| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <tmmintrin.h> |
| |
| #include "./aom_dsp_rtcd.h" |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_dsp/x86/convolve.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/emmintrin_compat.h" |
| |
| // filters only for the 4_h8 convolution |
| DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = { |
| 0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6 |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = { |
| 4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10 |
| }; |
| |
| // filters for 8_h8 and 16_h8 |
| DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = { |
| 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = { |
| 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = { |
| 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = { |
| 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 |
| }; |
| |
| // These are reused by the avx2 intrinsics. |
| filter8_1dfunction aom_filter_block1d8_v8_intrin_ssse3; |
| filter8_1dfunction aom_filter_block1d8_h8_intrin_ssse3; |
| filter8_1dfunction aom_filter_block1d4_h8_intrin_ssse3; |
| |
| void aom_filter_block1d4_h8_intrin_ssse3( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i firstFilters, secondFilters, shuffle1, shuffle2; |
| __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; |
| __m128i addFilterReg64, filtersReg, srcReg, minReg; |
| unsigned int i; |
| |
| // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 |
| addFilterReg64 = _mm_set1_epi32((int)0x0400040u); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| |
| // duplicate only the first 16 bits in the filter into the first lane |
| firstFilters = _mm_shufflelo_epi16(filtersReg, 0); |
| // duplicate only the third 16 bit in the filter into the first lane |
| secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu); |
| // duplicate only the seconds 16 bits in the filter into the second lane |
| // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3 |
| firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u); |
| // duplicate only the forth 16 bits in the filter into the second lane |
| // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7 |
| secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu); |
| |
| // loading the local filters |
| shuffle1 = _mm_load_si128((__m128i const *)filt1_4_h8); |
| shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8); |
| |
| for (i = 0; i < output_height; i++) { |
| srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); |
| |
| // filter the source buffer |
| srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); |
| srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); |
| |
| // extract the higher half of the lane |
| srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8); |
| srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8); |
| |
| minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2); |
| |
| // add and saturate all the results together |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); |
| srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); |
| |
| // shift by 7 bit each 16 bits |
| srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); |
| |
| // shrink to 8 bit each 16 bits |
| srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); |
| src_ptr += src_pixels_per_line; |
| |
| // save only 4 bytes |
| *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1); |
| |
| output_ptr += output_pitch; |
| } |
| } |
| |
| void aom_filter_block1d8_h8_intrin_ssse3( |
| const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, |
| ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg; |
| __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg; |
| __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; |
| __m128i addFilterReg64, filtersReg, minReg; |
| unsigned int i; |
| |
| // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 |
| addFilterReg64 = _mm_set1_epi32((int)0x0400040u); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| |
| // duplicate only the first 16 bits (first and second byte) |
| // across 128 bit register |
| firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 128 bit register |
| secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 128 bit register |
| thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); |
| // duplicate only the forth 16 bits (seventh and eighth byte) |
| // across 128 bit register |
| forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); |
| |
