blob: 1609f833e7542660b084cb6afd077c0bfea7d2e7 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <ctime>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/av1_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "aom_ports/aom_timer.h"
#include "av1/common/mv.h"
#include "av1/common/restoration.h"
namespace {
using libaom_test::ACMRandom;
using ::testing::make_tuple;
using ::testing::tuple;
typedef void (*SgrFunc)(const uint8_t *dat8, int width, int height, int stride,
int eps, const int *xqd, uint8_t *dst8, int dst_stride,
int32_t *tmpbuf, int bit_depth, int highbd);
// Test parameter list:
// <tst_fun_>
typedef tuple<SgrFunc> FilterTestParam;
class AV1SelfguidedFilterTest
: public ::testing::TestWithParam<FilterTestParam> {
public:
virtual ~AV1SelfguidedFilterTest() {}
virtual void SetUp() {}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunSpeedTest() {
tst_fun_ = GET_PARAM(0);
const int pu_width = RESTORATION_PROC_UNIT_SIZE;
const int pu_height = RESTORATION_PROC_UNIT_SIZE;
const int width = 256, height = 256, stride = 288, out_stride = 288;
const int NUM_ITERS = 2000;
int i, j, k;
uint8_t *input_ =
(uint8_t *)aom_memalign(32, stride * (height + 32) * sizeof(uint8_t));
uint8_t *output_ = (uint8_t *)aom_memalign(
32, out_stride * (height + 32) * sizeof(uint8_t));
int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE);
uint8_t *input = input_ + stride * 16 + 16;
uint8_t *output = output_ + out_stride * 16 + 16;
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (i = -16; i < height + 16; ++i)
for (j = -16; j < width + 16; ++j)
input[i * stride + j] = rnd.Rand16() & 0xFF;
int xqd[2] = { SGRPROJ_PRJ_MIN0 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX0 + 1 -
SGRPROJ_PRJ_MIN0),
SGRPROJ_PRJ_MIN1 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX1 + 1 -
SGRPROJ_PRJ_MIN1) };
// Fix a parameter set, since the speed depends slightly on r.
// Change this to test different combinations of values of r.
int eps = 15;
av1_loop_restoration_precal();
aom_usec_timer ref_timer;
aom_usec_timer_start(&ref_timer);
for (i = 0; i < NUM_ITERS; ++i) {
for (k = 0; k < height; k += pu_height)
for (j = 0; j < width; j += pu_width) {
int w = AOMMIN(pu_width, width - j);
int h = AOMMIN(pu_height, height - k);
uint8_t *input_p = input + k * stride + j;
uint8_t *output_p = output + k * out_stride + j;
av1_apply_selfguided_restoration_c(input_p, w, h, stride, eps, xqd,
output_p, out_stride, tmpbuf, 8,
0);
}
}
aom_usec_timer_mark(&ref_timer);
const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer);
aom_usec_timer tst_timer;
aom_usec_timer_start(&tst_timer);
for (i = 0; i < NUM_ITERS; ++i) {
for (k = 0; k < height; k += pu_height)
for (j = 0; j < width; j += pu_width) {
int w = AOMMIN(pu_width, width - j);
int h = AOMMIN(pu_height, height - k);
uint8_t *input_p = input + k * stride + j;
uint8_t *output_p = output + k * out_stride + j;
tst_fun_(input_p, w, h, stride, eps, xqd, output_p, out_stride,
tmpbuf, 8, 0);
}
}
aom_usec_timer_mark(&tst_timer);
const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer);
std::cout << "[ ] C time = " << ref_time / 1000
<< " ms, SIMD time = " << tst_time / 1000 << " ms\n";
EXPECT_GT(ref_time, tst_time)
<< "Error: AV1SelfguidedFilterTest.SpeedTest, SIMD slower than C.\n"
<< "C time: " << ref_time << " us\n"
<< "SIMD time: " << tst_time << " us\n";
aom_free(input_);
aom_free(output_);
aom_free(tmpbuf);
}
void RunCorrectnessTest() {
tst_fun_ = GET_PARAM(0);
const int pu_width = RESTORATION_PROC_UNIT_SIZE;
const int pu_height = RESTORATION_PROC_UNIT_SIZE;
// Set the maximum width/height to test here. We actually test a small
// range of sizes *up to* this size, so that we can check, eg.,
// the behaviour on tiles which are not a multiple of 4 wide.
