size_high[bsize]; |
| const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; |
| |
| *rdmult = |
| (int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols + |
| (mi_col / num_mi_w)]); |
| |
| *rdmult = AOMMAX(*rdmult, 0); |
| av1_set_error_per_bit(errorperbit, *rdmult); |
| } |
| #endif |
| |
| // TODO(angiebird): Move these function to tpl_model.c |
| #if !CONFIG_REALTIME_ONLY |
| // Return the end column for the current superblock, in unit of TPL blocks. |
| static int get_superblock_tpl_column_end(const AV1_COMMON *const cm, int mi_col, |
| int num_mi_w) { |
| // Find the start column of this superblock. |
| const int sb_mi_col_start = (mi_col >> cm->seq_params->mib_size_log2) |
| << cm->seq_params->mib_size_log2; |
| // Same but in superres upscaled dimension. |
| const int sb_mi_col_start_sr = |
| coded_to_superres_mi(sb_mi_col_start, cm->superres_scale_denominator); |
| // Width of this superblock in mi units. |
| const int sb_mi_width = mi_size_wide[cm->seq_params->sb_size]; |
| // Same but in superres upscaled dimension. |
| const int sb_mi_width_sr = |
| coded_to_superres_mi(sb_mi_width, cm->superres_scale_denominator); |
| // Superblock end in mi units. |
| const int sb_mi_end = sb_mi_col_start_sr + sb_mi_width_sr; |
| // Superblock end in TPL units. |
| return (sb_mi_end + num_mi_w - 1) / num_mi_w; |
| } |
| |
| int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col) { |
| const AV1_COMMON *const cm = &cpi->common; |
| assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
| cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
| const int tpl_idx = cpi->gf_frame_index; |
| int deltaq_rdmult = set_rdmult(cpi, x, -1); |
| if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult; |
| if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult; |
| if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult; |
| if (x->rb == 0) return deltaq_rdmult; |
| |
| TplParams *const tpl_data = &cpi->ppi->tpl_data; |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| |
| int tpl_stride = tpl_frame->stride; |
| double intra_cost_base = 0; |
| double mc_dep_cost_base = 0; |
| double cbcmp_base = 0; |
| const int step = 1 << tpl_data->tpl_stats_block_mis_log2; |
| |
| for (int row = mi_row; row < mi_row + mi_high; row += step) { |
| for (int col = mi_col; col < mi_col + mi_wide; col += step) { |
| if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols) |
| continue; |
| |
| TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( |
| row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; |
| |
| double cbcmp = (double)this_stats->srcrf_dist; |
| int64_t mc_dep_delta = |
| RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
| this_stats->mc_dep_dist); |
| double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); |
| intra_cost_base += log(dist_scaled) * cbcmp; |
| mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp; |
| cbcmp_base += cbcmp; |
| } |
| } |
| |
| if (cbcmp_base == 0) return deltaq_rdmult; |
| |
| double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base); |
| deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb)); |
| |
| return AOMMAX(deltaq_rdmult, 1); |
| } |
| |
| int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col, int orig_rdmult) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
| cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
| const int tpl_idx = cpi->gf_frame_index; |
| const int deltaq_rdmult = set_rdmult(cpi, x, -1); |
| if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult; |
| if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) |
| return deltaq_rdmult; |
| if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult; |
| |
| const int mi_col_sr = |
| coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
| const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
| const int block_mi_width_sr = |
| coded_to_superres_mi(mi_size_wide[bsize], cm->superres_scale_denominator); |
| |
| const int bsize_base = BLOCK_16X16; |
| const int num_mi_w = mi_size_wide[bsize_base]; |
| const int num_mi_h = mi_size_high[bsize_base]; |
| const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w; |
| const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; |
| const int num_bcols = (block_mi_width_sr + num_mi_w - 1) / num_mi_w; |
| const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; |
| // This is required because the end col of superblock may be off by 1 in case |
| // of superres. |
| const int sb_bcol_end = get_superblock_tpl_column_end(cm, mi_col, num_mi_w); |
| int row, col; |
| double base_block_count = 0.0; |
| double geom_mean_of_scale = 0.0; |
| for (row = mi_row / num_mi_w; |
| row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { |
| for (col = mi_col_sr / num_mi_h; |
| col < num_cols && col < mi_col_sr / num_mi_h + num_bcols && |
| col < sb_bcol_end; |
| ++col) { |
| const int index = row * num_cols + col; |
| geom_mean_of_scale += log(cpi->ppi->tpl_sb_rdmult_scaling_factors[index]); |
| base_block_count += 1.0; |
| } |
| } |
| geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count); |
| int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5); |
| rdmult = AOMMAX(rdmult, 0); |
| av1_set_error_per_bit(&x->errorperbit, rdmult); |
| #if !CONFIG_RD_COMMAND |
| if (bsize == cm->seq_params->sb_size) { |
| const int rdmult_sb = set_rdmult(cpi, x, -1); |
| assert(rdmult_sb == rdmult); |
| (void)rdmult_sb; |
| } |
| #endif // !CONFIG_RD_COMMAND |
| return rdmult; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts, |
| const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi) { |
| int dir; |
| for (dir = 0; dir < 2; ++dir) { |
| const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
| InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); |
| |
| // Only allow the 3 valid SWITCHABLE_FILTERS. |
| assert(filter < SWITCHABLE_FILTERS); |
| ++counts->switchable_interp[ctx][filter]; |
| } |
| } |
| |
| // This function will copy the best reference mode information from |
| // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT. |
| static INLINE void copy_mbmi_ext_frame_to_mbmi_ext( |
| MB_MODE_INFO_EXT *mbmi_ext, |
| const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) { |
| memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack, |
| sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE])); |
| memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight, |
| sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE])); |
| mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context; |
| mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count; |
| memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs, |
| sizeof(mbmi_ext->global_mvs)); |
| } |
| |
| void av1_update_state(const AV1_COMP *const cpi, ThreadData *td, |
| const PICK_MODE_CONTEXT *const ctx, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { |
| int i, x_idx, y; |
| const AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const MB_MODE_INFO *const mi = &ctx->mic; |
| MB_MODE_INFO *const mi_addr = xd->mi[0]; |
| const struct segmentation *const seg = &cm->seg; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int bw = mi_size_wide[mi->bsize]; |
| const int bh = mi_size_high[mi->bsize]; |
| const int mis = mi_params->mi_stride; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| |
| assert(mi->bsize == bsize); |
| |
| *mi_addr = *mi; |
| copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best, |
| av1_ref_frame_type(ctx->mic.ref_frame)); |