| filt1Reg = _mm_load_si128((__m128i const *)filt1_global); |
| filt2Reg = _mm_load_si128((__m128i const *)filt2_global); |
| filt3Reg = _mm_load_si128((__m128i const *)filt3_global); |
| filt4Reg = _mm_load_si128((__m128i const *)filt4_global); |
| |
| for (i = 0; i < output_height; i++) { |
| srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); |
| |
| // filter the source buffer |
| srcRegFilt1 = _mm_shuffle_epi8(srcReg, filt1Reg); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg, filt2Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); |
| srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); |
| |
| // filter the source buffer |
| srcRegFilt3 = _mm_shuffle_epi8(srcReg, filt3Reg); |
| srcRegFilt4 = _mm_shuffle_epi8(srcReg, filt4Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters); |
| srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters); |
| |
| // add and saturate all the results together |
| minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); |
| |
| srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); |
| |
| // shift by 7 bit each 16 bits |
| srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); |
| |
| // shrink to 8 bit each 16 bits |
| srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); |
| |
| src_ptr += src_pixels_per_line; |
| |
| // save only 8 bytes |
| _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1); |
| |
| output_ptr += output_pitch; |
| } |
| } |
| |
| void aom_filter_block1d8_v8_intrin_ssse3( |
| const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, |
| ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { |
| __m128i addFilterReg64, filtersReg, minReg; |
| __m128i firstFilters, secondFilters, thirdFilters, forthFilters; |
| __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5; |
| __m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7; |
| __m128i srcReg8; |
| unsigned int i; |
| |
| // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 |
| addFilterReg64 = _mm_set1_epi32((int)0x0400040u); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg = _mm_packs_epi16(filtersReg, filtersReg); |
| |
| // duplicate only the first 16 bits in the filter |
| firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); |
| // duplicate only the second 16 bits in the filter |
| secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits in the filter |
| thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); |
| // duplicate only the forth 16 bits in the filter |
| forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); |
| |
| // load the first 7 rows of 8 bytes |
| srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr); |
| srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); |
| srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); |
| srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); |
| srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); |
| srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); |
| srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); |
| |
| for (i = 0; i < output_height; i++) { |
| // load the last 8 bytes |
| srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); |
| |
| // merge the result together |
| srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2); |
| srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4); |
| |
| // merge the result together |
| srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6); |
| srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); |
| srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); |
| srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); |
| srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters); |
| |
| // add and saturate the results together |
| minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5); |
| srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); |
| |
| // shift by 7 bit each 16 bit |
| srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); |
| |
| // shrink to 8 bit each 16 bits |
| srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); |
| |
| src_ptr += src_pitch; |
| |
| // shift down a row |
| srcReg1 = srcReg2; |
| srcReg2 = srcReg3; |
| srcReg3 = srcReg4; |
| srcReg4 = srcReg5; |
| srcReg5 = srcReg6; |
| srcReg6 = srcReg7; |
| srcReg7 = srcReg8; |
| |
| // save only 8 bytes convolve result |
| _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1); |
| |
| output_ptr += out_pitch; |
| } |
| } |
| |
| filter8_1dfunction aom_filter_block1d16_v8_ssse3; |