const int max_w = 260, max_h = 260, stride = 672, out_stride = 672;
const int NUM_ITERS = 81;
int i, j, k;
uint8_t *input_ =
(uint8_t *)aom_memalign(32, stride * (max_h + 32) * sizeof(uint8_t));
uint8_t *output_ = (uint8_t *)aom_memalign(
32, out_stride * (max_h + 32) * sizeof(uint8_t));
uint8_t *output2_ = (uint8_t *)aom_memalign(
32, out_stride * (max_h + 32) * sizeof(uint8_t));
int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE);
uint8_t *input = input_ + stride * 16 + 16;
uint8_t *output = output_ + out_stride * 16 + 16;
uint8_t *output2 = output2_ + out_stride * 16 + 16;
ACMRandom rnd(ACMRandom::DeterministicSeed());
av1_loop_restoration_precal();
for (i = 0; i < NUM_ITERS; ++i) {
for (j = -16; j < max_h + 16; ++j)
for (k = -16; k < max_w + 16; ++k)
input[j * stride + k] = rnd.Rand16() & 0xFF;
int xqd[2] = { SGRPROJ_PRJ_MIN0 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX0 + 1 -
SGRPROJ_PRJ_MIN0),
SGRPROJ_PRJ_MIN1 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX1 + 1 -
SGRPROJ_PRJ_MIN1) };
int eps = rnd.PseudoUniform(1 << SGRPROJ_PARAMS_BITS);
// Test various tile sizes around 256x256
int test_w = max_w - (i / 9);
int test_h = max_h - (i % 9);
for (k = 0; k < test_h; k += pu_height)
for (j = 0; j < test_w; j += pu_width) {
int w = AOMMIN(pu_width, test_w - j);
int h = AOMMIN(pu_height, test_h - k);
uint8_t *input_p = input + k * stride + j;
uint8_t *output_p = output + k * out_stride + j;
uint8_t *output2_p = output2 + k * out_stride + j;
tst_fun_(input_p, w, h, stride, eps, xqd, output_p, out_stride,
tmpbuf, 8, 0);
av1_apply_selfguided_restoration_c(input_p, w, h, stride, eps, xqd,
output2_p, out_stride, tmpbuf, 8,
0);
}
for (j = 0; j < test_h; ++j)
for (k = 0; k < test_w; ++k) {
ASSERT_EQ(output[j * out_stride + k], output2[j * out_stride + k]);
}
}
aom_free(input_);
aom_free(output_);
aom_free(output2_);
aom_free(tmpbuf);
}
private:
SgrFunc tst_fun_;
};
TEST_P(AV1SelfguidedFilterTest, DISABLED_SpeedTest) { RunSpeedTest(); }
TEST_P(AV1SelfguidedFilterTest, CorrectnessTest) { RunCorrectnessTest(); }
#if HAVE_SSE4_1
INSTANTIATE_TEST_CASE_P(
SSE4_1, AV1SelfguidedFilterTest,
::testing::Values(av1_apply_selfguided_restoration_sse4_1));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_CASE_P(
AVX2, AV1SelfguidedFilterTest,
::testing::Values(av1_apply_selfguided_restoration_avx2));
#endif
// TODO(b/141858830,b/141859709): neon is currently disabled due to use of
// uninitialized memory.