| |
| memcpy(txfm_info->blk_skip, ctx->blk_skip, |
| sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); |
| |
| txfm_info->skip_txfm = ctx->rd_stats.skip_txfm; |
| |
| xd->tx_type_map = ctx->tx_type_map; |
| xd->tx_type_map_stride = mi_size_wide[bsize]; |
| // If not dry_run, copy the transform type data into the frame level buffer. |
| // Encoder will fetch tx types when writing bitstream. |
| if (!dry_run) { |
| const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); |
| uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx; |
| const int mi_stride = mi_params->mi_stride; |
| for (int blk_row = 0; blk_row < bh; ++blk_row) { |
| av1_copy_array(tx_type_map + blk_row * mi_stride, |
| xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw); |
| } |
| xd->tx_type_map = tx_type_map; |
| xd->tx_type_map_stride = mi_stride; |
| } |
| |
| // If segmentation in use |
| if (seg->enabled) { |
| // For in frame complexity AQ copy the segment id from the segment map. |
| if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; |
| mi_addr->segment_id = |
| map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0; |
| } |
| // Else for cyclic refresh mode update the segment map, set the segment id |
| // and then update the quantizer. |
| if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
| !cpi->rc.rtc_external_ratectrl) { |
| av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize, |
| ctx->rd_stats.rate, ctx->rd_stats.dist, |
| txfm_info->skip_txfm, dry_run); |
| } |
| if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd)) |
| mi_addr->uv_mode = UV_DC_PRED; |
| |
| if (!dry_run && !mi_addr->skip_txfm) { |
| int cdf_num; |
| const uint8_t spatial_pred = av1_get_spatial_seg_pred( |
| cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4); |
| const uint8_t coded_id = av1_neg_interleave( |
| mi_addr->segment_id, spatial_pred, seg->last_active_segid + 1); |
| int64_t spatial_cost = x->mode_costs.spatial_pred_cost[cdf_num][coded_id]; |
| td->rd_counts.seg_tmp_pred_cost[0] += spatial_cost; |
| |
| const int pred_segment_id = |
| cm->last_frame_seg_map |
| ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row, |
| mi_col) |
| : 0; |
| const int use_tmp_pred = pred_segment_id == mi_addr->segment_id; |
| const uint8_t tmp_pred_ctx = av1_get_pred_context_seg_id(xd); |
| td->rd_counts.seg_tmp_pred_cost[1] += |
| x->mode_costs.tmp_pred_cost[tmp_pred_ctx][use_tmp_pred]; |
| if (!use_tmp_pred) { |
| td->rd_counts.seg_tmp_pred_cost[1] += spatial_cost; |
| } |
| } |
| } |
| |
| // Count zero motion vector. |
| if (!dry_run && !frame_is_intra_only(cm)) { |
| const MV mv = mi->mv[0].as_mv; |
| if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME && |
| abs(mv.row) < 8 && abs(mv.col) < 8) { |
| const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh); |
| // Accumulate low_content_frame. |
| for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1; |
| } |
| } |
| |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| p[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| // Restore the coding context of the MB to that that was in place |
| // when the mode was picked for it |
| |
| const int cols = |
| AOMMIN((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width, mi_width); |
| const int rows = AOMMIN( |
| (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height, mi_height); |
| for (y = 0; y < rows; y++) { |
| for (x_idx = 0; x_idx < cols; x_idx++) xd->mi[x_idx + y * mis] = mi_addr; |
| } |
| |
| if (cpi->oxcf.q_cfg.aq_mode) |
| av1_init_plane_quantizers(cpi, x, mi_addr->segment_id, 0); |
| |
| if (dry_run) return; |
| |
| #if CONFIG_INTERNAL_STATS |
| { |
| unsigned int *const mode_chosen_counts = |
| (unsigned int *)cpi->mode_chosen_counts; // Cast const away. |
| if (frame_is_intra_only(cm)) { |
| static const int kf_mode_index[] = { |
| THR_DC /*DC_PRED*/, |
| THR_V_PRED /*V_PRED*/, |
| THR_H_PRED /*H_PRED*/, |
| THR_D45_PRED /*D45_PRED*/, |
| THR_D135_PRED /*D135_PRED*/, |
| THR_D113_PRED /*D113_PRED*/, |
| THR_D157_PRED /*D157_PRED*/, |
| THR_D203_PRED /*D203_PRED*/, |
| THR_D67_PRED /*D67_PRED*/, |
| THR_SMOOTH, /*SMOOTH_PRED*/ |
| THR_SMOOTH_V, /*SMOOTH_V_PRED*/ |
| THR_SMOOTH_H, /*SMOOTH_H_PRED*/ |
| THR_PAETH /*PAETH_PRED*/, |
| }; |
| ++mode_chosen_counts[kf_mode_index[mi_addr->mode]]; |
| } else { |
| // Note how often each mode chosen as best |
| ++mode_chosen_counts[ctx->best_mode_index]; |
| } |
| } |
| #endif |
| if (!frame_is_intra_only(cm)) { |
| if (is_inter_block(mi) && cm->features.interp_filter == SWITCHABLE) { |
| // When the frame interp filter is SWITCHABLE, several cases that always |
| // use the default type (EIGHTTAP_REGULAR) are described in |
| // av1_is_interp_needed(). Here, we should keep the counts for all |
| // applicable blocks, so the frame filter resetting decision in |
| // fix_interp_filter() is made correctly. |
| update_filter_type_count(td->counts, xd, mi_addr); |
| } |
| } |
| |
| const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col); |
| const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row); |
| if (cm->seq_params->order_hint_info.enable_ref_frame_mvs) |
| av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); |
| } |
| |
| void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, |
| PREDICTION_MODE mode, int16_t mode_context) { |
| (void)counts; |
| |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| if (mode == NEWMV) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->newmv_mode[mode_ctx][0]; |
| #endif |
| update_cdf(fc->newmv_cdf[mode_ctx], 0, 2); |
| return; |
| } |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->newmv_mode[mode_ctx][1]; |
| #endif |
| update_cdf(fc->newmv_cdf[mode_ctx], 1, 2); |
| |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| if (mode == GLOBALMV) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->zeromv_mode[mode_ctx][0]; |
| #endif |
| update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2); |
| return; |
| } |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->zeromv_mode[mode_ctx][1]; |
| #endif |
| update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2); |
| |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| #if CONFIG_ENTROPY_STATS |
| ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; |
| #endif |
| update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2); |
| } |
| |
| static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
| FRAME_COUNTS *counts) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const BLOCK_SIZE bsize = mbmi->bsize; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| |
| (void)counts; |
| |
| if (mbmi->mode == DC_PRED) { |
| const int n = pmi->palette_size[0]; |
| const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0]; |
| #endif |
| update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx], |
| n > 0, 2); |
| if (n > 0) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
| #endif |
| update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx], |
| n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
| } |
| } |
| |
| if (mbmi->uv_mode == UV_DC_PRED) { |
| const int n = pmi->palette_size[1]; |
| const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0]; |
| #endif |
| update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2); |
| |
| if (n > 0) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
| #endif |
| update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx], |
| n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