| filter8_1dfunction aom_filter_block1d16_h8_ssse3; |
| filter8_1dfunction aom_filter_block1d8_v8_ssse3; |
| filter8_1dfunction aom_filter_block1d8_h8_ssse3; |
| filter8_1dfunction aom_filter_block1d4_v8_ssse3; |
| filter8_1dfunction aom_filter_block1d4_h8_ssse3; |
| filter8_1dfunction aom_filter_block1d16_v8_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d16_h8_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d8_v8_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d8_h8_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d4_v8_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d4_h8_avg_ssse3; |
| #if CONFIG_LOOP_RESTORATION |
| filter8_1dfunction aom_filter_block1d16_v8_add_src_ssse3; |
| filter8_1dfunction aom_filter_block1d16_h8_add_src_ssse3; |
| filter8_1dfunction aom_filter_block1d8_v8_add_src_ssse3; |
| filter8_1dfunction aom_filter_block1d8_h8_add_src_ssse3; |
| filter8_1dfunction aom_filter_block1d4_v8_add_src_ssse3; |
| filter8_1dfunction aom_filter_block1d4_h8_add_src_ssse3; |
| #endif |
| |
| filter8_1dfunction aom_filter_block1d16_v2_ssse3; |
| filter8_1dfunction aom_filter_block1d16_h2_ssse3; |
| filter8_1dfunction aom_filter_block1d8_v2_ssse3; |
| filter8_1dfunction aom_filter_block1d8_h2_ssse3; |
| filter8_1dfunction aom_filter_block1d4_v2_ssse3; |
| filter8_1dfunction aom_filter_block1d4_h2_ssse3; |
| filter8_1dfunction aom_filter_block1d16_v2_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d16_h2_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d8_v2_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d8_h2_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d4_v2_avg_ssse3; |
| filter8_1dfunction aom_filter_block1d4_h2_avg_ssse3; |
| |
| // void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| // void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| // void aom_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| // void aom_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3); |
| FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3); |
| FUN_CONV_1D(avg_horiz, x_step_q4, filter_x, h, src, avg_, ssse3); |
| FUN_CONV_1D(avg_vert, y_step_q4, filter_y, v, src - src_stride * 3, avg_, |
| ssse3); |
| |
| #if CONFIG_LOOP_RESTORATION |
| FUN_CONV_1D_NO_BILINEAR(add_src_horiz, x_step_q4, filter_x, h, src, add_src_, |
| ssse3); |
| FUN_CONV_1D_NO_BILINEAR(add_src_vert, y_step_q4, filter_y, v, |
| src - src_stride * 3, add_src_, ssse3); |
| #endif |
| |
| #define TRANSPOSE_8X8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3, out4, out5, out6, out7) \ |
| { \ |
| const __m128i tr0_0 = _mm_unpacklo_epi8(in0, in1); \ |
| const __m128i tr0_1 = _mm_unpacklo_epi8(in2, in3); \ |
| const __m128i tr0_2 = _mm_unpacklo_epi8(in4, in5); \ |
| const __m128i tr0_3 = _mm_unpacklo_epi8(in6, in7); \ |
| \ |
| const __m128i tr1_0 = _mm_unpacklo_epi16(tr0_0, tr0_1); \ |
| const __m128i tr1_1 = _mm_unpackhi_epi16(tr0_0, tr0_1); \ |
| const __m128i tr1_2 = _mm_unpacklo_epi16(tr0_2, tr0_3); \ |
| const __m128i tr1_3 = _mm_unpackhi_epi16(tr0_2, tr0_3); \ |
| \ |
| const __m128i tr2_0 = _mm_unpacklo_epi32(tr1_0, tr1_2); \ |
| const __m128i tr2_1 = _mm_unpackhi_epi32(tr1_0, tr1_2); \ |
| const __m128i tr2_2 = _mm_unpacklo_epi32(tr1_1, tr1_3); \ |
| const __m128i tr2_3 = _mm_unpackhi_epi32(tr1_1, tr1_3); \ |
| \ |
| out0 = _mm_unpacklo_epi64(tr2_0, tr2_0); \ |
| out1 = _mm_unpackhi_epi64(tr2_0, tr2_0); \ |
| out2 = _mm_unpacklo_epi64(tr2_1, tr2_1); \ |
| out3 = _mm_unpackhi_epi64(tr2_1, tr2_1); \ |
| out4 = _mm_unpacklo_epi64(tr2_2, tr2_2); \ |
| out5 = _mm_unpackhi_epi64(tr2_2, tr2_2); \ |
| out6 = _mm_unpacklo_epi64(tr2_3, tr2_3); \ |
| out7 = _mm_unpackhi_epi64(tr2_3, tr2_3); \ |
| } |
| |
| static void filter_horiz_w8_ssse3(const uint8_t *src_x, ptrdiff_t src_pitch, |
| uint8_t *dst, const int16_t *x_filter) { |
| const __m128i k_256 = _mm_set1_epi16(1 << 8); |
| const __m128i f_values = _mm_load_si128((const __m128i *)x_filter); |
| // pack and duplicate the filter values |
| const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); |
| const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); |
| const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); |
| const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); |
| const __m128i A = _mm_loadl_epi64((const __m128i *)src_x); |
| const __m128i B = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch)); |
| const __m128i C = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 2)); |
| const __m128i D = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 3)); |
