| /* |
| * Copyright (c) 2017, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include <tmmintrin.h> |
| |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "aom_dsp/blend.h" |
| #include "aom/aom_integer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_dsp/x86/synonyms.h" |
| |
| // For width a multiple of 16 |
| static void bilinear_filter(const uint8_t *src, int src_stride, int xoffset, |
| int yoffset, uint8_t *dst, int w, int h); |
| |
| static void bilinear_filter8xh(const uint8_t *src, int src_stride, int xoffset, |
| int yoffset, uint8_t *dst, int h); |
| |
| static void bilinear_filter4xh(const uint8_t *src, int src_stride, int xoffset, |
| int yoffset, uint8_t *dst, int h); |
| |
| // For width a multiple of 16 |
| static void masked_variance(const uint8_t *src_ptr, int src_stride, |
| const uint8_t *a_ptr, int a_stride, |
| const uint8_t *b_ptr, int b_stride, |
| const uint8_t *m_ptr, int m_stride, int width, |
| int height, unsigned int *sse, int *sum_); |
| |
| static void masked_variance8xh(const uint8_t *src_ptr, int src_stride, |
| const uint8_t *a_ptr, const uint8_t *b_ptr, |
| const uint8_t *m_ptr, int m_stride, int height, |
| unsigned int *sse, int *sum_); |
| |
| static void masked_variance4xh(const uint8_t *src_ptr, int src_stride, |
| const uint8_t *a_ptr, const uint8_t *b_ptr, |
| const uint8_t *m_ptr, int m_stride, int height, |
| unsigned int *sse, int *sum_); |
| |
| #define MASK_SUBPIX_VAR_SSSE3(W, H) \ |
| unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ |
| const uint8_t *msk, int msk_stride, int invert_mask, \ |
| unsigned int *sse) { \ |
| int sum; \ |
| uint8_t temp[(H + 1) * W]; \ |
| \ |
| bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \ |
| \ |
| if (!invert_mask) \ |
| masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \ |
| msk_stride, W, H, sse, &sum); \ |
| else \ |
| masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \ |
| msk_stride, W, H, sse, &sum); \ |
| return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ |
| } |
| |
| #define MASK_SUBPIX_VAR8XH_SSSE3(H) \ |
| unsigned int aom_masked_sub_pixel_variance8x##H##_ssse3( \ |
| const uint8_t *src, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ |
| const uint8_t *msk, int msk_stride, int invert_mask, \ |
| unsigned int *sse) { \ |
| int sum; \ |
| uint8_t temp[(H + 1) * 8]; \ |
| \ |
| bilinear_filter8xh(src, src_stride, xoffset, yoffset, temp, H); \ |
| \ |
| if (!invert_mask) \ |
| masked_variance8xh(ref, ref_stride, temp, second_pred, msk, msk_stride, \ |
| H, sse, &sum); \ |
| else \ |
| masked_variance8xh(ref, ref_stride, second_pred, temp, msk, msk_stride, \ |
| H, sse, &sum); \ |
| return *sse - (uint32_t)(((int64_t)sum * sum) / (8 * H)); \ |
| } |
| |
| #define MASK_SUBPIX_VAR4XH_SSSE3(H) \ |
| unsigned int aom_masked_sub_pixel_variance4x##H##_ssse3( \ |
| const uint8_t *src, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \ |
| const uint8_t *msk, int msk_stride, int invert_mask, \ |
| unsigned int *sse) { \ |
| int sum; \ |
| uint8_t temp[(H + 1) * 4]; \ |
| \ |
| bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \ |
| \ |
| if (!invert_mask) \ |
| masked_variance4xh(ref, ref_stride, temp, second_pred, msk, msk_stride, \ |
| H, sse, &sum); \ |
| else \ |
| masked_variance4xh(ref, ref_stride, second_pred, temp, msk, msk_stride, \ |
| H, sse, &sum); \ |
| return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \ |
| } |
| |
| #if CONFIG_EXT_PARTITION |
| MASK_SUBPIX_VAR_SSSE3(128, 128) |
| MASK_SUBPIX_VAR_SSSE3(128, 64) |
| MASK_SUBPIX_VAR_SSSE3(64, 128) |
| #endif |
| MASK_SUBPIX_VAR_SSSE3(64, 64) |
| MASK_SUBPIX_VAR_SSSE3(64, 32) |
| MASK_SUBPIX_VAR_SSSE3(32, 64) |
| MASK_SUBPIX_VAR_SSSE3(32, 32) |
| MASK_SUBPIX_VAR_SSSE3(32, 16) |
| MASK_SUBPIX_VAR_SSSE3(16, 32) |
| MASK_SUBPIX_VAR_SSSE3(16, 16) |
| MASK_SUBPIX_VAR_SSSE3(16, 8) |
| MASK_SUBPIX_VAR8XH_SSSE3(16) |
| MASK_SUBPIX_VAR8XH_SSSE3(8) |
| MASK_SUBPIX_VAR8XH_SSSE3(4) |
| MASK_SUBPIX_VAR4XH_SSSE3(8) |
| MASK_SUBPIX_VAR4XH_SSSE3(4) |
| #if CONFIG_EXT_PARTITION_TYPES |
| MASK_SUBPIX_VAR4XH_SSSE3(16) |
| MASK_SUBPIX_VAR_SSSE3(16, 4) |
| MASK_SUBPIX_VAR8XH_SSSE3(32) |
| MASK_SUBPIX_VAR_SSSE3(32, 8) |
| MASK_SUBPIX_VAR_SSSE3(64, 16) |
| MASK_SUBPIX_VAR_SSSE3(16, 64) |
| #endif |
| |
| static INLINE __m128i filter_block(const __m128i a, const __m128i b, |
| const __m128i filter) { |
| __m128i v0 = _mm_unpacklo_epi8(a, b); |
| v0 = _mm_maddubs_epi16(v0, filter); |
| v0 = xx_roundn_epu16(v0, FILTER_BITS); |
| |
| __m128i v1 = _mm_unpackhi_epi8(a, b); |
| v1 = _mm_maddubs_epi16(v1, filter); |
| v1 = xx_roundn_epu16(v1, FILTER_BITS); |
| |
| return _mm_packus_epi16(v0, v1); |
| } |
| |