| } |
| } |
| } |
| |
| void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, |
| MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
| const MB_MODE_INFO *above_mi, |
| const MB_MODE_INFO *left_mi, const int intraonly) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const PREDICTION_MODE y_mode = mbmi->mode; |
| (void)counts; |
| const BLOCK_SIZE bsize = mbmi->bsize; |
| |
| if (intraonly) { |
| #if CONFIG_ENTROPY_STATS |
| const PREDICTION_MODE above = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE left = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[above]; |
| const int left_ctx = intra_mode_context[left]; |
| ++counts->kf_y_mode[above_ctx][left_ctx][y_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES); |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->y_mode[size_group_lookup[bsize]][y_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES); |
| } |
| |
| if (av1_filter_intra_allowed(cm, mbmi)) { |
| const int use_filter_intra_mode = |
| mbmi->filter_intra_mode_info.use_filter_intra; |
| #if CONFIG_ENTROPY_STATS |
| ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode]; |
| if (use_filter_intra_mode) { |
| ++counts |
| ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode]; |
| } |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2); |
| if (use_filter_intra_mode) { |
| update_cdf(fc->filter_intra_mode_cdf, |
| mbmi->filter_intra_mode_info.filter_intra_mode, |
| FILTER_INTRA_MODES); |
| } |
| } |
| if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->angle_delta[mbmi->mode - V_PRED] |
| [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA]; |
| #endif |
| update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED], |
| mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| |
| if (!xd->is_chroma_ref) return; |
| |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->uv_mode[cfl_allowed][y_mode][uv_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode, |
| UV_INTRA_MODES - !cfl_allowed); |
| if (uv_mode == UV_CFL_PRED) { |
| const int8_t joint_sign = mbmi->cfl_alpha_signs; |
| const uint8_t idx = mbmi->cfl_alpha_idx; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_sign[joint_sign]; |
| #endif |
| update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); |
| if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; |
| #endif |
| update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); |
| } |
| if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; |
| #endif |
| update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); |
| } |
| } |
| if (av1_is_directional_mode(get_uv_mode(uv_mode)) && |
| av1_use_angle_delta(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->angle_delta[uv_mode - UV_V_PRED] |
| [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA]; |
| #endif |
| update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED], |
| mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { |
| update_palette_cdf(xd, mbmi, counts); |
| } |
| } |
| |
| void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| const int num_planes) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = mi_size_wide[bsize]; |
| const int num_4x4_blocks_high = mi_size_high[bsize]; |
| int mi_width = mi_size_wide[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| for (p = 0; p < num_planes; p++) { |
| int tx_col = mi_col; |
| int tx_row = mi_row & MAX_MIB_MASK; |
| memcpy( |
| xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
| ctx->a + num_4x4_blocks_wide * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
| ctx->l + num_4x4_blocks_high * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(xd->above_partition_context + mi_col, ctx->sa, |
| sizeof(*xd->above_partition_context) * mi_width); |
| memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl, |
| sizeof(xd->left_partition_context[0]) * mi_height); |
| xd->above_txfm_context = ctx->p_ta; |
| xd->left_txfm_context = ctx->p_tl; |
| memcpy(xd->above_txfm_context, ctx->ta, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(xd->left_txfm_context, ctx->tl, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| } |
| |
| void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| const int num_planes) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| int mi_width = mi_size_wide[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| |
| // buffer the above/left context information of the block in search. |
| for (p = 0; p < num_planes; ++p) { |
| int tx_col = mi_col; |
| int tx_row = mi_row & MAX_MIB_MASK; |
| memcpy( |
| ctx->a + mi_width * p, |
| xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
| (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x); |
| memcpy(ctx->l + mi_height * p, |
| xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
| (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y); |
| } |
| memcpy(ctx->sa, xd->above_partition_context + mi_col, |
| sizeof(*xd->above_partition_context) * mi_width); |
| memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK), |
| sizeof(xd->left_partition_context[0]) * mi_height); |
| memcpy(ctx->ta, xd->above_txfm_context, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(ctx->tl, xd->left_txfm_context, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| ctx->p_ta = xd->above_txfm_context; |
| ctx->p_tl = xd->left_txfm_context; |
| } |
| |
| static void set_partial_sb_partition(const AV1_COMMON *const cm, |
| MB_MODE_INFO *mi, int bh_in, int bw_in, |
| int mi_rows_remaining, |
| int mi_cols_remaining, BLOCK_SIZE bsize, |
| MB_MODE_INFO **mib) { |
| int bh = bh_in; |
| int r, c; |
| for (r = 0; r < cm->seq_params->mib_size; r += bh) { |
| int bw = bw_in; |
| for (c = 0; c < cm->seq_params->mib_size; c += bw) { |
| const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c); |
| const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c); |
| mib[grid_index] = mi + mi_index; |
| mib[grid_index]->bsize = find_partition_size( |
| bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); |
| } |
| } |
| } |
| |
| // This function attempts to set all mode info entries in a given superblock |
| // to the same block partition size. |
| // However, at the bottom and right borders of the image the requested size |
| // may not be allowed in which case this code attempts to choose the largest |
| // allowable partition. |
| void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, |
| MB_MODE_INFO **mib, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int mi_rows_remaining = tile->mi_row_end - mi_row; |
| const int mi_cols_remaining = tile->mi_col_end - mi_col; |
| MB_MODE_INFO *const mi_upper_left = |
| mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col); |
| int bh = mi_size_high[bsize]; |
| int bw = mi_size_wide[bsize]; |
| |
| assert(bsize >= mi_params->mi_alloc_bsize && |
| "Attempted to use bsize < mi_params->mi_alloc_bsize"); |
| assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); |
| |
| // Apply the requested partition size to the SB if it is all "in image" |
| if ((mi_cols_remaining >= cm->seq_params->mib_size) && |
| (mi_rows_remaining >= cm->seq_params->mib_size)) { |
| for (int block_row = 0; block_row < cm->seq_params->mib_size; |
| block_row += bh) { |
| for (int block_col = 0; block_col < cm->seq_params->mib_size; |
| block_col += bw) { |
| const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col); |
| const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col); |
| mib[grid_index] = mi_upper_left + mi_index; |