| const __m128i E = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 4)); |
| const __m128i F = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 5)); |
| const __m128i G = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 6)); |
| const __m128i H = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 7)); |
| // 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17 |
| const __m128i tr0_0 = _mm_unpacklo_epi16(A, B); |
| // 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37 |
| const __m128i tr0_1 = _mm_unpacklo_epi16(C, D); |
| // 40 41 50 51 42 43 52 53 44 45 54 55 46 47 56 57 |
| const __m128i tr0_2 = _mm_unpacklo_epi16(E, F); |
| // 60 61 70 71 62 63 72 73 64 65 74 75 66 67 76 77 |
| const __m128i tr0_3 = _mm_unpacklo_epi16(G, H); |
| // 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33 |
| const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); |
| // 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37 |
| const __m128i tr1_1 = _mm_unpackhi_epi32(tr0_0, tr0_1); |
| // 40 41 50 51 60 61 70 71 42 43 52 53 62 63 72 73 |
| const __m128i tr1_2 = _mm_unpacklo_epi32(tr0_2, tr0_3); |
| // 44 45 54 55 64 65 74 75 46 47 56 57 66 67 76 77 |
| const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); |
| // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 |
| const __m128i s1s0 = _mm_unpacklo_epi64(tr1_0, tr1_2); |
| const __m128i s3s2 = _mm_unpackhi_epi64(tr1_0, tr1_2); |
| const __m128i s5s4 = _mm_unpacklo_epi64(tr1_1, tr1_3); |
| const __m128i s7s6 = _mm_unpackhi_epi64(tr1_1, tr1_3); |
| // multiply 2 adjacent elements with the filter and add the result |
| const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); |
| const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); |
| const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); |
| const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); |
| // add and saturate the results together |
| const __m128i min_x2x1 = _mm_min_epi16(x2, x1); |
| const __m128i max_x2x1 = _mm_max_epi16(x2, x1); |
| __m128i temp = _mm_adds_epi16(x0, x3); |
| temp = _mm_adds_epi16(temp, min_x2x1); |
| temp = _mm_adds_epi16(temp, max_x2x1); |
| // round and shift by 7 bit each 16 bit |
| temp = _mm_mulhrs_epi16(temp, k_256); |
| // shrink to 8 bit each 16 bits |
| temp = _mm_packus_epi16(temp, temp); |
| // save only 8 bytes convolve result |
| _mm_storel_epi64((__m128i *)dst, temp); |
| } |
| |
| static void transpose8x8_to_dst(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride) { |
| __m128i A, B, C, D, E, F, G, H; |
| |
| A = _mm_loadl_epi64((const __m128i *)src); |
| B = _mm_loadl_epi64((const __m128i *)(src + src_stride)); |
| C = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); |
| D = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3)); |
| E = _mm_loadl_epi64((const __m128i *)(src + src_stride * 4)); |
| F = _mm_loadl_epi64((const __m128i *)(src + src_stride * 5)); |
| G = _mm_loadl_epi64((const __m128i *)(src + src_stride * 6)); |
| H = _mm_loadl_epi64((const __m128i *)(src + src_stride * 7)); |
| |
| TRANSPOSE_8X8(A, B, C, D, E, F, G, H, A, B, C, D, E, F, G, H); |
| |
| _mm_storel_epi64((__m128i *)dst, A); |
| _mm_storel_epi64((__m128i *)(dst + dst_stride * 1), B); |
| _mm_storel_epi64((__m128i *)(dst + dst_stride * 2), C); |
| _mm_storel_epi64((__m128i *)(dst + dst_stride * 3), D); |
| _mm_storel_epi64((__m128i *)(dst + dst_stride * 4), E); |
| _mm_storel_epi64((__m128i *)(dst + dst_stride * 5), F); |
| _mm_storel_epi64((__m128i *)(dst + dst_stride * 6), G); |
| _mm_storel_epi64((__m128i *)(dst + dst_stride * 7), H); |
| } |
| |
| static void scaledconvolve_horiz_w8(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const InterpKernel *x_filters, int x0_q4, |
| int x_step_q4, int w, int h) { |
| DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); |
| int x, y, z; |
| src -= SUBPEL_TAPS / 2 - 1; |
| |
| // This function processes 8x8 areas. The intermediate height is not always |
| // a multiple of 8, so force it to be a multiple of 8 here. |
| y = h + (8 - (h & 0x7)); |
| |
| do { |
| int x_q4 = x0_q4; |
| for (x = 0; x < w; x += 8) { |
| // process 8 src_x steps |
| for (z = 0; z < 8; ++z) { |
| const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; |
| const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; |
| if (x_q4 & SUBPEL_MASK) { |
| filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter); |
| } else { |
| int i; |
| for (i = 0; i < 8; ++i) { |