| static void bilinear_filter(const uint8_t *src, int src_stride, int xoffset, |
| int yoffset, uint8_t *dst, int w, int h) { |
| int i, j; |
| // Horizontal filter |
| if (xoffset == 0) { |
| uint8_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| for (j = 0; j < w; j += 16) { |
| __m128i x = _mm_loadu_si128((__m128i *)&src[j]); |
| _mm_storeu_si128((__m128i *)&b[j], x); |
| } |
| src += src_stride; |
| b += w; |
| } |
| } else if (xoffset == 4) { |
| uint8_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| for (j = 0; j < w; j += 16) { |
| __m128i x = _mm_loadu_si128((__m128i *)&src[j]); |
| __m128i y = _mm_loadu_si128((__m128i *)&src[j + 16]); |
| __m128i z = _mm_alignr_epi8(y, x, 1); |
| _mm_storeu_si128((__m128i *)&b[j], _mm_avg_epu8(x, z)); |
| } |
| src += src_stride; |
| b += w; |
| } |
| } else { |
| uint8_t *b = dst; |
| const uint8_t *hfilter = bilinear_filters_2t[xoffset]; |
| const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8)); |
| for (i = 0; i < h + 1; ++i) { |
| for (j = 0; j < w; j += 16) { |
| const __m128i x = _mm_loadu_si128((__m128i *)&src[j]); |
| const __m128i y = _mm_loadu_si128((__m128i *)&src[j + 16]); |
| const __m128i z = _mm_alignr_epi8(y, x, 1); |
| const __m128i res = filter_block(x, z, hfilter_vec); |
| _mm_storeu_si128((__m128i *)&b[j], res); |
| } |
| |
| src += src_stride; |
| b += w; |
| } |
| } |
| |
| // Vertical filter |
| if (yoffset == 0) { |
| // The data is already in 'dst', so no need to filter |
| } else if (yoffset == 4) { |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| __m128i x = _mm_loadu_si128((__m128i *)&dst[j]); |
| __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]); |
| _mm_storeu_si128((__m128i *)&dst[j], _mm_avg_epu8(x, y)); |
| } |
| dst += w; |
| } |
| } else { |
| const uint8_t *vfilter = bilinear_filters_2t[yoffset]; |
| const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8)); |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| const __m128i x = _mm_loadu_si128((__m128i *)&dst[j]); |
| const __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]); |
| const __m128i res = filter_block(x, y, vfilter_vec); |
| _mm_storeu_si128((__m128i *)&dst[j], res); |
| } |
| |
| dst += w; |
| } |
| } |
| } |
| |
| static INLINE __m128i filter_block_2rows(const __m128i *a0, const __m128i *b0, |
| const __m128i *a1, const __m128i *b1, |
| const __m128i *filter) { |
| __m128i v0 = _mm_unpacklo_epi8(*a0, *b0); |
| v0 = _mm_maddubs_epi16(v0, *filter); |
| v0 = xx_roundn_epu16(v0, FILTER_BITS); |
| |
| __m128i v1 = _mm_unpacklo_epi8(*a1, *b1); |
| v1 = _mm_maddubs_epi16(v1, *filter); |
| v1 = xx_roundn_epu16(v1, FILTER_BITS); |
| |
| return _mm_packus_epi16(v0, v1); |
| } |
| |
| static void bilinear_filter8xh(const uint8_t *src, int src_stride, int xoffset, |
| int yoffset, uint8_t *dst, int h) { |
| int i; |
| // Horizontal filter |
| if (xoffset == 0) { |
| uint8_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| __m128i x = _mm_loadl_epi64((__m128i *)src); |
| _mm_storel_epi64((__m128i *)b, x); |
| src += src_stride; |
| b += 8; |
| } |
| } else if (xoffset == 4) { |
| uint8_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| __m128i x = _mm_loadu_si128((__m128i *)src); |
| __m128i z = _mm_srli_si128(x, 1); |
| _mm_storel_epi64((__m128i *)b, _mm_avg_epu8(x, z)); |
| src += src_stride; |
| b += 8; |
| } |
| } else { |
| uint8_t *b = dst; |
| const uint8_t *hfilter = bilinear_filters_2t[xoffset]; |
| const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8)); |
| for (i = 0; i < h; i += 2) { |
| const __m128i x0 = _mm_loadu_si128((__m128i *)src); |
| const __m128i z0 = _mm_srli_si128(x0, 1); |
| const __m128i x1 = _mm_loadu_si128((__m128i *)&src[src_stride]); |
| const __m128i z1 = _mm_srli_si128(x1, 1); |
| const __m128i res = filter_block_2rows(&x0, &z0, &x1, &z1, &hfilter_vec); |
| _mm_storeu_si128((__m128i *)b, res); |
| |
| src += src_stride * 2; |
| b += 16; |
| } |
| // Handle i = h separately |
| const __m128i x0 = _mm_loadu_si128((__m128i *)src); |
| const __m128i z0 = _mm_srli_si128(x0, 1); |
| |
| __m128i v0 = _mm_unpacklo_epi8(x0, z0); |
| v0 = _mm_maddubs_epi16(v0, hfilter_vec); |
| v0 = xx_roundn_epu16(v0, FILTER_BITS); |
| |
| _mm_storel_epi64((__m128i *)b, _mm_packus_epi16(v0, v0)); |
| } |
| |
| // Vertical filter |
| if (yoffset == 0) { |
| // The data is already in 'dst', so no need to filter |
| } else if (yoffset == 4) { |
| for (i = 0; i < h; ++i) { |
| __m128i x = _mm_loadl_epi64((__m128i *)dst); |
| __m128i y = _mm_loadl_epi64((__m128i *)&dst[8]); |
| _mm_storel_epi64((__m128i *)dst, _mm_avg_epu8(x, y)); |
| dst += 8; |
| } |
| } else { |
| const uint8_t *vfilter = bilinear_filters_2t[yoffset]; |
