|  | /* | 
|  | * Copyright (c) 2018, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <stdbool.h> | 
|  | #include <assert.h> | 
|  | #include <pmmintrin.h> | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  | #include "av1/encoder/ml.h" | 
|  |  | 
|  | // In order to avoid the high-latency of swapping between FPU and SIMD | 
|  | // operations, we keep the result in a 128-bit register even though we only | 
|  | // care about a single value. | 
|  | static void nn_propagate_8to1(const float *const inputs, | 
|  | const float *const weights, | 
|  | __m128 *const output) { | 
|  | const __m128 inputs_h = _mm_loadu_ps(&inputs[4]); | 
|  | const __m128 inputs_l = _mm_loadu_ps(inputs); | 
|  |  | 
|  | const __m128 weights_h = _mm_loadu_ps(&weights[4]); | 
|  | const __m128 weights_l = _mm_loadu_ps(weights); | 
|  |  | 
|  | const __m128 mul_h = _mm_mul_ps(inputs_h, weights_h); | 
|  | const __m128 mul_l = _mm_mul_ps(inputs_l, weights_l); | 
|  | // [7 6 5 4] [3 2 1 0] (weight and input indices) | 
|  |  | 
|  | const __m128 vadd = _mm_add_ps(mul_l, mul_h); | 
|  | // [7+3 6+2 5+1 4+0] | 
|  | const __m128 hadd1 = _mm_hadd_ps(vadd, vadd); | 
|  | // [7+6+3+2 5+4+1+0 7+6+3+2 5+4+1+0] | 
|  | const __m128 hadd2 = _mm_hadd_ps(hadd1, hadd1); | 
|  | // [7+6+5+4+3+2+1+0 7+6+5+4+3+2+1+0 7+6+5+4+3+2+1+0 7+6+5+4+3+2+1+0] | 
|  | *output = _mm_add_ps(*output, hadd2); | 
|  | } | 
|  |  | 
|  | static void nn_propagate_4to1(const float *const inputs, | 
|  | const float *const weights, | 
|  | __m128 *const output) { | 
|  | const __m128 inputs128 = _mm_loadu_ps(inputs); | 
|  |  | 
|  | const __m128 weights128 = _mm_loadu_ps(weights); | 
|  |  | 
|  | const __m128 mul = _mm_mul_ps(inputs128, weights128); | 
|  | // [3 2 1 0] (weight and input indices) | 
|  |  | 
|  | const __m128 hadd1 = _mm_hadd_ps(mul, mul); | 
|  | // [3+2 1+0 3+2 1+0] | 
|  | const __m128 hadd2 = _mm_hadd_ps(hadd1, hadd1); | 
|  | // [3+2+1+0 3+2+1+0 3+2+1+0 3+2+1+0] | 
|  | *output = _mm_add_ps(*output, hadd2); | 
|  | } | 
|  |  | 
|  | static void nn_propagate_4to4(const float *const inputs, | 
|  | const float *const weights, __m128 *const outputs, | 
|  | const int num_inputs) { | 
|  | const __m128 inputs128 = _mm_loadu_ps(inputs); | 
|  |  | 
|  | __m128 hadd[2]; | 
|  | for (int i = 0; i < 2; i++) {  // For each pair of outputs | 
|  | const __m128 weight0 = _mm_loadu_ps(&weights[2 * i * num_inputs]); | 
|  | const __m128 mul0 = _mm_mul_ps(weight0, inputs128); | 
|  | const __m128 weight1 = _mm_loadu_ps(&weights[(2 * i + 1) * num_inputs]); | 
|  | const __m128 mul1 = _mm_mul_ps(weight1, inputs128); | 
|  | hadd[i] = _mm_hadd_ps(mul0, mul1); | 
|  | } | 
|  | // hadd[0] = [7+6 5+4 3+2 1+0] (weight indices) | 
|  | // hadd[1] = [15+14 13+12 11+10 9+8] | 
|  |  | 
|  | const __m128 hh = _mm_hadd_ps(hadd[0], hadd[1]); | 
|  | // [15+14+13+12 11+10+9+8 7+6+5+4 3+2+1+0] | 
|  |  | 
|  | *outputs = _mm_add_ps(*outputs, hh); | 
