| /* |
| * Copyright (c) 2015 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #define VP10_FORCE_VPXBOOL_TREEWRITER |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <ctime> |
| #include <utility> |
| #include <vector> |
| |
| #include "third_party/googletest/src/include/gtest/gtest.h" |
| |
| #include "test/acm_random.h" |
| #include "vp10/common/ans.h" |
| #include "vp10/encoder/treewriter.h" |
| #include "vpx_dsp/bitreader.h" |
| #include "vpx_dsp/bitwriter.h" |
| |
| namespace { |
| typedef std::vector<std::pair<uint8_t, bool> > PvVec; |
| |
| PvVec abs_encode_build_vals(int iters) { |
| PvVec ret; |
| libvpx_test::ACMRandom gen(0x30317076); |
| double entropy = 0; |
| for (int i = 0; i < iters; ++i) { |
| uint8_t p; |
| do { |
| p = gen.Rand8(); |
| } while (p == 0); // zero is not a valid coding probability |
| bool b = gen.Rand8() < p; |
| ret.push_back(std::make_pair(static_cast<uint8_t>(p), b)); |
| double d = p / 256.; |
| entropy += -d * log2(d) - (1 - d) * log2(1 - d); |
| } |
| printf("entropy %f\n", entropy); |
| return ret; |
| } |
| |
| bool check_rabs(const PvVec &pv_vec, uint8_t *buf) { |
| AnsCoder a; |
| ans_write_init(&a, buf); |
| |
| std::clock_t start = std::clock(); |
| for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend(); |
| ++it) { |
| rabs_write(&a, it->second, 256 - it->first); |
| } |
| std::clock_t enc_time = std::clock() - start; |
| int offset = ans_write_end(&a); |
| bool okay = true; |
| AnsDecoder d; |
| if (ans_read_init(&d, buf, offset)) return false; |
| start = std::clock(); |
| for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { |
| okay &= rabs_read(&d, 256 - it->first) == it->second; |
| } |
| std::clock_t dec_time = std::clock() - start; |
| if (!okay) return false; |
| printf("rABS size %d enc_time %f dec_time %f\n", offset, |
| static_cast<float>(enc_time) / CLOCKS_PER_SEC, |
| static_cast<float>(dec_time) / CLOCKS_PER_SEC); |
| return ans_read_end(&d); |
| } |
| |
| bool check_rabs_asc(const PvVec &pv_vec, uint8_t *buf) { |
| AnsCoder a; |
| ans_write_init(&a, buf); |
| |
| std::clock_t start = std::clock(); |
| for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend(); |
| ++it) { |
| rabs_asc_write(&a, it->second, 256 - it->first); |
| } |
| std::clock_t enc_time = std::clock() - start; |
| int offset = ans_write_end(&a); |
| bool okay = true; |
| AnsDecoder d; |
| if (ans_read_init(&d, buf, offset)) return false; |
| start = std::clock(); |
| for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { |
| okay &= rabs_asc_read(&d, 256 - it->first) == it->second; |
| } |
| std::clock_t dec_time = std::clock() - start; |
| if (!okay) return false; |
| printf("rABS (asc) size %d enc_time %f dec_time %f\n", offset, |
| static_cast<float>(enc_time) / CLOCKS_PER_SEC, |
| static_cast<float>(dec_time) / CLOCKS_PER_SEC); |
| return ans_read_end(&d); |
| } |
| |
| bool check_uabs(const PvVec &pv_vec, uint8_t *buf) { |
| AnsCoder a; |
| ans_write_init(&a, buf); |
| |
| std::clock_t start = std::clock(); |
| for (PvVec::const_reverse_iterator it = pv_vec.rbegin(); it != pv_vec.rend(); |
| ++it) { |
| uabs_write(&a, it->second, 256 - it->first); |
| } |
| std::clock_t enc_time = std::clock() - start; |
| int offset = ans_write_end(&a); |
| bool okay = true; |
| AnsDecoder d; |
| if (ans_read_init(&d, buf, offset)) return false; |
| start = std::clock(); |
| for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { |
| okay &= uabs_read(&d, 256 - it->first) == it->second; |
| } |
| std::clock_t dec_time = std::clock() - start; |