| temp[z * 8 + i] = src_x[i * src_stride + 3]; |
| } |
| } |
| x_q4 += x_step_q4; |
| } |
| |
| // transpose the 8x8 filters values back to dst |
| transpose8x8_to_dst(temp, 8, dst + x, dst_stride); |
| } |
| |
| src += src_stride * 8; |
| dst += dst_stride * 8; |
| } while (y -= 8); |
| } |
| |
| static void filter_horiz_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, |
| uint8_t *dst, const int16_t *filter) { |
| const __m128i k_256 = _mm_set1_epi16(1 << 8); |
| const __m128i f_values = _mm_load_si128((const __m128i *)filter); |
| // pack and duplicate the filter values |
| const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); |
| const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); |
| const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); |
| const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); |
| const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr); |
| const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); |
| const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); |
| const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); |
| // TRANSPOSE... |
| // 00 01 02 03 04 05 06 07 |
| // 10 11 12 13 14 15 16 17 |
| // 20 21 22 23 24 25 26 27 |
| // 30 31 32 33 34 35 36 37 |
| // |
| // TO |
| // |
| // 00 10 20 30 |
| // 01 11 21 31 |
| // 02 12 22 32 |
| // 03 13 23 33 |
| // 04 14 24 34 |
| // 05 15 25 35 |
| // 06 16 26 36 |
| // 07 17 27 37 |
| // |
| // 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17 |
| const __m128i tr0_0 = _mm_unpacklo_epi16(A, B); |
| // 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37 |
| const __m128i tr0_1 = _mm_unpacklo_epi16(C, D); |
| // 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33 |
| const __m128i s1s0 = _mm_unpacklo_epi32(tr0_0, tr0_1); |
| // 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37 |
| const __m128i s5s4 = _mm_unpackhi_epi32(tr0_0, tr0_1); |
| // 02 03 12 13 22 23 32 33 |
| const __m128i s3s2 = _mm_srli_si128(s1s0, 8); |
| // 06 07 16 17 26 27 36 37 |
| const __m128i s7s6 = _mm_srli_si128(s5s4, 8); |
| // multiply 2 adjacent elements with the filter and add the result |
| const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); |
| const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); |
| const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); |
| const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); |
| // add and saturate the results together |
| const __m128i min_x2x1 = _mm_min_epi16(x2, x1); |
| const __m128i max_x2x1 = _mm_max_epi16(x2, x1); |
| __m128i temp = _mm_adds_epi16(x0, x3); |
| temp = _mm_adds_epi16(temp, min_x2x1); |
| temp = _mm_adds_epi16(temp, max_x2x1); |
| // round and shift by 7 bit each 16 bit |
| temp = _mm_mulhrs_epi16(temp, k_256); |
| // shrink to 8 bit each 16 bits |
| temp = _mm_packus_epi16(temp, temp); |
| // save only 4 bytes |
| *(int *)dst = _mm_cvtsi128_si32(temp); |
| } |
| |
| static void transpose4x4_to_dst(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride) { |
| __m128i A = _mm_cvtsi32_si128(*(const int *)src); |
| __m128i B = _mm_cvtsi32_si128(*(const int *)(src + src_stride)); |
| __m128i C = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 2)); |
| __m128i D = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 3)); |
| // 00 10 01 11 02 12 03 13 |
| const __m128i tr0_0 = _mm_unpacklo_epi8(A, B); |
| // 20 30 21 31 22 32 23 33 |
| const __m128i tr0_1 = _mm_unpacklo_epi8(C, D); |
| // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 |
| A = _mm_unpacklo_epi16(tr0_0, tr0_1); |
| B = _mm_srli_si128(A, 4); |
| C = _mm_srli_si128(A, 8); |
| D = _mm_srli_si128(A, 12); |
| |
| *(int *)(dst) = _mm_cvtsi128_si32(A); |
| *(int *)(dst + dst_stride) = _mm_cvtsi128_si32(B); |
| *(int *)(dst + dst_stride * 2) = _mm_cvtsi128_si32(C); |
| *(int *)(dst + dst_stride * 3) = _mm_cvtsi128_si32(D); |
| } |
| |
| static void scaledconvolve_horiz_w4(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const InterpKernel *x_filters, int x0_q4, |
| int x_step_q4, int w, int h) { |
| DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); |
| int x, y, z; |
| src -= SUBPEL_TAPS / 2 - 1; |
| |
| for (y = 0; y < h; y += 4) { |
| int x_q4 = x0_q4; |
| for (x = 0; x < w; x += 4) { |
| // process 4 src_x steps |
| for (z = 0; z < 4; ++z) { |
| const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; |
| const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; |
| if (x_q4 & SUBPEL_MASK) { |
| filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter); |