| const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8)); |
| for (i = 0; i < h; i += 2) { |
| const __m128i x = _mm_loadl_epi64((__m128i *)dst); |
| const __m128i y = _mm_loadl_epi64((__m128i *)&dst[8]); |
| const __m128i z = _mm_loadl_epi64((__m128i *)&dst[16]); |
| const __m128i res = filter_block_2rows(&x, &y, &y, &z, &vfilter_vec); |
| _mm_storeu_si128((__m128i *)dst, res); |
| |
| dst += 16; |
| } |
| } |
| } |
| |
| static void bilinear_filter4xh(const uint8_t *src, int src_stride, int xoffset, |
| int yoffset, uint8_t *dst, int h) { |
| int i; |
| // Horizontal filter |
| if (xoffset == 0) { |
| uint8_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| __m128i x = xx_loadl_32((__m128i *)src); |
| xx_storel_32((__m128i *)b, x); |
| src += src_stride; |
| b += 4; |
| } |
| } else if (xoffset == 4) { |
| uint8_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| __m128i x = _mm_loadl_epi64((__m128i *)src); |
| __m128i z = _mm_srli_si128(x, 1); |
| xx_storel_32((__m128i *)b, _mm_avg_epu8(x, z)); |
| src += src_stride; |
| b += 4; |
| } |
| } else { |
| uint8_t *b = dst; |
| const uint8_t *hfilter = bilinear_filters_2t[xoffset]; |
| const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8)); |
| for (i = 0; i < h; i += 4) { |
| const __m128i x0 = _mm_loadl_epi64((__m128i *)src); |
| const __m128i z0 = _mm_srli_si128(x0, 1); |
| const __m128i x1 = _mm_loadl_epi64((__m128i *)&src[src_stride]); |
| const __m128i z1 = _mm_srli_si128(x1, 1); |
| const __m128i x2 = _mm_loadl_epi64((__m128i *)&src[src_stride * 2]); |
| const __m128i z2 = _mm_srli_si128(x2, 1); |
| const __m128i x3 = _mm_loadl_epi64((__m128i *)&src[src_stride * 3]); |
| const __m128i z3 = _mm_srli_si128(x3, 1); |
| |
| const __m128i a0 = _mm_unpacklo_epi32(x0, x1); |
| const __m128i b0 = _mm_unpacklo_epi32(z0, z1); |
| const __m128i a1 = _mm_unpacklo_epi32(x2, x3); |
| const __m128i b1 = _mm_unpacklo_epi32(z2, z3); |
| const __m128i res = filter_block_2rows(&a0, &b0, &a1, &b1, &hfilter_vec); |
| _mm_storeu_si128((__m128i *)b, res); |
| |
| src += src_stride * 4; |
| b += 16; |
| } |
| // Handle i = h separately |
| const __m128i x = _mm_loadl_epi64((__m128i *)src); |
| const __m128i z = _mm_srli_si128(x, 1); |
| |
| __m128i v0 = _mm_unpacklo_epi8(x, z); |
| v0 = _mm_maddubs_epi16(v0, hfilter_vec); |
| v0 = xx_roundn_epu16(v0, FILTER_BITS); |
| |
| xx_storel_32((__m128i *)b, _mm_packus_epi16(v0, v0)); |
| } |
| |
| // Vertical filter |
| if (yoffset == 0) { |
| // The data is already in 'dst', so no need to filter |
| } else if (yoffset == 4) { |
| for (i = 0; i < h; ++i) { |
| __m128i x = xx_loadl_32((__m128i *)dst); |
| __m128i y = xx_loadl_32((__m128i *)&dst[4]); |
| xx_storel_32((__m128i *)dst, _mm_avg_epu8(x, y)); |
| dst += 4; |
| } |
| } else { |
| const uint8_t *vfilter = bilinear_filters_2t[yoffset]; |
| const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8)); |
| for (i = 0; i < h; i += 4) { |
| const __m128i a = xx_loadl_32((__m128i *)dst); |
| const __m128i b = xx_loadl_32((__m128i *)&dst[4]); |
| const __m128i c = xx_loadl_32((__m128i *)&dst[8]); |
| const __m128i d = xx_loadl_32((__m128i *)&dst[12]); |
| const __m128i e = xx_loadl_32((__m128i *)&dst[16]); |
| |
| const __m128i a0 = _mm_unpacklo_epi32(a, b); |
| const __m128i b0 = _mm_unpacklo_epi32(b, c); |
| const __m128i a1 = _mm_unpacklo_epi32(c, d); |
| const __m128i b1 = _mm_unpacklo_epi32(d, e); |
| const __m128i res = filter_block_2rows(&a0, &b0, &a1, &b1, &vfilter_vec); |
| _mm_storeu_si128((__m128i *)dst, res); |
| |
| dst += 16; |
| } |
| } |
| } |
| |
| static INLINE void accumulate_block(const __m128i *src, const __m128i *a, |
| const __m128i *b, const __m128i *m, |
| __m128i *sum, __m128i *sum_sq) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i one = _mm_set1_epi16(1); |
| const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS)); |
| const __m128i m_inv = _mm_sub_epi8(mask_max, *m); |
| |
| // Calculate 16 predicted pixels. |
| // Note that the maximum value of any entry of 'pred_l' or 'pred_r' |
| // is 64 * 255, so we have plenty of space to add rounding constants. |
| const __m128i data_l = _mm_unpacklo_epi8(*a, *b); |
| const __m128i mask_l = _mm_unpacklo_epi8(*m, m_inv); |
| __m128i pred_l = _mm_maddubs_epi16(data_l, mask_l); |
| pred_l = xx_roundn_epu16(pred_l, AOM_BLEND_A64_ROUND_BITS); |
| |
| const __m128i data_r = _mm_unpackhi_epi8(*a, *b); |
| const __m128i mask_r = _mm_unpackhi_epi8(*m, m_inv); |
| __m128i pred_r = _mm_maddubs_epi16(data_r, mask_r); |
| pred_r = xx_roundn_epu16(pred_r, AOM_BLEND_A64_ROUND_BITS); |
| |
| const __m128i src_l = _mm_unpacklo_epi8(*src, zero); |