| mib[grid_index]->bsize = bsize; |
| } |
| } |
| } else { |
| // Else this is a partial SB. |
| set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, |
| mi_cols_remaining, bsize, mib); |
| } |
| } |
| |
| int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| assert(bsize >= BLOCK_8X8); |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| for (int i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| if ((mi_row + y_idx >= cm->mi_params.mi_rows) || |
| (mi_col + x_idx >= cm->mi_params.mi_cols)) |
| return 0; |
| if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) != |
| PARTITION_NONE && |
| subsize != BLOCK_8X8) |
| return 0; |
| } |
| return 1; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int orig_rdmult) { |
| AV1_COMMON *const cm = &cpi->common; |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
| cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
| const int tpl_idx = cpi->gf_frame_index; |
| TplParams *const tpl_data = &cpi->ppi->tpl_data; |
| const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; |
| int64_t intra_cost = 0; |
| int64_t mc_dep_cost = 0; |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| int tpl_stride = tpl_frame->stride; |
| |
| if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) { |
| return orig_rdmult; |
| } |
| if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) { |
| return orig_rdmult; |
| } |
| |
| #ifndef NDEBUG |
| int mi_count = 0; |
| #endif |
| const int mi_col_sr = |
| coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
| const int mi_col_end_sr = |
| coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
| const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
| const int step = 1 << block_mis_log2; |
| const int row_step = step; |
| const int col_step_sr = |
| coded_to_superres_mi(step, cm->superres_scale_denominator); |
| for (int row = mi_row; row < mi_row + mi_high; row += row_step) { |
| for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { |
| if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; |
| TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; |
| int64_t mc_dep_delta = |
| RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
| this_stats->mc_dep_dist); |
| intra_cost += this_stats->recrf_dist << RDDIV_BITS; |
| mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta; |
| #ifndef NDEBUG |
| mi_count++; |
| #endif |
| } |
| } |
| assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); |
| |
| double beta = 1.0; |
| if (mc_dep_cost > 0 && intra_cost > 0) { |
| const double r0 = cpi->rd.r0; |
| const double rk = (double)intra_cost / mc_dep_cost; |
| beta = (r0 / rk); |
| } |
| |
| int rdmult = av1_get_adaptive_rdmult(cpi, beta); |
| |
| rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2); |
| rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2); |
| |
| rdmult = AOMMAX(1, rdmult); |
| |
| return rdmult; |
| } |
| |
| // Checks to see if a super block is on a horizontal image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { |
| int top_edge = 0; |
| int bottom_edge = cpi->common.mi_params.mi_rows; |
| int is_active_h_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (is_stat_consumption_stage_twopass(cpi)) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( |
| &cpi->ppi->twopass, cm->current_frame.display_order_hint); |
| if (this_frame_stats == NULL) return AOM_CODEC_ERROR; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| top_edge += (int)(this_frame_stats->inactive_zone_rows * 4); |
| |
| bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4); |
| bottom_edge = AOMMAX(top_edge, bottom_edge); |
| } |
| |
| if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || |
| ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { |
| is_active_h_edge = 1; |
| } |
| return is_active_h_edge; |
| } |
| |
| // Checks to see if a super block is on a vertical image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { |
| int left_edge = 0; |
| int right_edge = cpi->common.mi_params.mi_cols; |
| int is_active_v_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (is_stat_consumption_stage_twopass(cpi)) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( |
| &cpi->ppi->twopass, cm->current_frame.display_order_hint); |
| if (this_frame_stats == NULL) return AOM_CODEC_ERROR; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| left_edge += (int)(this_frame_stats->inactive_zone_cols * 4); |
| |
| right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4); |
| right_edge = AOMMAX(left_edge, right_edge); |
| } |
| |
| if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || |
| ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { |
| is_active_v_edge = 1; |
| } |
| return is_active_v_edge; |
| } |
| |
| void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, SuperBlockEnc *sb_enc) { |
| sb_enc->tpl_data_count = 0; |
| |
| if (!cpi->oxcf.algo_cfg.enable_tpl_model) return; |
| if (cpi->common.current_frame.frame_type == KEY_FRAME) return; |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE) |
| return; |
| assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
| cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
| |
| AV1_COMMON *const cm = &cpi->common; |
| const int gf_group_index = cpi->gf_frame_index; |
| TplParams *const tpl_data = &cpi->ppi->tpl_data; |
| if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return; |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| int tpl_stride = tpl_frame->stride; |
| |
| int mi_count = 0; |
| int count = 0; |
| const int mi_col_sr = |
| coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
| const int mi_col_end_sr = |
| coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
| // mi_cols_sr is mi_cols at superres case. |
| const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
| |
| // TPL store unit size is not the same as the motion estimation unit size. |
| // Here always use motion estimation size to avoid getting repetitive inter/ |
| // intra cost. |
| const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d); |
| assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]); |
| const int row_step = mi_size_high[tpl_bsize]; |
| const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize], |
| cm->superres_scale_denominator); |
| |
| // Stride is only based on SB size, and we fill in values for every 16x16 |
| // block in a SB. |
| sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr; |
| |
| for (int row = mi_row; row < mi_row + mi_high; row += row_step) { |
| for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { |
| assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); |
| // Handle partial SB, so that no invalid values are used later. |
| if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) { |
| sb_enc->tpl_inter_cost[count] = INT64_MAX; |
| sb_enc->tpl_intra_cost[count] = INT64_MAX; |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| sb_enc->tpl_mv[count][i].as_int = INVALID_MV; |
| } |
| count++; |
| continue; |
| } |
| |
| TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( |
| row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; |
| sb_enc->tpl_inter_cost[count] = this_stats->inter_cost |
| << TPL_DEP_COST_SCALE_LOG2; |
| sb_enc->tpl_intra_cost[count] = this_stats->intra_cost |
| << TPL_DEP_COST_SCALE_LOG2; |
| memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv)); |
| mi_count++; |
| count++; |
| } |
| } |
| |
| assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); |