| } else { |
| int i; |
| for (i = 0; i < 4; ++i) { |
| temp[z * 4 + i] = src_x[i * src_stride + 3]; |
| } |
| } |
| x_q4 += x_step_q4; |
| } |
| |
| // transpose the 4x4 filters values back to dst |
| transpose4x4_to_dst(temp, 4, dst + x, dst_stride); |
| } |
| |
| src += src_stride * 4; |
| dst += dst_stride * 4; |
| } |
| } |
| |
| static void filter_vert_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, |
| uint8_t *dst, const int16_t *filter) { |
| const __m128i k_256 = _mm_set1_epi16(1 << 8); |
| const __m128i f_values = _mm_load_si128((const __m128i *)filter); |
| // pack and duplicate the filter values |
| const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); |
| const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); |
| const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); |
| const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); |
| const __m128i A = _mm_cvtsi32_si128(*(const int *)src_ptr); |
| const __m128i B = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch)); |
| const __m128i C = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 2)); |
| const __m128i D = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 3)); |
| const __m128i E = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 4)); |
| const __m128i F = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 5)); |
| const __m128i G = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 6)); |
| const __m128i H = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 7)); |
| const __m128i s1s0 = _mm_unpacklo_epi8(A, B); |
| const __m128i s3s2 = _mm_unpacklo_epi8(C, D); |
| const __m128i s5s4 = _mm_unpacklo_epi8(E, F); |
| const __m128i s7s6 = _mm_unpacklo_epi8(G, H); |
| // multiply 2 adjacent elements with the filter and add the result |
| const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); |
| const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); |
| const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); |
| const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); |
| // add and saturate the results together |
| const __m128i min_x2x1 = _mm_min_epi16(x2, x1); |
| const __m128i max_x2x1 = _mm_max_epi16(x2, x1); |
| __m128i temp = _mm_adds_epi16(x0, x3); |
| temp = _mm_adds_epi16(temp, min_x2x1); |
| temp = _mm_adds_epi16(temp, max_x2x1); |
| // round and shift by 7 bit each 16 bit |
| temp = _mm_mulhrs_epi16(temp, k_256); |
| // shrink to 8 bit each 16 bits |
| temp = _mm_packus_epi16(temp, temp); |
| // save only 4 bytes |
| *(int *)dst = _mm_cvtsi128_si32(temp); |
| } |
| |
| static void scaledconvolve_vert_w4(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const InterpKernel *y_filters, int y0_q4, |
| int y_step_q4, int w, int h) { |
| int y; |
| int y_q4 = y0_q4; |
| |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| for (y = 0; y < h; ++y) { |
| const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; |
| |
| if (y_q4 & SUBPEL_MASK) { |
| filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); |
| } else { |
| memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); |
| } |
| |
| y_q4 += y_step_q4; |
| } |
| } |
| |
| static void filter_vert_w8_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, |
| uint8_t *dst, const int16_t *filter) { |
| const __m128i k_256 = _mm_set1_epi16(1 << 8); |
| const __m128i f_values = _mm_load_si128((const __m128i *)filter); |
| // pack and duplicate the filter values |
| const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); |
| const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); |
| const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); |
| const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); |
| const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr); |
| const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); |
| const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); |
| const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); |
| const __m128i E = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); |
| const __m128i F = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); |
| const __m128i G = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); |
| const __m128i H = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); |
| const __m128i s1s0 = _mm_unpacklo_epi8(A, B); |
| const __m128i s3s2 = _mm_unpacklo_epi8(C, D); |
| const __m128i s5s4 = _mm_unpacklo_epi8(E, F); |
| const __m128i s7s6 = _mm_unpacklo_epi8(G, H); |