| const __m128i src_r = _mm_unpackhi_epi8(*src, zero); |
| const __m128i diff_l = _mm_sub_epi16(pred_l, src_l); |
| const __m128i diff_r = _mm_sub_epi16(pred_r, src_r); |
| |
| // Update partial sums and partial sums of squares |
| *sum = |
| _mm_add_epi32(*sum, _mm_madd_epi16(_mm_add_epi16(diff_l, diff_r), one)); |
| *sum_sq = |
| _mm_add_epi32(*sum_sq, _mm_add_epi32(_mm_madd_epi16(diff_l, diff_l), |
| _mm_madd_epi16(diff_r, diff_r))); |
| } |
| |
| static void masked_variance(const uint8_t *src_ptr, int src_stride, |
| const uint8_t *a_ptr, int a_stride, |
| const uint8_t *b_ptr, int b_stride, |
| const uint8_t *m_ptr, int m_stride, int width, |
| int height, unsigned int *sse, int *sum_) { |
| int x, y; |
| __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); |
| |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x += 16) { |
| const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]); |
| const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]); |
| const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]); |
| const __m128i m = _mm_loadu_si128((const __m128i *)&m_ptr[x]); |
| accumulate_block(&src, &a, &b, &m, &sum, &sum_sq); |
| } |
| |
| src_ptr += src_stride; |
| a_ptr += a_stride; |
| b_ptr += b_stride; |
| m_ptr += m_stride; |
| } |
| // Reduce down to a single sum and sum of squares |
| sum = _mm_hadd_epi32(sum, sum_sq); |
| sum = _mm_hadd_epi32(sum, sum); |
| *sum_ = _mm_cvtsi128_si32(sum); |
| *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4)); |
| } |
| |
| static void masked_variance8xh(const uint8_t *src_ptr, int src_stride, |
| const uint8_t *a_ptr, const uint8_t *b_ptr, |
| const uint8_t *m_ptr, int m_stride, int height, |
| unsigned int *sse, int *sum_) { |
| int y; |
| __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); |
| |
| for (y = 0; y < height; y += 2) { |
| __m128i src = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)src_ptr), |
| _mm_loadl_epi64((const __m128i *)&src_ptr[src_stride])); |
| const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr); |
| const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr); |
| const __m128i m = |
| _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)m_ptr), |
| _mm_loadl_epi64((const __m128i *)&m_ptr[m_stride])); |
| accumulate_block(&src, &a, &b, &m, &sum, &sum_sq); |
| |
| src_ptr += src_stride * 2; |
| a_ptr += 16; |
| b_ptr += 16; |
| m_ptr += m_stride * 2; |
| } |
| // Reduce down to a single sum and sum of squares |
| sum = _mm_hadd_epi32(sum, sum_sq); |
| sum = _mm_hadd_epi32(sum, sum); |
| *sum_ = _mm_cvtsi128_si32(sum); |
| *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4)); |
| } |
| |
| static void masked_variance4xh(const uint8_t *src_ptr, int src_stride, |
| const uint8_t *a_ptr, const uint8_t *b_ptr, |
| const uint8_t *m_ptr, int m_stride, int height, |
| unsigned int *sse, int *sum_) { |
| int y; |
| __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); |
| |
| for (y = 0; y < height; y += 4) { |
| // Load four rows at a time |
| __m128i src = |
| _mm_setr_epi32(*(uint32_t *)src_ptr, *(uint32_t *)&src_ptr[src_stride], |
| *(uint32_t *)&src_ptr[src_stride * 2], |
| *(uint32_t *)&src_ptr[src_stride * 3]); |
| const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr); |
| const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr); |
| const __m128i m = _mm_setr_epi32( |
| *(uint32_t *)m_ptr, *(uint32_t *)&m_ptr[m_stride], |
| *(uint32_t *)&m_ptr[m_stride * 2], *(uint32_t *)&m_ptr[m_stride * 3]); |
| accumulate_block(&src, &a, &b, &m, &sum, &sum_sq); |
| |
| src_ptr += src_stride * 4; |
| a_ptr += 16; |
| b_ptr += 16; |
| m_ptr += m_stride * 4; |
| } |
| // Reduce down to a single sum and sum of squares |
| sum = _mm_hadd_epi32(sum, sum_sq); |
| sum = _mm_hadd_epi32(sum, sum); |
| *sum_ = _mm_cvtsi128_si32(sum); |
| *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4)); |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| // For width a multiple of 8 |
| static void highbd_bilinear_filter(const uint16_t *src, int src_stride, |
| int xoffset, int yoffset, uint16_t *dst, |
| int w, int h); |
| |
| static void highbd_bilinear_filter4xh(const uint16_t *src, int src_stride, |
| int xoffset, int yoffset, uint16_t *dst, |
| int h); |
| |
| // For width a multiple of 8 |
| static void highbd_masked_variance(const uint16_t *src_ptr, int src_stride, |
| const uint16_t *a_ptr, int a_stride, |
| const uint16_t *b_ptr, int b_stride, |
| const uint8_t *m_ptr, int m_stride, |
| int width, int height, uint64_t *sse, |
| int *sum_); |
| |
| static void highbd_masked_variance4xh(const uint16_t *src_ptr, int src_stride, |
| const uint16_t *a_ptr, |
| const uint16_t *b_ptr, |