| sb_enc->tpl_data_count = mi_count; |
| } |
| |
| // analysis_type 0: Use mc_dep_cost and intra_cost |
| // analysis_type 1: Use count of best inter predictor chosen |
| // analysis_type 2: Use cost reduction from intra to inter for best inter |
| // predictor chosen |
| int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td, |
| int64_t *delta_dist, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| assert(IMPLIES(cpi->ppi->gf_group.size > 0, |
| cpi->gf_frame_index < cpi->ppi->gf_group.size)); |
| const int tpl_idx = cpi->gf_frame_index; |
| TplParams *const tpl_data = &cpi->ppi->tpl_data; |
| const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; |
| double intra_cost = 0; |
| double mc_dep_reg = 0; |
| double mc_dep_cost = 0; |
| double cbcmp_base = 1; |
| double srcrf_dist = 0; |
| double srcrf_sse = 0; |
| double srcrf_rate = 0; |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| const int base_qindex = cm->quant_params.base_qindex; |
| |
| if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex; |
| |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| int tpl_stride = tpl_frame->stride; |
| if (!tpl_frame->is_valid) return base_qindex; |
| |
| #ifndef NDEBUG |
| int mi_count = 0; |
| #endif |
| const int mi_col_sr = |
| coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
| const int mi_col_end_sr = |
| coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
| const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
| const int step = 1 << block_mis_log2; |
| const int row_step = step; |
| const int col_step_sr = |
| coded_to_superres_mi(step, cm->superres_scale_denominator); |
| for (int row = mi_row; row < mi_row + mi_high; row += row_step) { |
| for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { |
| if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; |
| TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; |
| double cbcmp = (double)this_stats->srcrf_dist; |
| int64_t mc_dep_delta = |
| RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
| this_stats->mc_dep_dist); |
| double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); |
| intra_cost += log(dist_scaled) * cbcmp; |
| mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp; |
| mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp; |
| srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS); |
| srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS); |
| srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2); |
| #ifndef NDEBUG |
| mi_count++; |
| #endif |
| cbcmp_base += cbcmp; |
| } |
| } |
| assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); |
| |
| int offset = 0; |
| double beta = 1.0; |
| double rk; |
| if (mc_dep_cost > 0 && intra_cost > 0) { |
| const double r0 = cpi->rd.r0; |
| rk = exp((intra_cost - mc_dep_cost) / cbcmp_base); |
| td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base); |
| beta = (r0 / rk); |
| assert(beta > 0.0); |
| } else { |
| return base_qindex; |
| } |
| offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta); |
| |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); |
| offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); |
| int qindex = cm->quant_params.base_qindex + offset; |
| qindex = AOMMIN(qindex, MAXQ); |
| qindex = AOMMAX(qindex, MINQ); |
| |
| int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth); |
| int sbs_qstep = |
| av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth); |
| |
| if (delta_dist) { |
| double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0); |
| double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep); |
| sbs_dist = AOMMIN(sbs_dist, srcrf_sse); |
| *delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk); |
| *delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0); |
| *delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0); |
| } |
| return qindex; |
| } |
| |
| #if !DISABLE_HDR_LUMA_DELTAQ |
| // offset table defined in Table3 of T-REC-H.Sup15 document. |
| static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0, 301, 367, 434, 501, 567, |
| 634, 701, 767, 834, 1024 }; |
| |
| static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3, 2, 1, 0, -1, |
| -2, -3, -4, -5, -6 }; |
| #endif |
| |
| int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| assert(cm->seq_params->bit_depth == AOM_BITS_10); |
| |
| #if DISABLE_HDR_LUMA_DELTAQ |
| (void)x; |
| (void)bsize; |
| (void)mi_row; |
| (void)mi_col; |
| return cm->quant_params.base_qindex; |
| #else |
| // calculate pixel average |
| const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col); |
| // adjust offset based on average of the pixel block |
| int offset = 0; |
| for (int i = 0; i < HDR_QP_LEVELS; i++) { |
| if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) { |
| offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR); |
| break; |
| } |
| } |
| |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); |
| offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); |
| int qindex = cm->quant_params.base_qindex + offset; |
| qindex = AOMMIN(qindex, MAXQ); |
| qindex = AOMMAX(qindex, MINQ); |
| |
| return qindex; |
| #endif |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree, |
| BLOCK_SIZE bsize) { |
| if (sms_tree == NULL) return; |
| sms_tree->partitioning = PARTITION_NONE; |
| |
| if (bsize >= BLOCK_8X8) { |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| for (int idx = 0; idx < 4; ++idx) |
| av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize); |
| } |
| } |
| |
| // Record the ref frames that have been selected by square partition blocks. |
| void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type, |
| BLOCK_SIZE bsize, int mib_size, |
| int mi_row, int mi_col) { |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| const int sb_size_mask = mib_size - 1; |
| const int mi_row_in_sb = mi_row & sb_size_mask; |
| const int mi_col_in_sb = mi_col & sb_size_mask; |
| const int mi_size = mi_size_wide[bsize]; |
| for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) { |
| for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) { |
| x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type; |
| } |
| } |
| } |
| |
| static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr, |
| int num_cdfs, int cdf_stride, int nsymbs, |
| int wt_left, int wt_tr) { |
| for (int i = 0; i < num_cdfs; i++) { |
| for (int j = 0; j <= nsymbs; j++) { |
| cdf_ptr_left[i * cdf_stride + j] = |
| (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left + |
| (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr + |
| ((wt_left + wt_tr) / 2)) / |
| (wt_left + wt_tr)); |
| assert(cdf_ptr_left[i * cdf_stride + j] >= 0 && |
| cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP); |
| } |
| } |
| } |
| |
| #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \ |
| AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs)) |
| |
| #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \ |
| do { \ |
| aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \ |
| aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \ |
| int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \ |
| int num_cdfs = array_size / cdf_stride; \ |
| avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \ |
| wt_left, wt_tr); \ |
| } while (0) |
| |
| static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left, |
| int wt_tr) { |
| AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4); |
| for (int i = 0; i < 2; i++) { |
| AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf, |