|  | } | 
|  |  | 
|  | static void nn_propagate_4to8(const float *const inputs, | 
|  | const float *const weights, __m128 *const out_h, | 
|  | __m128 *const out_l, const int num_inputs) { | 
|  | const __m128 inputs128 = _mm_loadu_ps(inputs); | 
|  |  | 
|  | __m128 hadd[4]; | 
|  | for (int i = 0; i < 4; i++) {  // For each pair of outputs | 
|  | const __m128 weight0 = _mm_loadu_ps(&weights[2 * i * num_inputs]); | 
|  | const __m128 weight1 = _mm_loadu_ps(&weights[(2 * i + 1) * num_inputs]); | 
|  | const __m128 mul0 = _mm_mul_ps(inputs128, weight0); | 
|  | const __m128 mul1 = _mm_mul_ps(inputs128, weight1); | 
|  | hadd[i] = _mm_hadd_ps(mul0, mul1); | 
|  | } | 
|  | // hadd[0] = [7+6 5+4 3+2 1+0] (weight indices) | 
|  | // hadd[1] = [15+14 13+12 11+10 9+8] | 
|  | // hadd[2] = [23+22 21+20 19+18 17+16] | 
|  | // hadd[3] = [31+30 29+28 27+26 25+24] | 
|  |  | 
|  | const __m128 hh0 = _mm_hadd_ps(hadd[0], hadd[1]); | 
|  | // [15+14+13+12 11+10+9+8 7+6+5+4 3+2+1+0] | 
|  | const __m128 hh1 = _mm_hadd_ps(hadd[2], hadd[3]); | 
|  | // [31+30+29+28 27+26+25+24 23+22+21+20 19+18+17+16] | 
|  |  | 
|  | *out_h = _mm_add_ps(*out_h, hh1); | 
|  | *out_l = _mm_add_ps(*out_l, hh0); | 
|  | } | 
|  |  | 
|  | static void nn_propagate_8to4(const float *const inputs, | 
|  | const float *const weights, __m128 *const outputs, | 
|  | const int num_inputs) { | 
|  | const __m128 inputs_h = _mm_loadu_ps(inputs + 4); | 
|  | const __m128 inputs_l = _mm_loadu_ps(inputs); | 
|  | // [7 6 5 4] [3 2 1 0] (input indices) | 
|  |  | 
|  | __m128 add[4]; | 
|  | for (int i = 0; i < 4; i++) {  // For each output: | 
|  | const __m128 weight_h = _mm_loadu_ps(&weights[i * num_inputs + 4]); | 
|  | const __m128 weight_l = _mm_loadu_ps(&weights[i * num_inputs]); | 
|  | const __m128 mul_h = _mm_mul_ps(inputs_h, weight_h); | 
|  | const __m128 mul_l = _mm_mul_ps(inputs_l, weight_l); | 
|  | add[i] = _mm_add_ps(mul_l, mul_h); | 
|  | } | 
|  | // add[0] = [7+3 6+2 5+1 4+0] | 
|  | // add[1] = [15+11 14+10 13+9 12+8] | 
|  | // add[2] = [23+19 22+18 21+17 20+16] | 
|  | // add[3] = [31+27 30+26 29+25 28+24] | 
|  |  | 
|  | const __m128 hadd_h = _mm_hadd_ps(add[2], add[3]); | 
|  | // [31+30+27+26 29+28+25+24 23+22+19+18 21+20+17+16] | 
|  | const __m128 hadd_l = _mm_hadd_ps(add[0], add[1]); | 
|  | // [15+14+11+10 13+12+9+8 7+6+3+2 5+4+1+0] | 
|  |  | 
|  | const __m128 haddhadd = _mm_hadd_ps(hadd_l, hadd_h); | 
|  | // [31+30+29+28+27+26+25+24 23+22+21+20+19+18+17+16 | 
|  | //  15+14+13+12+11+10+9+8 7+6+5+4+3+2+1+0] | 
|  |  | 
|  | *outputs = _mm_add_ps(*outputs, haddhadd); | 
|  | } | 
|  |  | 
|  | static void nn_activate8(__m128 *out_h, __m128 *out_l) { | 
|  | const __m128 zero = _mm_setzero_ps(); | 
|  | *out_h = _mm_max_ps(*out_h, zero); | 
|  | *out_l = _mm_max_ps(*out_l, zero); | 
|  | } | 
|  |  | 
|  | static void nn_activate4(__m128 *x) { *x = _mm_max_ps(*x, _mm_setzero_ps()); } | 