| if (!okay) return false; |
| printf("uABS size %d enc_time %f dec_time %f\n", offset, |
| static_cast<float>(enc_time) / CLOCKS_PER_SEC, |
| static_cast<float>(dec_time) / CLOCKS_PER_SEC); |
| return ans_read_end(&d); |
| } |
| |
| bool check_vpxbool(const PvVec &pv_vec, uint8_t *buf) { |
| vpx_writer w; |
| vpx_reader r; |
| vpx_start_encode(&w, buf); |
| |
| std::clock_t start = std::clock(); |
| for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { |
| vpx_write(&w, it->second, 256 - it->first); |
| } |
| std::clock_t enc_time = std::clock() - start; |
| vpx_stop_encode(&w); |
| bool okay = true; |
| vpx_reader_init(&r, buf, w.pos, NULL, NULL); |
| start = std::clock(); |
| for (PvVec::const_iterator it = pv_vec.begin(); it != pv_vec.end(); ++it) { |
| okay &= vpx_read(&r, 256 - it->first) == it->second; |
| } |
| std::clock_t dec_time = std::clock() - start; |
| printf("VPX size %d enc_time %f dec_time %f\n", w.pos, |
| static_cast<float>(enc_time) / CLOCKS_PER_SEC, |
| static_cast<float>(dec_time) / CLOCKS_PER_SEC); |
| return okay; |
| } |
| |
| // TODO(aconverse): replace this with a more representative distribution from |
| // the codec. |
| const rans_sym rans_sym_tab[] = { |
| { 16 * 4, 0 * 4 }, |
| { 100 * 4, 16 * 4 }, |
| { 70 * 4, 116 * 4 }, |
| { 70 * 4, 186 * 4 }, |
| }; |
| const int kDistinctSyms = sizeof(rans_sym_tab) / sizeof(rans_sym_tab[0]); |
| |
| std::vector<int> ans_encode_build_vals(const rans_sym *tab, int iters) { |
| std::vector<int> p_to_sym; |
| int i = 0; |
| while (p_to_sym.size() < rans_precision) { |
| p_to_sym.insert(p_to_sym.end(), tab[i].prob, i); |
| ++i; |
| } |
| assert(p_to_sym.size() == rans_precision); |
| std::vector<int> ret; |
| libvpx_test::ACMRandom gen(18543637); |
| for (int i = 0; i < iters; ++i) { |
| int sym = p_to_sym[gen.Rand8() * 4]; |
| ret.push_back(sym); |
| } |
| return ret; |
| } |
| |
| void rans_build_dec_tab(const struct rans_sym sym_tab[], rans_dec_lut dec_tab) { |
| dec_tab[0] = 0; |
| for (int i = 1; dec_tab[i - 1] < rans_precision; ++i) { |
| dec_tab[i] = dec_tab[i - 1] + sym_tab[i - 1].prob; |
| } |
| } |
| |
| bool check_rans(const std::vector<int> &sym_vec, const rans_sym *const tab, |
| uint8_t *buf) { |
| AnsCoder a; |
| ans_write_init(&a, buf); |
| rans_dec_lut dec_tab; |
| rans_build_dec_tab(tab, dec_tab); |
| |
| std::clock_t start = std::clock(); |
| for (std::vector<int>::const_reverse_iterator it = sym_vec.rbegin(); |
| it != sym_vec.rend(); ++it) { |
| rans_write(&a, &tab[*it]); |
| } |
| std::clock_t enc_time = std::clock() - start; |
| int offset = ans_write_end(&a); |
| bool okay = true; |
| AnsDecoder d; |
| if (ans_read_init(&d, buf, offset)) return false; |
| start = std::clock(); |
| for (std::vector<int>::const_iterator it = sym_vec.begin(); |
| it != sym_vec.end(); ++it) { |
| okay &= rans_read(&d, dec_tab) == *it; |
| } |
| std::clock_t dec_time = std::clock() - start; |
| if (!okay) return false; |
| printf("rANS size %d enc_time %f dec_time %f\n", offset, |
| static_cast<float>(enc_time) / CLOCKS_PER_SEC, |
| static_cast<float>(dec_time) / CLOCKS_PER_SEC); |
| return ans_read_end(&d); |
| } |
| |
| void build_tree(vpx_tree_index *tree, int num_syms) { |
| vpx_tree_index i; |
| int sym = 0; |
| for (i = 0; i < num_syms - 1; ++i) { |
| tree[2 * i] = sym--; |
| tree[2 * i + 1] = 2 * (i + 1); |
| } |
| tree[2 * i - 1] = sym; |
| } |
| |
| /* The treep array contains the probabilities of nodes of a tree structured |
| * like: |
| * * |
| * / \ |
| * -sym0 * |
| * / \ |
| * -sym1 * |