| MV_CLASSES); |
| AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf, |
| nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE); |
| AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE); |
| AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2); |
| AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf, |
| nmv_tr->comps[i].class0_hp_cdf, 2); |
| AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2); |
| AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf, |
| CLASS0_SIZE); |
| AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2); |
| } |
| } |
| |
| // In case of row-based multi-threading of encoder, since we always |
| // keep a top - right sync, we can average the top - right SB's CDFs and |
| // the left SB's CDFs and use the same for current SB's encoding to |
| // improve the performance. This function facilitates the averaging |
| // of CDF and used only when row-mt is enabled in encoder. |
| void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr, |
| int wt_left, int wt_tr) { |
| AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2); |
| AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2); |
| AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11); |
| AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3); |
| AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4); |
| AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE); |
| AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2); |
| AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2); |
| AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2); |
| AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2); |
| AVERAGE_CDF(ctx_left->inter_compound_mode_cdf, |
| ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES); |
| AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf, |
| MASKED_COMPOUND_TYPES); |
| AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16); |
| AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2); |
| AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2); |
| AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf, |
| INTERINTRA_MODES); |
| AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES); |
| AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2); |
| AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf, |
| PALETTE_SIZES); |
| AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf, |
| PALETTE_SIZES); |
| for (int j = 0; j < PALETTE_SIZES; j++) { |
| int nsymbs = j + PALETTE_MIN_SIZE; |
| AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j], |
| ctx_tr->palette_y_color_index_cdf[j], nsymbs, |
| CDF_SIZE(PALETTE_COLORS)); |
| AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j], |
| ctx_tr->palette_uv_color_index_cdf[j], nsymbs, |
| CDF_SIZE(PALETTE_COLORS)); |
| } |
| AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2); |
| AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2); |
| AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2); |
| AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2); |
| AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2); |
| AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2); |
| AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2); |
| AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2); |
| AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2); |
| avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr); |
| avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr); |
| AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2); |
| AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2); |
| AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf, |
| ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS); |
| AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2); |
| AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf, |
| FILTER_INTRA_MODES); |
| AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf, |
| RESTORE_SWITCHABLE_TYPES); |
| AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2); |
| AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2); |
| AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES); |
| AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0], |
| UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES)); |
| AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES); |
| for (int i = 0; i < PARTITION_CONTEXTS; i++) { |
| if (i < 4) { |
| AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4, |
| CDF_SIZE(10)); |
| } else if (i < 16) { |
| AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10); |
| } else { |
| AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8, |
| CDF_SIZE(10)); |
| } |
| } |
| AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf, |
| SWITCHABLE_FILTERS); |
| AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES); |
| AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf, |
| 2 * MAX_ANGLE_DELTA + 1); |
| AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH, |
| CDF_SIZE(MAX_TX_DEPTH + 1)); |
| AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1], |
| MAX_TX_DEPTH + 1); |
| AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2], |
| MAX_TX_DEPTH + 1); |
| AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3], |
| MAX_TX_DEPTH + 1); |
| AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1); |
| AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1); |
| for (int i = 0; i < FRAME_LF_COUNT; i++) { |
| AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i], |
| DELTA_LF_PROBS + 1); |
| } |
| AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2, |
| CDF_SIZE(TX_TYPES)); |
| AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS); |
| AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf, |
| CFL_ALPHABET_SIZE); |
| } |
| |
| // Check neighbor blocks' motion information. |
| static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride, |
| const TileInfo *const tile_info, int mi_row, |
| int mi_col) { |
| int is_above_low_motion = 1; |
| int is_left_low_motion = 1; |
| const int thr = 24; |
| |
| // Check above block. |
| if (mi_row > tile_info->mi_row_start) { |
| const MB_MODE_INFO *above_mbmi = mi[-mi_stride]; |
| const int_mv above_mv = above_mbmi->mv[0]; |
| if (above_mbmi->mode >= INTRA_MODE_END && |
| (abs(above_mv.as_mv.row) > thr || abs(above_mv.as_mv.col) > thr)) |
| is_above_low_motion = 0; |
| } |
| |
| // Check left block. |
| if (mi_col > tile_info->mi_col_start) { |
| const MB_MODE_INFO *left_mbmi = mi[-1]; |
| const int_mv left_mv = left_mbmi->mv[0]; |
| if (left_mbmi->mode >= INTRA_MODE_END && |
| (abs(left_mv.as_mv.row) > thr || abs(left_mv.as_mv.col) > thr)) |
| is_left_low_motion = 0; |
| } |
| |
| return (is_above_low_motion && is_left_low_motion); |
| } |
| |
| // Check this block's motion in a fast way. |
| static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y, |
| int src_ystride, |
| const uint8_t *last_src_y, |
| int last_src_ystride, int mi_row, |
| int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| const BLOCK_SIZE bsize = cm->seq_params->sb_size; |
| unsigned int blk_sad = INT_MAX; |
| if (cpi->src_sad_blk_64x64 != NULL) { |
| const int sb_size_by_mb = (bsize == BLOCK_128X128) |
| ? (cm->seq_params->mib_size >> 1) |
| : cm->seq_params->mib_size; |
| const int sb_cols = |
| (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; |
| const int sbi_col = mi_col / sb_size_by_mb; |
| const int sbi_row = mi_row / sb_size_by_mb; |
