blob: ca89f20aee2c18052159126bc57e495d66be4595 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#define VP10_FORCE_VPXBOOL_TREEWRITER
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <ctime>
#include <utility>
#include <vector>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "vp10/common/ans.h"
#include "vp10/encoder/treewriter.h"
#include "vpx_dsp/bitreader.h"
#include "vpx_dsp/bitwriter.h"
namespace {
typedef std::vector<std::pair<uint8_t, bool> > PvVec;
PvVec abs_encode_build_vals(int iters) {
PvVec ret;
libvpx_test::ACMRandom gen(0x30317076);
double entropy = 0;
for (int i = 0; i < iters; ++i) {
uint8_t p;
do {
p = gen.Rand8();
} while (p == 0); // zero is not a valid coding probability
bool b = gen.Rand8() < p;
ret.push_back(std::make_pair(static_cast<uint8_t>(p), b));
double d = p / 256.;
entropy += -d * log2(d) - (1 - d) * log2(1 - d);
}
printf("entropy %f\n", entropy);
return ret;
}
bool check_rabs(const PvVec &pv_vec, uint8_t *buf) {
AnsCoder a;
ans_write_init(&a, buf);
std::clock_t start = std::clock();
for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend();
++it) {
rabs_write(&a, it->second, 256 - it->first);
}
std::clock_t enc_time = std::clock() - start;
int offset = ans_write_end(&a);
bool okay = true;
AnsDecoder d;
if (ans_read_init(&d, buf, offset)) return false;
start = std::clock();
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
okay &= rabs_read(&d, 256 - it->first) == it->second;
}
std::clock_t dec_time = std::clock() - start;
if (!okay) return false;
printf("rABS size %d enc_time %f dec_time %f\n", offset,
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
return ans_read_end(&d);
}
bool check_rabs_asc(const PvVec &pv_vec, uint8_t *buf) {
AnsCoder a;
ans_write_init(&a, buf);
std::clock_t start = std::clock();
for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend();
++it) {
rabs_asc_write(&a, it->second, 256 - it->first);
}
std::clock_t enc_time = std::clock() - start;
int offset = ans_write_end(&a);
bool okay = true;
AnsDecoder d;
if (ans_read_init(&d, buf, offset)) return false;
start = std::clock();
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
okay &= rabs_asc_read(&d, 256 - it->first) == it->second;
}
std::clock_t dec_time = std::clock() - start;
if (!okay) return false;
printf("rABS (asc) size %d enc_time %f dec_time %f\n", offset,
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
return ans_read_end(&d);
}
bool check_uabs(const PvVec &pv_vec, uint8_t *buf) {
AnsCoder a;
ans_write_init(&a, buf);
std::clock_t start = std::clock();
for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend();
++it) {
uabs_write(&a, it->second, 256 - it->first);
}
std::clock_t enc_time = std::clock() - start;
int offset = ans_write_end(&a);
bool okay = true;
AnsDecoder d;
if (ans_read_init(&d, buf, offset)) return false;
start = std::clock();
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
okay &= uabs_read(&d, 256 - it->first) == it->second;
}
std::clock_t dec_time = std::clock() - start;
if (!okay) return false;
printf("uABS size %d enc_time %f dec_time %f\n", offset,
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
return ans_read_end(&d);
}
bool check_vpxbool(const PvVec &pv_vec, uint8_t *buf) {
vpx_writer w;
vpx_reader r;
vpx_start_encode(&w, buf);
std::clock_t start = std::clock();
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
vpx_write(&w, it->second, 256 - it->first);
}
std::clock_t enc_time = std::clock() - start;
vpx_stop_encode(&w);
bool okay = true;
vpx_reader_init(&r, buf, w.pos, NULL, NULL);
start = std::clock();
for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) {
okay &= vpx_read(&r, 256 - it->first) == it->second;
}
std::clock_t dec_time = std::clock() - start;
printf("VPX size %d enc_time %f dec_time %f\n", w.pos,
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
return okay;
}
// TODO(aconverse): replace this with a more representative distribution from
// the codec.