| const uint8_t *m_ptr, int m_stride, |
| int height, int *sse, int *sum_); |
| |
| #define HIGHBD_MASK_SUBPIX_VAR_SSSE3(W, H) \ |
| unsigned int aom_highbd_8_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ |
| const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ |
| uint64_t sse64; \ |
| int sum; \ |
| uint16_t temp[(H + 1) * W]; \ |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ |
| const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ |
| const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ |
| \ |
| highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \ |
| \ |
| if (!invert_mask) \ |
| highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \ |
| msk_stride, W, H, &sse64, &sum); \ |
| else \ |
| highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \ |
| msk_stride, W, H, &sse64, &sum); \ |
| *sse = (uint32_t)sse64; \ |
| return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ |
| } \ |
| unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ |
| const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ |
| uint64_t sse64; \ |
| int sum; \ |
| int64_t var; \ |
| uint16_t temp[(H + 1) * W]; \ |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ |
| const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ |
| const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ |
| \ |
| highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \ |
| \ |
| if (!invert_mask) \ |
| highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \ |
| msk_stride, W, H, &sse64, &sum); \ |
| else \ |
| highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \ |
| msk_stride, W, H, &sse64, &sum); \ |
| *sse = (uint32_t)ROUND_POWER_OF_TWO(sse64, 4); \ |
| sum = ROUND_POWER_OF_TWO(sum, 2); \ |
| var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ |
| return (var >= 0) ? (uint32_t)var : 0; \ |
| } \ |
| unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ |
| const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ |
| uint64_t sse64; \ |
| int sum; \ |
| int64_t var; \ |
| uint16_t temp[(H + 1) * W]; \ |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ |
| const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ |
| const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ |
| \ |
| highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \ |
| \ |
| if (!invert_mask) \ |
| highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \ |
| msk_stride, W, H, &sse64, &sum); \ |
| else \ |
| highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \ |
| msk_stride, W, H, &sse64, &sum); \ |
| *sse = (uint32_t)ROUND_POWER_OF_TWO(sse64, 8); \ |
| sum = ROUND_POWER_OF_TWO(sum, 4); \ |
| var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ |
| return (var >= 0) ? (uint32_t)var : 0; \ |
| } |
| |
| #define HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(H) \ |
| unsigned int aom_highbd_8_masked_sub_pixel_variance4x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ |
| const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ |
| int sse_; \ |
| int sum; \ |
| uint16_t temp[(H + 1) * 4]; \ |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ |
| const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ |
| const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ |
| \ |
| highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \ |
| \ |
| if (!invert_mask) \ |
| highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \ |
| msk_stride, H, &sse_, &sum); \ |
| else \ |
| highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \ |
| msk_stride, H, &sse_, &sum); \ |
| *sse = (uint32_t)sse_; \ |
| return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \ |
| } \ |
| unsigned int aom_highbd_10_masked_sub_pixel_variance4x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ |
| const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ |
| int sse_; \ |
| int sum; \ |
| int64_t var; \ |
| uint16_t temp[(H + 1) * 4]; \ |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ |
| const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ |
| const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ |
| \ |
| highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \ |
| \ |
| if (!invert_mask) \ |
| highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \ |
| msk_stride, H, &sse_, &sum); \ |
| else \ |
| highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \ |
| msk_stride, H, &sse_, &sum); \ |
| *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_, 4); \ |
| sum = ROUND_POWER_OF_TWO(sum, 2); \ |
| var = (int64_t)(*sse) - (((int64_t)sum * sum) / (4 * H)); \ |
| return (var >= 0) ? (uint32_t)var : 0; \ |
| } \ |
| unsigned int aom_highbd_12_masked_sub_pixel_variance4x##H##_ssse3( \ |