| // multiply 2 adjacent elements with the filter and add the result |
| const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); |
| const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); |
| const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); |
| const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); |
| // add and saturate the results together |
| const __m128i min_x2x1 = _mm_min_epi16(x2, x1); |
| const __m128i max_x2x1 = _mm_max_epi16(x2, x1); |
| __m128i temp = _mm_adds_epi16(x0, x3); |
| temp = _mm_adds_epi16(temp, min_x2x1); |
| temp = _mm_adds_epi16(temp, max_x2x1); |
| // round and shift by 7 bit each 16 bit |
| temp = _mm_mulhrs_epi16(temp, k_256); |
| // shrink to 8 bit each 16 bits |
| temp = _mm_packus_epi16(temp, temp); |
| // save only 8 bytes convolve result |
| _mm_storel_epi64((__m128i *)dst, temp); |
| } |
| |
| static void scaledconvolve_vert_w8(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const InterpKernel *y_filters, int y0_q4, |
| int y_step_q4, int w, int h) { |
| int y; |
| int y_q4 = y0_q4; |
| |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| for (y = 0; y < h; ++y) { |
| const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; |
| if (y_q4 & SUBPEL_MASK) { |
| filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); |
| } else { |
| memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); |
| } |
| y_q4 += y_step_q4; |
| } |
| } |
| |
| static void filter_vert_w16_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, |
| uint8_t *dst, const int16_t *filter, int w) { |
| const __m128i k_256 = _mm_set1_epi16(1 << 8); |
| const __m128i f_values = _mm_load_si128((const __m128i *)filter); |
| // pack and duplicate the filter values |
| const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); |
| const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); |
| const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); |
| const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); |
| int i; |
| |
| for (i = 0; i < w; i += 16) { |
| const __m128i A = _mm_loadu_si128((const __m128i *)src_ptr); |
| const __m128i B = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch)); |
| const __m128i C = |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)); |
| const __m128i D = |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)); |
| const __m128i E = |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)); |
| const __m128i F = |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)); |
| const __m128i G = |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)); |
| const __m128i H = |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); |
| // merge the result together |
| const __m128i s1s0_lo = _mm_unpacklo_epi8(A, B); |
| const __m128i s7s6_lo = _mm_unpacklo_epi8(G, H); |
| const __m128i s1s0_hi = _mm_unpackhi_epi8(A, B); |
| const __m128i s7s6_hi = _mm_unpackhi_epi8(G, H); |
| // multiply 2 adjacent elements with the filter and add the result |
| const __m128i x0_lo = _mm_maddubs_epi16(s1s0_lo, f1f0); |
| const __m128i x3_lo = _mm_maddubs_epi16(s7s6_lo, f7f6); |
| const __m128i x0_hi = _mm_maddubs_epi16(s1s0_hi, f1f0); |
| const __m128i x3_hi = _mm_maddubs_epi16(s7s6_hi, f7f6); |
| // add and saturate the results together |
| const __m128i x3x0_lo = _mm_adds_epi16(x0_lo, x3_lo); |
| const __m128i x3x0_hi = _mm_adds_epi16(x0_hi, x3_hi); |
| // merge the result together |
| const __m128i s3s2_lo = _mm_unpacklo_epi8(C, D); |
| const __m128i s3s2_hi = _mm_unpackhi_epi8(C, D); |
| // multiply 2 adjacent elements with the filter and add the result |
| const __m128i x1_lo = _mm_maddubs_epi16(s3s2_lo, f3f2); |
| const __m128i x1_hi = _mm_maddubs_epi16(s3s2_hi, f3f2); |
| // merge the result together |
| const __m128i s5s4_lo = _mm_unpacklo_epi8(E, F); |
| const __m128i s5s4_hi = _mm_unpackhi_epi8(E, F); |
| // multiply 2 adjacent elements with the filter and add the result |
| const __m128i x2_lo = _mm_maddubs_epi16(s5s4_lo, f5f4); |
| const __m128i x2_hi = _mm_maddubs_epi16(s5s4_hi, f5f4); |
| // add and saturate the results together |
| __m128i temp_lo = _mm_adds_epi16(x3x0_lo, _mm_min_epi16(x1_lo, x2_lo)); |
| __m128i temp_hi = _mm_adds_epi16(x3x0_hi, _mm_min_epi16(x1_hi, x2_hi)); |
| |
| // add and saturate the results together |
| temp_lo = _mm_adds_epi16(temp_lo, _mm_max_epi16(x1_lo, x2_lo)); |
| temp_hi = _mm_adds_epi16(temp_hi, _mm_max_epi16(x1_hi, x2_hi)); |
| // round and shift by 7 bit each 16 bit |
| temp_lo = _mm_mulhrs_epi16(temp_lo, k_256); |