#if 0 // HAVE_NEON
INSTANTIATE_TEST_CASE_P(
NEON, AV1SelfguidedFilterTest,
::testing::Values(av1_apply_selfguided_restoration_neon));
#endif
#if CONFIG_AV1_HIGHBITDEPTH
// Test parameter list:
// <tst_fun_, bit_depth>
typedef tuple<SgrFunc, int> HighbdFilterTestParam;
class AV1HighbdSelfguidedFilterTest
: public ::testing::TestWithParam<HighbdFilterTestParam> {
public:
virtual ~AV1HighbdSelfguidedFilterTest() {}
virtual void SetUp() {}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunSpeedTest() {
tst_fun_ = GET_PARAM(0);
const int pu_width = RESTORATION_PROC_UNIT_SIZE;
const int pu_height = RESTORATION_PROC_UNIT_SIZE;
const int width = 256, height = 256, stride = 288, out_stride = 288;
const int NUM_ITERS = 2000;
int i, j, k;
int bit_depth = GET_PARAM(1);
int mask = (1 << bit_depth) - 1;
uint16_t *input_ =
(uint16_t *)aom_memalign(32, stride * (height + 32) * sizeof(uint16_t));
uint16_t *output_ = (uint16_t *)aom_memalign(
32, out_stride * (height + 32) * sizeof(uint16_t));
int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE);
uint16_t *input = input_ + stride * 16 + 16;
uint16_t *output = output_ + out_stride * 16 + 16;
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (i = -16; i < height + 16; ++i)
for (j = -16; j < width + 16; ++j)
input[i * stride + j] = rnd.Rand16() & mask;
int xqd[2] = { SGRPROJ_PRJ_MIN0 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX0 + 1 -
SGRPROJ_PRJ_MIN0),
SGRPROJ_PRJ_MIN1 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX1 + 1 -
SGRPROJ_PRJ_MIN1) };
// Fix a parameter set, since the speed depends slightly on r.
// Change this to test different combinations of values of r.
int eps = 15;
av1_loop_restoration_precal();
aom_usec_timer ref_timer;
aom_usec_timer_start(&ref_timer);
for (i = 0; i < NUM_ITERS; ++i) {
for (k = 0; k < height; k += pu_height)
for (j = 0; j < width; j += pu_width) {
int w = AOMMIN(pu_width, width - j);
int h = AOMMIN(pu_height, height - k);
uint16_t *input_p = input + k * stride + j;
uint16_t *output_p = output + k * out_stride + j;
av1_apply_selfguided_restoration_c(
CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd,
CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth, 1);
}
}
aom_usec_timer_mark(&ref_timer);
const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer);
aom_usec_timer tst_timer;
aom_usec_timer_start(&tst_timer);
for (i = 0; i < NUM_ITERS; ++i) {
for (k = 0; k < height; k += pu_height)
for (j = 0; j < width; j += pu_width) {
int w = AOMMIN(pu_width, width - j);
int h = AOMMIN(pu_height, height - k);
uint16_t *input_p = input + k * stride + j;
uint16_t *output_p = output + k * out_stride + j;
tst_fun_(CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd,
CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth,
1);
}
}
aom_usec_timer_mark(&tst_timer);
const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer);
std::cout << "[ ] C time = " << ref_time / 1000
<< " ms, SIMD time = " << tst_time / 1000 << " ms\n";
EXPECT_GT(ref_time, tst_time)
<< "Error: AV1HighbdSelfguidedFilterTest.SpeedTest, SIMD slower than "
"C.\n"
<< "C time: " << ref_time << " us\n"
<< "SIMD time: " << tst_time << " us\n";
aom_free(input_);
aom_free(output_);
aom_free(tmpbuf);
}
void RunCorrectnessTest() {
tst_fun_ = GET_PARAM(0);
const int pu_width = RESTORATION_PROC_UNIT_SIZE;
const int pu_height = RESTORATION_PROC_UNIT_SIZE;
// Set the maximum width/height to test here. We actually test a small
// range of sizes *up to* this size, so that we can check, eg.,
// the behaviour on tiles which are not a multiple of 4 wide.