| blk_sad = (unsigned int)cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols]; |
| } else { |
| blk_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, |
| last_src_ystride); |
| } |
| |
| // Search 4 1-away points. |
| const uint8_t *const search_pos[4] = { |
| last_src_y - last_src_ystride, |
| last_src_y - 1, |
| last_src_y + 1, |
| last_src_y + last_src_ystride, |
| }; |
| unsigned int sad_arr[4]; |
| cpi->ppi->fn_ptr[bsize].sdx4df(src_y, src_ystride, search_pos, |
| last_src_ystride, sad_arr); |
| |
| blk_sad = (blk_sad * 5) >> 3; |
| return (blk_sad < sad_arr[0] && blk_sad < sad_arr[1] && |
| blk_sad < sad_arr[2] && blk_sad < sad_arr[3]); |
| } |
| |
| // Grade the temporal variation of the source by comparing the current sb and |
| // its collocated block in the last frame. |
| void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data, |
| int mi_row, int mi_col) { |
| if (cpi->last_source->y_width != cpi->source->y_width || |
| cpi->last_source->y_height != cpi->source->y_height) |
| return; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return; |
| #endif |
| |
| unsigned int tmp_sse; |
| unsigned int tmp_variance; |
| const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size; |
| uint8_t *src_y = cpi->source->y_buffer; |
| const int src_ystride = cpi->source->y_stride; |
| const int src_offset = src_ystride * (mi_row << 2) + (mi_col << 2); |
| uint8_t *last_src_y = cpi->last_source->y_buffer; |
| const int last_src_ystride = cpi->last_source->y_stride; |
| const int last_src_offset = last_src_ystride * (mi_row << 2) + (mi_col << 2); |
| uint64_t avg_source_sse_threshold_verylow = 10000; // ~1.5*1.5*(64*64) |
| uint64_t avg_source_sse_threshold_low[2] = { 100000, // ~5*5*(64*64) |
| 36000 }; // ~3*3*(64*64) |
| |
| uint64_t avg_source_sse_threshold_high = 1000000; // ~15*15*(64*64) |
| uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5 |
| src_y += src_offset; |
| last_src_y += last_src_offset; |
| tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y, |
| last_src_ystride, &tmp_sse); |
| // rd thresholds |
| if (tmp_sse < avg_source_sse_threshold_low[1]) |
| x->content_state_sb.source_sad_rd = kLowSad; |
| |
| // nonrd thresholds |
| if (tmp_sse == 0) { |
| x->content_state_sb.source_sad_nonrd = kZeroSad; |
| return; |
| } |
| if (tmp_sse < avg_source_sse_threshold_verylow) |
| x->content_state_sb.source_sad_nonrd = kVeryLowSad; |
| else if (tmp_sse < avg_source_sse_threshold_low[0]) |
| x->content_state_sb.source_sad_nonrd = kLowSad; |
| else if (tmp_sse > avg_source_sse_threshold_high) |
| x->content_state_sb.source_sad_nonrd = kHighSad; |
| |
| // Detect large lighting change. |
| // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12) |
| if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh) |
| x->content_state_sb.lighting_change = 1; |
| if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1)) |
| x->content_state_sb.low_sumdiff = 1; |
| |
| if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad || |
| cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1) |
| return; |
| |
| // In-place temporal filter. If psnr calculation is enabled, we store the |
| // source for that. |
| AV1_COMMON *const cm = &cpi->common; |
| // Calculate n*mean^2 |
| const unsigned int nmean2 = tmp_sse - tmp_variance; |
| const int ac_q_step = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0, |
| cm->seq_params->bit_depth); |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const int avg_q_step = av1_ac_quant_QTX(p_rc->avg_frame_qindex[INTER_FRAME], |
| 0, cm->seq_params->bit_depth); |
| |
| const unsigned int threshold = |
| (cpi->sf.rt_sf.use_rtc_tf == 1) |
| ? (clamp(avg_q_step, 250, 1000)) * ac_q_step |
| : 250 * ac_q_step; |
| |
| // TODO(yunqing): use a weighted sum instead of averaging in filtering. |
| if (tmp_variance <= threshold && nmean2 <= 15) { |
| // Check neighbor blocks. If neighbor blocks aren't low-motion blocks, |
| // skip temporal filtering for this block. |
| MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + |
| get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| const int is_neighbor_blocks_low_motion = check_neighbor_blocks( |
| mi, cm->mi_params.mi_stride, tile_info, mi_row, mi_col); |
| if (!is_neighbor_blocks_low_motion) return; |
| |
| // Only consider 64x64 SB for now. Need to extend to 128x128 for large SB |
| // size. |
| // Test several nearby points. If non-zero mv exists, don't do temporal |
| // filtering. |
| const int is_this_blk_low_motion = fast_detect_non_zero_motion( |
| cpi, src_y, src_ystride, last_src_y, last_src_ystride, mi_row, mi_col); |
| |
| if (!is_this_blk_low_motion) return; |
| |
| const int shift_x[2] = { 0, cpi->source->subsampling_x }; |
| const int shift_y[2] = { 0, cpi->source->subsampling_y }; |
| const uint8_t h = block_size_high[bsize]; |
| const uint8_t w = block_size_wide[bsize]; |
| |
| for (int plane = 0; plane < av1_num_planes(cm); ++plane) { |
| uint8_t *src = cpi->source->buffers[plane]; |
| const int src_stride = cpi->source->strides[plane != 0]; |
| uint8_t *last_src = cpi->last_source->buffers[plane]; |
| const int last_src_stride = cpi->last_source->strides[plane != 0]; |
| src += src_stride * (mi_row << (2 - shift_y[plane != 0])) + |
| (mi_col << (2 - shift_x[plane != 0])); |
| last_src += last_src_stride * (mi_row << (2 - shift_y[plane != 0])) + |
| (mi_col << (2 - shift_x[plane != 0])); |
| |
| for (int i = 0; i < (h >> shift_y[plane != 0]); ++i) { |
| for (int j = 0; j < (w >> shift_x[plane != 0]); ++j) { |
| src[j] = (last_src[j] + src[j]) >> 1; |
| } |
| src += src_stride; |
| last_src += last_src_stride; |
| } |
| } |
| } |
| } |
| |
| // Memset the mbmis at the current superblock to 0 |
| void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size, |
| int mi_row, int mi_col) { |
| // size of sb in unit of mi (BLOCK_4X4) |
| const int sb_size_mi = mi_size_wide[sb_size]; |
| const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; |
| // size of sb in unit of allocated mi size |
| const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d; |
| assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 && |
| "mi is not allocated as a multiple of sb!"); |
| assert(mi_params->mi_stride % sb_size_mi == 0 && |
| "mi_grid_base is not allocated as a multiple of sb!"); |
| |
| const int mi_rows = mi_size_high[sb_size]; |
| for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) { |
| assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) < |
| mi_params->mi_stride); |
| const int mi_grid_idx = |
| get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col); |
| const int alloc_mi_idx = |
| get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col); |
| memset(&mi_params->mi_grid_base[mi_grid_idx], 0, |
| sb_size_mi * sizeof(*mi_params->mi_grid_base)); |
| memset(&mi_params->tx_type_map[mi_grid_idx], 0, |
| sb_size_mi * sizeof(*mi_params->tx_type_map)); |
| if (cur_mi_row % mi_alloc_size_1d == 0) { |
| memset(&mi_params->mi_alloc[alloc_mi_idx], 0, |
| sb_size_alloc_mi * sizeof(*mi_params->mi_alloc)); |
| } |
| } |
| } |
| |
| void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi, |
| ThreadData *td, const TileDataEnc *tile_data, |
| int mi_row, int mi_col) { |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const TileInfo *tile_info = &tile_data->tile_info; |
| |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes); |
| |
| sb_fp_stats->rd_count = td->rd_counts; |
| sb_fp_stats->split_count = x->txfm_search_info.txb_split_count; |