| const uint8_t *src8, int src_stride, int xoffset, int yoffset, \ |
| const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \ |
| const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \ |
| int sse_; \ |
| int sum; \ |
| int64_t var; \ |
| uint16_t temp[(H + 1) * 4]; \ |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ |
| const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ |
| const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \ |
| \ |
| highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \ |
| \ |
| if (!invert_mask) \ |
| highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \ |
| msk_stride, H, &sse_, &sum); \ |
| else \ |
| highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \ |
| msk_stride, H, &sse_, &sum); \ |
| *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_, 8); \ |
| sum = ROUND_POWER_OF_TWO(sum, 4); \ |
| var = (int64_t)(*sse) - (((int64_t)sum * sum) / (4 * H)); \ |
| return (var >= 0) ? (uint32_t)var : 0; \ |
| } |
| |
| #if CONFIG_EXT_PARTITION |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(128, 128) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(128, 64) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 128) |
| #endif |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 64) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 32) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 64) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 32) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 16) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 32) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 16) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 8) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 16) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 8) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 4) |
| HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(8) |
| HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(4) |
| #if CONFIG_EXT_PARTITION_TYPES |
| HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(16) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 4) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 32) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 8) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 64) |
| HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 16) |
| #endif |
| |
| static INLINE __m128i highbd_filter_block(const __m128i a, const __m128i b, |
| const __m128i filter) { |
| __m128i v0 = _mm_unpacklo_epi16(a, b); |
| v0 = _mm_madd_epi16(v0, filter); |
| v0 = xx_roundn_epu32(v0, FILTER_BITS); |
| |
| __m128i v1 = _mm_unpackhi_epi16(a, b); |
| v1 = _mm_madd_epi16(v1, filter); |
| v1 = xx_roundn_epu32(v1, FILTER_BITS); |
| |
| return _mm_packs_epi32(v0, v1); |
| } |
| |
| static void highbd_bilinear_filter(const uint16_t *src, int src_stride, |
| int xoffset, int yoffset, uint16_t *dst, |
| int w, int h) { |
| int i, j; |
| // Horizontal filter |
| if (xoffset == 0) { |
| uint16_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| for (j = 0; j < w; j += 8) { |
| __m128i x = _mm_loadu_si128((__m128i *)&src[j]); |
| _mm_storeu_si128((__m128i *)&b[j], x); |
| } |
| src += src_stride; |
| b += w; |
| } |
| } else if (xoffset == 4) { |
| uint16_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| for (j = 0; j < w; j += 8) { |
| __m128i x = _mm_loadu_si128((__m128i *)&src[j]); |
| __m128i y = _mm_loadu_si128((__m128i *)&src[j + 8]); |
| __m128i z = _mm_alignr_epi8(y, x, 2); |
| _mm_storeu_si128((__m128i *)&b[j], _mm_avg_epu16(x, z)); |
| } |
| src += src_stride; |
| b += w; |
| } |
| } else { |
| uint16_t *b = dst; |
| const uint8_t *hfilter = bilinear_filters_2t[xoffset]; |
| const __m128i hfilter_vec = _mm_set1_epi32(hfilter[0] | (hfilter[1] << 16)); |
| for (i = 0; i < h + 1; ++i) { |
| for (j = 0; j < w; j += 8) { |
| const __m128i x = _mm_loadu_si128((__m128i *)&src[j]); |
| const __m128i y = _mm_loadu_si128((__m128i *)&src[j + 8]); |
| const __m128i z = _mm_alignr_epi8(y, x, 2); |
| const __m128i res = highbd_filter_block(x, z, hfilter_vec); |
| _mm_storeu_si128((__m128i *)&b[j], res); |
| } |
| |
| src += src_stride; |
| b += w; |
| } |
| } |
| |
| // Vertical filter |
| if (yoffset == 0) { |
| // The data is already in 'dst', so no need to filter |
| } else if (yoffset == 4) { |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 8) { |
| __m128i x = _mm_loadu_si128((__m128i *)&dst[j]); |
| __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]); |
| _mm_storeu_si128((__m128i *)&dst[j], _mm_avg_epu16(x, y)); |
| } |
| dst += w; |
| } |
| } else { |
| const uint8_t *vfilter = bilinear_filters_2t[yoffset]; |