const rans_sym rans_sym_tab[] = {
{ 16 * 4, 0 * 4 },
{ 100 * 4, 16 * 4 },
{ 70 * 4, 116 * 4 },
{ 70 * 4, 186 * 4 },
};
const int kDistinctSyms = sizeof(rans_sym_tab) / sizeof(rans_sym_tab[0]);
std::vector<int> ans_encode_build_vals(const rans_sym *tab, int iters) {
std::vector<int> p_to_sym;
int i = 0;
while (p_to_sym.size() < rans_precision) {
p_to_sym.insert(p_to_sym.end(), tab[i].prob, i);
++i;
}
assert(p_to_sym.size() == rans_precision);
std::vector<int> ret;
libvpx_test::ACMRandom gen(18543637);
for (int i = 0; i < iters; ++i) {
int sym = p_to_sym[gen.Rand8() * 4];
ret.push_back(sym);
}
return ret;
}
void rans_build_dec_tab(const struct rans_sym sym_tab[], rans_dec_lut dec_tab) {
dec_tab[0] = 0;
for (int i = 1; dec_tab[i - 1] < rans_precision; ++i) {
dec_tab[i] = dec_tab[i - 1] + sym_tab[i - 1].prob;
}
}
bool check_rans(const std::vector<int> &sym_vec, const rans_sym *const tab,
uint8_t *buf) {
AnsCoder a;
ans_write_init(&a, buf);
rans_dec_lut dec_tab;
rans_build_dec_tab(tab, dec_tab);
std::clock_t start = std::clock();
for (std::vector<int>::const_reverse_iterator it = sym_vec.rbegin();
it != sym_vec.rend(); ++it) {
rans_write(&a, &tab[*it]);
}
std::clock_t enc_time = std::clock() - start;
int offset = ans_write_end(&a);
bool okay = true;
AnsDecoder d;
if (ans_read_init(&d, buf, offset)) return false;
start = std::clock();
for (std::vector<int>::const_iterator it = sym_vec.begin();
it != sym_vec.end(); ++it) {
okay &= rans_read(&d, dec_tab) == *it;
}
std::clock_t dec_time = std::clock() - start;
if (!okay) return false;
printf("rANS size %d enc_time %f dec_time %f\n", offset,
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
return ans_read_end(&d);
}
void build_tree(vpx_tree_index *tree, int num_syms) {
vpx_tree_index i;
int sym = 0;
for (i = 0; i < num_syms - 1; ++i) {
tree[2 * i] = sym--;
tree[2 * i + 1] = 2 * (i + 1);
}
tree[2 * i - 1] = sym;
}
/* The treep array contains the probabilities of nodes of a tree structured
* like:
* *
* / \
* -sym0 *
* / \
* -sym1 *
* / \
* -sym2 -sym3
*/
void tab2tree(const rans_sym *tab, int tab_size, vpx_prob *treep) {
const unsigned basep = rans_precision;
unsigned pleft = basep;
for (int i = 0; i < tab_size - 1; ++i) {
unsigned prob = (tab[i].prob * basep + basep * 2) / (pleft * 4);
assert(prob > 0 && prob < 256);
treep[i] = prob;
pleft -= tab[i].prob;
}
}
struct sym_bools {
unsigned bits;
int len;
};
static void make_tree_bits_tab(sym_bools *tab, int num_syms) {
unsigned bits = 0;
int len = 0;
int i;
for (i = 0; i < num_syms - 1; ++i) {
bits *= 2;
++len;
tab[i].bits = bits;
tab[i].len = len;
++bits;
}
tab[i].bits = bits;
tab[i].len = len;
}
void build_tpb(vpx_prob probs[/*num_syms*/],
vpx_tree_index tree[/*2*num_syms*/],
sym_bools bit_len[/*num_syms*/],
const rans_sym sym_tab[/*num_syms*/], int num_syms) {
tab2tree(sym_tab, num_syms, probs);
build_tree(tree, num_syms);
make_tree_bits_tab(bit_len, num_syms);
}
bool check_vpxtree(const std::vector<int> &sym_vec, const rans_sym *sym_tab,
uint8_t *buf) {
vpx_writer w;
vpx_reader r;
vpx_start_encode(&w, buf);
vpx_prob probs[kDistinctSyms];
vpx_tree_index tree[2 * kDistinctSyms];
sym_bools bit_len[kDistinctSyms];
build_tpb(probs, tree, bit_len, sym_tab, kDistinctSyms);
std::clock_t start = std::clock();
for (std::vector<int>::const_iterator it = sym_vec.begin();
it != sym_vec.end(); ++it) {
vp10_write_tree(&w, tree, probs, bit_len[*it].bits, bit_len[*it].len, 0);
}
std::clock_t enc_time = std::clock() - start;
vpx_stop_encode(&w);
vpx_reader_init(&r, buf, w.pos, NULL, NULL);
start = std::clock();
for (std::vector<int>::const_iterator it = sym_vec.begin();
it != sym_vec.end(); ++it) {
if (vpx_read_tree(&r, tree, probs) != *it) return false;
}
std::clock_t dec_time = std::clock() - start;
printf("VPXtree size %u enc_time %f dec_time %f\n", w.pos,
static_cast<float>(enc_time) / CLOCKS_PER_SEC,
static_cast<float>(dec_time) / CLOCKS_PER_SEC);
return true;
}
class Vp10AbsTest : public ::testing::Test {
protected:
static void SetUpTestCase() { pv_vec_ = abs_encode_build_vals(kNumBools); }
virtual void SetUp() { buf_ = new uint8_t[kNumBools / 8]; }
virtual void TearDown() { delete[] buf_; }
static const int kNumBools = 100000000;
static PvVec pv_vec_;
uint8_t *buf_;
};
PvVec Vp10AbsTest::pv_vec_;
class Vp10AnsTest : public ::testing::Test {
protected:
static void SetUpTestCase() {
sym_vec_ = ans_encode_build_vals(rans_sym_tab, kNumSyms);
}
virtual void SetUp() { buf_ = new uint8_t[kNumSyms / 2]; }
virtual void TearDown() { delete[] buf_; }
static const int kNumSyms = 25000000;
static std::vector<int> sym_vec_;
uint8_t *buf_;
};
std::vector<int> Vp10AnsTest::sym_vec_;
TEST_F(Vp10AbsTest, Vpxbool) { EXPECT_TRUE(check_vpxbool(pv_vec_, buf_)); }
TEST_F(Vp10AbsTest, Rabs) { EXPECT_TRUE(check_rabs(pv_vec_, buf_)); }
TEST_F(Vp10AbsTest, RabsAsc) { EXPECT_TRUE(check_rabs_asc(pv_vec_, buf_)); }
TEST_F(Vp10AbsTest, Uabs) { EXPECT_TRUE(check_uabs(pv_vec_, buf_)); }
TEST_F(Vp10AnsTest, Rans) {
EXPECT_TRUE(check_rans(sym_vec_, rans_sym_tab, buf_));
}
TEST_F(Vp10AnsTest, Vpxtree) {
EXPECT_TRUE(check_vpxtree(sym_vec_, rans_sym_tab, buf_));
}
} // namespace