| temp_hi = _mm_mulhrs_epi16(temp_hi, k_256); |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| temp_hi = _mm_packus_epi16(temp_lo, temp_hi); |
| src_ptr += 16; |
| // save 16 bytes convolve result |
| _mm_store_si128((__m128i *)&dst[i], temp_hi); |
| } |
| } |
| |
| static void scaledconvolve_vert_w16(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const InterpKernel *y_filters, int y0_q4, |
| int y_step_q4, int w, int h) { |
| int y; |
| int y_q4 = y0_q4; |
| |
| src -= src_stride * (SUBPEL_TAPS / 2 - 1); |
| for (y = 0; y < h; ++y) { |
| const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; |
| const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; |
| if (y_q4 & SUBPEL_MASK) { |
| filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter, |
| w); |
| } else { |
| memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); |
| } |
| y_q4 += y_step_q4; |
| } |
| } |
| |
| static void scaledconvolve2d(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const InterpKernel *const x_filters, int x0_q4, |
| int x_step_q4, const InterpKernel *const y_filters, |
| int y0_q4, int y_step_q4, int w, int h) { |
| // Note: Fixed size intermediate buffer, temp, places limits on parameters. |
| // 2d filtering proceeds in 2 steps: |
| // (1) Interpolate horizontally into an intermediate buffer, temp. |
| // (2) Interpolate temp vertically to derive the sub-pixel result. |
| // Deriving the maximum number of rows in the temp buffer (135): |
| // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). |
| // --Largest block size is 64x64 pixels. |
| // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the |
| // original frame (in 1/16th pixel units). |
| // --Must round-up because block may be located at sub-pixel position. |
| // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. |
| // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. |
| // --Require an additional 8 rows for the horiz_w8 transpose tail. |
| DECLARE_ALIGNED(16, uint8_t, temp[(MAX_EXT_SIZE + 8) * MAX_SB_SIZE]); |
| const int intermediate_height = |
| (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; |
| |
| assert(w <= MAX_SB_SIZE); |
| assert(h <= MAX_SB_SIZE); |
| assert(y_step_q4 <= 32); |
| assert(x_step_q4 <= 32); |
| |
| if (w >= 8) { |
| scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), |
| src_stride, temp, MAX_SB_SIZE, x_filters, x0_q4, |
| x_step_q4, w, intermediate_height); |
| } else { |
| scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), |
| src_stride, temp, MAX_SB_SIZE, x_filters, x0_q4, |
| x_step_q4, w, intermediate_height); |
| } |
| |
| if (w >= 16) { |
| scaledconvolve_vert_w16(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), |
| MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4, |
| y_step_q4, w, h); |
| } else if (w == 8) { |
| scaledconvolve_vert_w8(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), |
| MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4, |
| y_step_q4, w, h); |
| } else { |
| scaledconvolve_vert_w4(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), |
| MAX_SB_SIZE, dst, dst_stride, y_filters, y0_q4, |
| y_step_q4, w, h); |
| } |
| } |
| |
| static const InterpKernel *get_filter_base(const int16_t *filter) { |
| // NOTE: This assumes that the filter table is 256-byte aligned. |
| // TODO(agrange) Modify to make independent of table alignment. |
| return (const InterpKernel *)(((intptr_t)filter) & ~((intptr_t)0xFF)); |
| } |
| |
| static int get_filter_offset(const int16_t *f, const InterpKernel *base) { |
| return (int)((const InterpKernel *)(intptr_t)f - base); |
| } |
| |
| void aom_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, |
| ptrdiff_t dst_stride, const int16_t *filter_x, |
| int x_step_q4, const int16_t *filter_y, int y_step_q4, |
| int w, int h) { |
| const InterpKernel *const filters_x = get_filter_base(filter_x); |
| const int x0_q4 = get_filter_offset(filter_x, filters_x); |
| |
| const InterpKernel *const filters_y = get_filter_base(filter_y); |
| const int y0_q4 = get_filter_offset(filter_y, filters_y); |
| |
| scaledconvolve2d(src, src_stride, dst, dst_stride, filters_x, x0_q4, |
| x_step_q4, filters_y, y0_q4, y_step_q4, w, h); |
| } |
| |
| // void aom_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| // void aom_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| FUN_CONV_2D(, ssse3); |
| FUN_CONV_2D(avg_, ssse3); |
| #if CONFIG_LOOP_RESTORATION |
| FUN_CONV_2D_NO_BILINEAR(add_src_, add_src_, ssse3); |
| #endif |