| const __m128i vfilter_vec = _mm_set1_epi32(vfilter[0] | (vfilter[1] << 16)); |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 8) { |
| const __m128i x = _mm_loadu_si128((__m128i *)&dst[j]); |
| const __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]); |
| const __m128i res = highbd_filter_block(x, y, vfilter_vec); |
| _mm_storeu_si128((__m128i *)&dst[j], res); |
| } |
| |
| dst += w; |
| } |
| } |
| } |
| |
| static INLINE __m128i highbd_filter_block_2rows(const __m128i *a0, |
| const __m128i *b0, |
| const __m128i *a1, |
| const __m128i *b1, |
| const __m128i *filter) { |
| __m128i v0 = _mm_unpacklo_epi16(*a0, *b0); |
| v0 = _mm_madd_epi16(v0, *filter); |
| v0 = xx_roundn_epu32(v0, FILTER_BITS); |
| |
| __m128i v1 = _mm_unpacklo_epi16(*a1, *b1); |
| v1 = _mm_madd_epi16(v1, *filter); |
| v1 = xx_roundn_epu32(v1, FILTER_BITS); |
| |
| return _mm_packs_epi32(v0, v1); |
| } |
| |
| static void highbd_bilinear_filter4xh(const uint16_t *src, int src_stride, |
| int xoffset, int yoffset, uint16_t *dst, |
| int h) { |
| int i; |
| // Horizontal filter |
| if (xoffset == 0) { |
| uint16_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| __m128i x = _mm_loadl_epi64((__m128i *)src); |
| _mm_storel_epi64((__m128i *)b, x); |
| src += src_stride; |
| b += 4; |
| } |
| } else if (xoffset == 4) { |
| uint16_t *b = dst; |
| for (i = 0; i < h + 1; ++i) { |
| __m128i x = _mm_loadu_si128((__m128i *)src); |
| __m128i z = _mm_srli_si128(x, 2); |
| _mm_storel_epi64((__m128i *)b, _mm_avg_epu16(x, z)); |
| src += src_stride; |
| b += 4; |
| } |
| } else { |
| uint16_t *b = dst; |
| const uint8_t *hfilter = bilinear_filters_2t[xoffset]; |
| const __m128i hfilter_vec = _mm_set1_epi32(hfilter[0] | (hfilter[1] << 16)); |
| for (i = 0; i < h; i += 2) { |
| const __m128i x0 = _mm_loadu_si128((__m128i *)src); |
| const __m128i z0 = _mm_srli_si128(x0, 2); |
| const __m128i x1 = _mm_loadu_si128((__m128i *)&src[src_stride]); |
| const __m128i z1 = _mm_srli_si128(x1, 2); |
| const __m128i res = |
| highbd_filter_block_2rows(&x0, &z0, &x1, &z1, &hfilter_vec); |
| _mm_storeu_si128((__m128i *)b, res); |
| |
| src += src_stride * 2; |
| b += 8; |
| } |
| // Process i = h separately |
| __m128i x = _mm_loadu_si128((__m128i *)src); |
| __m128i z = _mm_srli_si128(x, 2); |
| |
| __m128i v0 = _mm_unpacklo_epi16(x, z); |
| v0 = _mm_madd_epi16(v0, hfilter_vec); |
| v0 = xx_roundn_epu32(v0, FILTER_BITS); |
| |
| _mm_storel_epi64((__m128i *)b, _mm_packs_epi32(v0, v0)); |
| } |
| |
| // Vertical filter |
| if (yoffset == 0) { |
| // The data is already in 'dst', so no need to filter |
| } else if (yoffset == 4) { |
| for (i = 0; i < h; ++i) { |
| __m128i x = _mm_loadl_epi64((__m128i *)dst); |
| __m128i y = _mm_loadl_epi64((__m128i *)&dst[4]); |
| _mm_storel_epi64((__m128i *)dst, _mm_avg_epu16(x, y)); |
| dst += 4; |
| } |
| } else { |
| const uint8_t *vfilter = bilinear_filters_2t[yoffset]; |
| const __m128i vfilter_vec = _mm_set1_epi32(vfilter[0] | (vfilter[1] << 16)); |
| for (i = 0; i < h; i += 2) { |
| const __m128i x = _mm_loadl_epi64((__m128i *)dst); |
| const __m128i y = _mm_loadl_epi64((__m128i *)&dst[4]); |
| const __m128i z = _mm_loadl_epi64((__m128i *)&dst[8]); |
| const __m128i res = |
| highbd_filter_block_2rows(&x, &y, &y, &z, &vfilter_vec); |
| _mm_storeu_si128((__m128i *)dst, res); |
| |
| dst += 8; |
| } |
| } |
| } |
| |
| static void highbd_masked_variance(const uint16_t *src_ptr, int src_stride, |
| const uint16_t *a_ptr, int a_stride, |
| const uint16_t *b_ptr, int b_stride, |
| const uint8_t *m_ptr, int m_stride, |
| int width, int height, uint64_t *sse, |
| int *sum_) { |
| int x, y; |
| // Note on bit widths: |
| // The maximum value of 'sum' is (2^12 - 1) * 128 * 128 =~ 2^26, |
| // so this can be kept as four 32-bit values. |
| // But the maximum value of 'sum_sq' is (2^12 - 1)^2 * 128 * 128 =~ 2^38, |
| // so this must be stored as two 64-bit values. |
| __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); |
| const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); |
| const __m128i round_const = |
| _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); |
| const __m128i zero = _mm_setzero_si128(); |
| |
| for (y = 0; y < height; y++) { |
| for (x = 0; x < width; x += 8) { |
| const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]); |
| const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]); |
| const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]); |
| const __m128i m = |
| _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)&m_ptr[x]), zero); |
| const __m128i m_inv = _mm_sub_epi16(mask_max, m); |
| |
| // Calculate 8 predicted pixels. |