| |
| sb_fp_stats->fc = *td->counts; |
| |
| // Don't copy in row_mt case, otherwise run into data race. No behavior change |
| // in row_mt case. |
| if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { |
| memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models, |
| sizeof(sb_fp_stats->inter_mode_rd_models)); |
| } |
| |
| memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact, |
| sizeof(sb_fp_stats->thresh_freq_fact)); |
| |
| const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); |
| sb_fp_stats->current_qindex = |
| cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; |
| |
| #if CONFIG_INTERNAL_STATS |
| memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts, |
| sizeof(sb_fp_stats->mode_chosen_counts)); |
| #endif // CONFIG_INTERNAL_STATS |
| } |
| |
| void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi, |
| ThreadData *td, TileDataEnc *tile_data, int mi_row, |
| int mi_col) { |
| MACROBLOCK *x = &td->mb; |
| |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const BLOCK_SIZE sb_size = cm->seq_params->sb_size; |
| |
| av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, |
| num_planes); |
| |
| td->rd_counts = sb_fp_stats->rd_count; |
| x->txfm_search_info.txb_split_count = sb_fp_stats->split_count; |
| |
| *td->counts = sb_fp_stats->fc; |
| |
| if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { |
| memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models, |
| sizeof(sb_fp_stats->inter_mode_rd_models)); |
| } |
| |
| memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact, |
| sizeof(sb_fp_stats->thresh_freq_fact)); |
| |
| const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); |
| cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = |
| sb_fp_stats->current_qindex; |
| |
| #if CONFIG_INTERNAL_STATS |
| memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts, |
| sizeof(sb_fp_stats->mode_chosen_counts)); |
| #endif // CONFIG_INTERNAL_STATS |
| } |
| |
| /*! Checks whether to skip updating the entropy cost based on tile info. |
| * |
| * This function contains the common code used to skip the cost update of coeff, |
| * mode, mv and dv symbols. |
| */ |
| static int skip_cost_update(const SequenceHeader *seq_params, |
| const TileInfo *const tile_info, const int mi_row, |
| const int mi_col, |
| INTERNAL_COST_UPDATE_TYPE upd_level) { |
| if (upd_level == INTERNAL_COST_UPD_SB) return 0; |
| if (upd_level == INTERNAL_COST_UPD_OFF) return 1; |
| |
| // upd_level is at most as frequent as each sb_row in a tile. |
| if (mi_col != tile_info->mi_col_start) return 1; |
| |
| if (upd_level == INTERNAL_COST_UPD_SBROW_SET) { |
| const int mib_size_log2 = seq_params->mib_size_log2; |
| const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; |
| const int sb_size = seq_params->mib_size * MI_SIZE; |
| const int tile_height = |
| (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE; |
| // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens |
| // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However, |
| // as the update will not be equally spaced in smaller resolutions making |
| // it equally spaced by calculating (mv_num_rows_cost_update) the number of |
| // rows after which the cost update should happen. |
| const int sb_size_update_freq_map[2] = { 2, 4 }; |
| const int update_freq_sb_rows = |
| sb_size_update_freq_map[sb_size != MAX_SB_SIZE]; |
| const int update_freq_num_rows = sb_size * update_freq_sb_rows; |
| // Round-up the division result to next integer. |
| const int num_updates_per_tile = |
| (tile_height + update_freq_num_rows - 1) / update_freq_num_rows; |
| const int num_rows_update_per_tile = num_updates_per_tile * sb_size; |
| // Round-up the division result to next integer. |
| const int num_sb_rows_per_update = |
| (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile; |
| if ((sb_row % num_sb_rows_per_update) != 0) return 1; |
| } |
| return 0; |
| } |
| |
| // Checks for skip status of mv cost update. |
| static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info, |
| const int mi_row, const int mi_col) { |
| const AV1_COMMON *cm = &cpi->common; |
| // For intra frames, mv cdfs are not updated during the encode. Hence, the mv |
| // cost calculation is skipped in this case. |
| if (frame_is_intra_only(cm)) return 1; |
| |
| return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, |
| cpi->sf.inter_sf.mv_cost_upd_level); |
| } |
| |
| // Checks for skip status of dv cost update. |
| static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info, |
| const int mi_row, const int mi_col) { |
| const AV1_COMMON *cm = &cpi->common; |
| // Intrabc is only applicable to intra frames. So skip if intrabc is not |
| // allowed. |
| if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) { |
| return 1; |
| } |
| |
| return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, |
| cpi->sf.intra_sf.dv_cost_upd_level); |
| } |
| |
| // Update the rate costs of some symbols according to the frequency directed |
| // by speed features |
| void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td, |
| const TileInfo *const tile_info, const int mi_row, |
| const int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| if (cm->features.disable_cdf_update) { |
| return; |
| } |
| |
| switch (cpi->sf.inter_sf.coeff_cost_upd_level) { |
| case INTERNAL_COST_UPD_OFF: |
| case INTERNAL_COST_UPD_TILE: // Tile level |
| break; |
| case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile |
| case INTERNAL_COST_UPD_SBROW: // SB row level in tile |
| case INTERNAL_COST_UPD_SB: // SB level |
| if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, |
| cpi->sf.inter_sf.coeff_cost_upd_level)) |
| break; |
| av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes); |
| break; |
| default: assert(0); |
| } |
| |
| switch (cpi->sf.inter_sf.mode_cost_upd_level) { |
| case INTERNAL_COST_UPD_OFF: |
| case INTERNAL_COST_UPD_TILE: // Tile level |
| break; |
| case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile |
| case INTERNAL_COST_UPD_SBROW: // SB row level in tile |
| case INTERNAL_COST_UPD_SB: // SB level |
| if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, |
| cpi->sf.inter_sf.mode_cost_upd_level)) |
| break; |
| av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx); |
| break; |
| default: assert(0); |
| } |
| |
| switch (cpi->sf.inter_sf.mv_cost_upd_level) { |
| case INTERNAL_COST_UPD_OFF: |
| case INTERNAL_COST_UPD_TILE: // Tile level |
| break; |
| case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile |
| case INTERNAL_COST_UPD_SBROW: // SB row level in tile |
| case INTERNAL_COST_UPD_SB: // SB level |
| // Checks for skip status of mv cost update. |
| if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break; |
| av1_fill_mv_costs(&xd->tile_ctx->nmvc, |
| cm->features.cur_frame_force_integer_mv, |
| cm->features.allow_high_precision_mv, x->mv_costs); |
| break; |
| default: assert(0); |
| } |
| |
| switch (cpi->sf.intra_sf.dv_cost_upd_level) { |
| case INTERNAL_COST_UPD_OFF: |
| case INTERNAL_COST_UPD_TILE: // Tile level |
| break; |
| case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile |
| case INTERNAL_COST_UPD_SBROW: // SB row level in tile |
| case INTERNAL_COST_UPD_SB: // SB level |
| // Checks for skip status of dv cost update. |
| if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break; |
| av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs); |
| break; |
| default: assert(0); |
| } |
| } |