| * / \ |
| * -sym2 -sym3 |
| */ |
| void tab2tree(const rans_sym *tab, int tab_size, vpx_prob *treep) { |
| const unsigned basep = rans_precision; |
| unsigned pleft = basep; |
| for (int i = 0; i < tab_size - 1; ++i) { |
| unsigned prob = (tab[i].prob * basep + basep * 2) / (pleft * 4); |
| assert(prob > 0 && prob < 256); |
| treep[i] = prob; |
| pleft -= tab[i].prob; |
| } |
| } |
| |
| struct sym_bools { |
| unsigned bits; |
| int len; |
| }; |
| |
| static void make_tree_bits_tab(sym_bools *tab, int num_syms) { |
| unsigned bits = 0; |
| int len = 0; |
| int i; |
| for (i = 0; i < num_syms - 1; ++i) { |
| bits *= 2; |
| ++len; |
| tab[i].bits = bits; |
| tab[i].len = len; |
| ++bits; |
| } |
| tab[i].bits = bits; |
| tab[i].len = len; |
| } |
| |
| void build_tpb(vpx_prob probs[/*num_syms*/], |
| vpx_tree_index tree[/*2*num_syms*/], |
| sym_bools bit_len[/*num_syms*/], |
| const rans_sym sym_tab[/*num_syms*/], int num_syms) { |
| tab2tree(sym_tab, num_syms, probs); |
| build_tree(tree, num_syms); |
| make_tree_bits_tab(bit_len, num_syms); |
| } |
| |
| bool check_vpxtree(const std::vector<int> &sym_vec, const rans_sym *sym_tab, |
| uint8_t *buf) { |
| vpx_writer w; |
| vpx_reader r; |
| vpx_start_encode(&w, buf); |
| |
| vpx_prob probs[kDistinctSyms]; |
| vpx_tree_index tree[2 * kDistinctSyms]; |
| sym_bools bit_len[kDistinctSyms]; |
| build_tpb(probs, tree, bit_len, sym_tab, kDistinctSyms); |
| |
| std::clock_t start = std::clock(); |
| for (std::vector<int>::const_iterator it = sym_vec.begin(); |
| it != sym_vec.end(); ++it) { |
| vp10_write_tree(&w, tree, probs, bit_len[*it].bits, bit_len[*it].len, 0); |
| } |
| std::clock_t enc_time = std::clock() - start; |
| vpx_stop_encode(&w); |
| vpx_reader_init(&r, buf, w.pos, NULL, NULL); |
| start = std::clock(); |
| for (std::vector<int>::const_iterator it = sym_vec.begin(); |
| it != sym_vec.end(); ++it) { |
| if (vpx_read_tree(&r, tree, probs) != *it) return false; |
| } |
| std::clock_t dec_time = std::clock() - start; |
| printf("VPXtree size %u enc_time %f dec_time %f\n", w.pos, |
| static_cast<float>(enc_time) / CLOCKS_PER_SEC, |
| static_cast<float>(dec_time) / CLOCKS_PER_SEC); |
| return true; |
| } |
| |
| class Vp10AbsTest : public ::testing::Test { |
| protected: |
| static void SetUpTestCase() { pv_vec_ = abs_encode_build_vals(kNumBools); } |
| virtual void SetUp() { buf_ = new uint8_t[kNumBools / 8]; } |
| virtual void TearDown() { delete[] buf_; } |
| static const int kNumBools = 100000000; |
| static PvVec pv_vec_; |
| uint8_t *buf_; |
| }; |
| PvVec Vp10AbsTest::pv_vec_; |
| |
| class Vp10AnsTest : public ::testing::Test { |
| protected: |
| static void SetUpTestCase() { |
| sym_vec_ = ans_encode_build_vals(rans_sym_tab, kNumSyms); |
| } |
| virtual void SetUp() { buf_ = new uint8_t[kNumSyms / 2]; } |
| virtual void TearDown() { delete[] buf_; } |
| static const int kNumSyms = 25000000; |
| static std::vector<int> sym_vec_; |
| uint8_t *buf_; |
| }; |
| std::vector<int> Vp10AnsTest::sym_vec_; |
| |
| TEST_F(Vp10AbsTest, Vpxbool) { EXPECT_TRUE(check_vpxbool(pv_vec_, buf_)); } |
| TEST_F(Vp10AbsTest, Rabs) { EXPECT_TRUE(check_rabs(pv_vec_, buf_)); } |
| TEST_F(Vp10AbsTest, RabsAsc) { EXPECT_TRUE(check_rabs_asc(pv_vec_, buf_)); } |
| TEST_F(Vp10AbsTest, Uabs) { EXPECT_TRUE(check_uabs(pv_vec_, buf_)); } |
| |
| TEST_F(Vp10AnsTest, Rans) { |
| EXPECT_TRUE(check_rans(sym_vec_, rans_sym_tab, buf_)); |
| } |
| TEST_F(Vp10AnsTest, Vpxtree) { |
| EXPECT_TRUE(check_vpxtree(sym_vec_, rans_sym_tab, buf_)); |
| } |
| } // namespace |