| const __m128i data_l = _mm_unpacklo_epi16(a, b); |
| const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv); |
| __m128i pred_l = _mm_madd_epi16(data_l, mask_l); |
| pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const), |
| AOM_BLEND_A64_ROUND_BITS); |
| |
| const __m128i data_r = _mm_unpackhi_epi16(a, b); |
| const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv); |
| __m128i pred_r = _mm_madd_epi16(data_r, mask_r); |
| pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const), |
| AOM_BLEND_A64_ROUND_BITS); |
| |
| const __m128i src_l = _mm_unpacklo_epi16(src, zero); |
| const __m128i src_r = _mm_unpackhi_epi16(src, zero); |
| __m128i diff_l = _mm_sub_epi32(pred_l, src_l); |
| __m128i diff_r = _mm_sub_epi32(pred_r, src_r); |
| |
| // Update partial sums and partial sums of squares |
| sum = _mm_add_epi32(sum, _mm_add_epi32(diff_l, diff_r)); |
| // A trick: Now each entry of diff_l and diff_r is stored in a 32-bit |
| // field, but the range of values is only [-(2^12 - 1), 2^12 - 1]. |
| // So we can re-pack into 16-bit fields and use _mm_madd_epi16 |
| // to calculate the squares and partially sum them. |
| const __m128i tmp = _mm_packs_epi32(diff_l, diff_r); |
| const __m128i prod = _mm_madd_epi16(tmp, tmp); |
| // Then we want to sign-extend to 64 bits and accumulate |
| const __m128i sign = _mm_srai_epi32(prod, 31); |
| const __m128i tmp_0 = _mm_unpacklo_epi32(prod, sign); |
| const __m128i tmp_1 = _mm_unpackhi_epi32(prod, sign); |
| sum_sq = _mm_add_epi64(sum_sq, _mm_add_epi64(tmp_0, tmp_1)); |
| } |
| |
| src_ptr += src_stride; |
| a_ptr += a_stride; |
| b_ptr += b_stride; |
| m_ptr += m_stride; |
| } |
| // Reduce down to a single sum and sum of squares |
| sum = _mm_hadd_epi32(sum, zero); |
| sum = _mm_hadd_epi32(sum, zero); |
| *sum_ = _mm_cvtsi128_si32(sum); |
| sum_sq = _mm_add_epi64(sum_sq, _mm_srli_si128(sum_sq, 8)); |
| _mm_storel_epi64((__m128i *)sse, sum_sq); |
| } |
| |
| static void highbd_masked_variance4xh(const uint16_t *src_ptr, int src_stride, |
| const uint16_t *a_ptr, |
| const uint16_t *b_ptr, |
| const uint8_t *m_ptr, int m_stride, |
| int height, int *sse, int *sum_) { |
| int y; |
| // Note: For this function, h <= 8 (or maybe 16 if we add 4:1 partitions). |
| // So the maximum value of sum is (2^12 - 1) * 4 * 16 =~ 2^18 |
| // and the maximum value of sum_sq is (2^12 - 1)^2 * 4 * 16 =~ 2^30. |
| // So we can safely pack sum_sq into 32-bit fields, which is slightly more |
| // convenient. |
| __m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128(); |
| const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); |
| const __m128i round_const = |
| _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); |
| const __m128i zero = _mm_setzero_si128(); |
| |
| for (y = 0; y < height; y += 2) { |
| __m128i src = _mm_unpacklo_epi64( |
| _mm_loadl_epi64((const __m128i *)src_ptr), |
| _mm_loadl_epi64((const __m128i *)&src_ptr[src_stride])); |
| const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr); |
| const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr); |
| const __m128i m = _mm_unpacklo_epi8( |
| _mm_unpacklo_epi32( |
| _mm_cvtsi32_si128(*(const uint32_t *)m_ptr), |
| _mm_cvtsi32_si128(*(const uint32_t *)&m_ptr[m_stride])), |
| zero); |
| const __m128i m_inv = _mm_sub_epi16(mask_max, m); |
| |
| const __m128i data_l = _mm_unpacklo_epi16(a, b); |
| const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv); |
| __m128i pred_l = _mm_madd_epi16(data_l, mask_l); |
| pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const), |
| AOM_BLEND_A64_ROUND_BITS); |
| |
| const __m128i data_r = _mm_unpackhi_epi16(a, b); |
| const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv); |
| __m128i pred_r = _mm_madd_epi16(data_r, mask_r); |
| pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const), |
| AOM_BLEND_A64_ROUND_BITS); |
| |
| const __m128i src_l = _mm_unpacklo_epi16(src, zero); |
| const __m128i src_r = _mm_unpackhi_epi16(src, zero); |
| __m128i diff_l = _mm_sub_epi32(pred_l, src_l); |
| __m128i diff_r = _mm_sub_epi32(pred_r, src_r); |
| |
| // Update partial sums and partial sums of squares |
| sum = _mm_add_epi32(sum, _mm_add_epi32(diff_l, diff_r)); |
| const __m128i tmp = _mm_packs_epi32(diff_l, diff_r); |
| const __m128i prod = _mm_madd_epi16(tmp, tmp); |
| sum_sq = _mm_add_epi32(sum_sq, prod); |
| |
| src_ptr += src_stride * 2; |
| a_ptr += 8; |
| b_ptr += 8; |
| m_ptr += m_stride * 2; |
| } |
| // Reduce down to a single sum and sum of squares |
| sum = _mm_hadd_epi32(sum, sum_sq); |
| sum = _mm_hadd_epi32(sum, zero); |
| *sum_ = _mm_cvtsi128_si32(sum); |
| *sse = _mm_cvtsi128_si32(_mm_srli_si128(sum, 4)); |
| } |
| |
| #endif |