blob: db0d4905b53d1410390b6d864f76ab35ee013984 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "aom_dsp/aom_dsp_common.h"
void aom_idct16x16_256_add_neon_pass1(const int16_t *input, int16_t *output,
int output_stride);
void aom_idct16x16_256_add_neon_pass2(const int16_t *src, int16_t *output,
int16_t *pass1Output, int16_t skip_adding,
uint8_t *dest, int dest_stride);
void aom_idct16x16_10_add_neon_pass1(const int16_t *input, int16_t *output,
int output_stride);
void aom_idct16x16_10_add_neon_pass2(const int16_t *src, int16_t *output,
int16_t *pass1Output, int16_t skip_adding,
uint8_t *dest, int dest_stride);
#if HAVE_NEON_ASM
/* For ARM NEON, d8-d15 are callee-saved registers, and need to be saved. */
extern void aom_push_neon(int64_t *store);
extern void aom_pop_neon(int64_t *store);
#endif // HAVE_NEON_ASM
void aom_idct16x16_256_add_neon(const int16_t *input, uint8_t *dest,
int dest_stride) {
#if HAVE_NEON_ASM
int64_t store_reg[8];
#endif
int16_t pass1_output[16 * 16] = { 0 };
int16_t row_idct_output[16 * 16] = { 0 };
#if HAVE_NEON_ASM
// save d8-d15 register values.
aom_push_neon(store_reg);
#endif
/* Parallel idct on the upper 8 rows */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
aom_idct16x16_256_add_neon_pass1(input, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7
// which will be saved into row_idct_output.
aom_idct16x16_256_add_neon_pass2(input + 1, row_idct_output, pass1_output, 0,
dest, dest_stride);
/* Parallel idct on the lower 8 rows */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
aom_idct16x16_256_add_neon_pass1(input + 8 * 16, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7
// which will be saved into row_idct_output.
aom_idct16x16_256_add_neon_pass2(input + 8 * 16 + 1, row_idct_output + 8,
pass1_output, 0, dest, dest_stride);
/* Parallel idct on the left 8 columns */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
aom_idct16x16_256_add_neon_pass1(row_idct_output, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7.
// Then add the result to the destination data.
aom_idct16x16_256_add_neon_pass2(row_idct_output + 1, row_idct_output,
pass1_output, 1, dest, dest_stride);
/* Parallel idct on the right 8 columns */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
aom_idct16x16_256_add_neon_pass1(row_idct_output + 8 * 16, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7.
// Then add the result to the destination data.
aom_idct16x16_256_add_neon_pass2(row_idct_output + 8 * 16 + 1,
row_idct_output + 8, pass1_output, 1,
dest + 8, dest_stride);
#if HAVE_NEON_ASM
// restore d8-d15 register values.
aom_pop_neon(store_reg);
#endif
return;
}
void aom_idct16x16_10_add_neon(const int16_t *input, uint8_t *dest,
int dest_stride) {
#if HAVE_NEON_ASM
int64_t store_reg[8];
#endif
int16_t pass1_output[16 * 16] = { 0 };
int16_t row_idct_output[16 * 16] = { 0 };
#if HAVE_NEON_ASM
// save d8-d15 register values.
aom_push_neon(store_reg);
#endif
/* Parallel idct on the upper 8 rows */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
aom_idct16x16_10_add_neon_pass1(input, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7
// which will be saved into row_idct_output.
aom_idct16x16_10_add_neon_pass2(input + 1, row_idct_output, pass1_output, 0,
dest, dest_stride);
/* Skip Parallel idct on the lower 8 rows as they are all 0s */
/* Parallel idct on the left 8 columns */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
aom_idct16x16_256_add_neon_pass1(row_idct_output, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7.
// Then add the result to the destination data.
aom_idct16x16_256_add_neon_pass2(row_idct_output + 1, row_idct_output,
pass1_output, 1, dest, dest_stride);
/* Parallel idct on the right 8 columns */
// First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the
// stage 6 result in pass1_output.
aom_idct16x16_256_add_neon_pass1(row_idct_output + 8 * 16, pass1_output, 8);
// Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines
// with result in pass1(pass1_output) to calculate final result in stage 7.
// Then add the result to the destination data.
aom_idct16x16_256_add_neon_pass2(row_idct_output + 8 * 16 + 1,
row_idct_output + 8, pass1_output, 1,
dest + 8, dest_stride);
#if HAVE_NEON_ASM
// restore d8-d15 register values.
aom_pop_neon(store_reg);
#endif
return;
}