const int max_w = 260, max_h = 260, stride = 672, out_stride = 672;
const int NUM_ITERS = 81;
int i, j, k;
int bit_depth = GET_PARAM(1);
int mask = (1 << bit_depth) - 1;
uint16_t *input_ =
(uint16_t *)aom_memalign(32, stride * (max_h + 32) * sizeof(uint16_t));
uint16_t *output_ = (uint16_t *)aom_memalign(
32, out_stride * (max_h + 32) * sizeof(uint16_t));
uint16_t *output2_ = (uint16_t *)aom_memalign(
32, out_stride * (max_h + 32) * sizeof(uint16_t));
int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE);
uint16_t *input = input_ + stride * 16 + 16;
uint16_t *output = output_ + out_stride * 16 + 16;
uint16_t *output2 = output2_ + out_stride * 16 + 16;
ACMRandom rnd(ACMRandom::DeterministicSeed());
av1_loop_restoration_precal();
for (i = 0; i < NUM_ITERS; ++i) {
for (j = -16; j < max_h + 16; ++j)
for (k = -16; k < max_w + 16; ++k)
input[j * stride + k] = rnd.Rand16() & mask;
int xqd[2] = { SGRPROJ_PRJ_MIN0 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX0 + 1 -
SGRPROJ_PRJ_MIN0),
SGRPROJ_PRJ_MIN1 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX1 + 1 -
SGRPROJ_PRJ_MIN1) };
int eps = rnd.PseudoUniform(1 << SGRPROJ_PARAMS_BITS);
// Test various tile sizes around 256x256
int test_w = max_w - (i / 9);
int test_h = max_h - (i % 9);
for (k = 0; k < test_h; k += pu_height)
for (j = 0; j < test_w; j += pu_width) {
int w = AOMMIN(pu_width, test_w - j);
int h = AOMMIN(pu_height, test_h - k);
uint16_t *input_p = input + k * stride + j;
uint16_t *output_p = output + k * out_stride + j;
uint16_t *output2_p = output2 + k * out_stride + j;
tst_fun_(CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd,
CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth,
1);
av1_apply_selfguided_restoration_c(
CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd,
CONVERT_TO_BYTEPTR(output2_p), out_stride, tmpbuf, bit_depth, 1);
}
for (j = 0; j < test_h; ++j)
for (k = 0; k < test_w; ++k)
ASSERT_EQ(output[j * out_stride + k], output2[j * out_stride + k]);
}
aom_free(input_);
aom_free(output_);
aom_free(output2_);
aom_free(tmpbuf);
}
private:
SgrFunc tst_fun_;
};
TEST_P(AV1HighbdSelfguidedFilterTest, DISABLED_SpeedTest) { RunSpeedTest(); }
TEST_P(AV1HighbdSelfguidedFilterTest, CorrectnessTest) { RunCorrectnessTest(); }
#if HAVE_SSE4_1
const int highbd_params_sse4_1[] = { 8, 10, 12 };
INSTANTIATE_TEST_CASE_P(
SSE4_1, AV1HighbdSelfguidedFilterTest,
::testing::Combine(
::testing::Values(av1_apply_selfguided_restoration_sse4_1),
::testing::ValuesIn(highbd_params_sse4_1)));
#endif
#if HAVE_AVX2
const int highbd_params_avx2[] = { 8, 10, 12 };
INSTANTIATE_TEST_CASE_P(
AVX2, AV1HighbdSelfguidedFilterTest,
::testing::Combine(::testing::Values(av1_apply_selfguided_restoration_avx2),
::testing::ValuesIn(highbd_params_avx2)));
#endif
// TODO(b/141858830,b/141859709): neon is currently disabled due to use of
// uninitialized memory.
#if 0 // HAVE_NEON
const int highbd_params_neon[] = { 8, 10, 12 };
INSTANTIATE_TEST_CASE_P(
NEON, AV1HighbdSelfguidedFilterTest,
::testing::Combine(::testing::Values(av1_apply_selfguided_restoration_neon),
::testing::ValuesIn(highbd_params_neon)));
#endif
#endif // CONFIG_AV1_HIGHBITDEPTH
} // namespace