|  |  | 
|  | // Calculate prediction based on the given input features and neural net config. | 
|  | // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden | 
|  | // layer. | 
|  | void av1_nn_predict_sse3(const float *input_nodes, | 
|  | const NN_CONFIG *const nn_config, int reduce_prec, | 
|  | float *const output) { | 
|  | float buf[2][NN_MAX_NODES_PER_LAYER]; | 
|  | int buf_index = 0; | 
|  | int num_inputs = nn_config->num_inputs; | 
|  |  | 
|  | // Hidden layers, except the final iteration is the output layer. | 
|  | for (int layer = 0; layer <= nn_config->num_hidden_layers; layer++) { | 
|  | const float *layer_weights = nn_config->weights[layer]; | 
|  | const float *layer_bias = nn_config->bias[layer]; | 
|  | bool output_layer = (layer == nn_config->num_hidden_layers); | 
|  | float *const output_nodes = output_layer ? output : &buf[buf_index][0]; | 
|  | const int num_outputs = output_layer ? nn_config->num_outputs | 
|  | : nn_config->num_hidden_nodes[layer]; | 
|  |  | 
|  | if (num_inputs % 4 == 0 && num_outputs % 8 == 0) { | 
|  | for (int out = 0; out < num_outputs; out += 8) { | 
|  | __m128 out_h = _mm_loadu_ps(&layer_bias[out + 4]); | 
|  | __m128 out_l = _mm_loadu_ps(&layer_bias[out]); | 
|  | for (int in = 0; in < num_inputs; in += 4) { | 
|  | nn_propagate_4to8(&input_nodes[in], | 
|  | &layer_weights[out * num_inputs + in], &out_h, | 
|  | &out_l, num_inputs); | 
|  | } | 
|  | if (!output_layer) nn_activate8(&out_h, &out_l); | 
|  | _mm_storeu_ps(&output_nodes[out + 4], out_h); | 
|  | _mm_storeu_ps(&output_nodes[out], out_l); | 
|  | } | 
|  | } else if (num_inputs % 8 == 0 && num_outputs % 4 == 0) { | 
|  | for (int out = 0; out < num_outputs; out += 4) { | 
|  | __m128 outputs = _mm_loadu_ps(&layer_bias[out]); | 
|  | for (int in = 0; in < num_inputs; in += 8) { | 
|  | nn_propagate_8to4(&input_nodes[in], | 
|  | &layer_weights[out * num_inputs + in], &outputs, | 
|  | num_inputs); | 
|  | } | 
|  | if (!output_layer) nn_activate4(&outputs); | 
|  | _mm_storeu_ps(&output_nodes[out], outputs); | 
|  | } | 
|  | } else if (num_inputs % 4 == 0 && num_outputs % 4 == 0) { | 
|  | for (int out = 0; out < num_outputs; out += 4) { | 
|  | __m128 outputs = _mm_loadu_ps(&layer_bias[out]); | 
|  | for (int in = 0; in < num_inputs; in += 4) { | 
|  | nn_propagate_4to4(&input_nodes[in], | 
|  | &layer_weights[out * num_inputs + in], &outputs, | 
|  | num_inputs); | 
|  | } | 
|  | if (!output_layer) nn_activate4(&outputs); | 
|  | _mm_storeu_ps(&output_nodes[out], outputs); | 
|  | } | 
|  | } else if (num_inputs % 8 == 0) { | 
|  | for (int out = 0; out < num_outputs; out++) { | 
|  | __m128 total = _mm_load1_ps(&layer_bias[out]); | 
|  | for (int in = 0; in < num_inputs; in += 8) { | 
|  | nn_propagate_8to1(&input_nodes[in], | 
|  | &layer_weights[out * num_inputs + in], &total); | 
|  | } | 
|  | if (!output_layer) nn_activate4(&total); | 
|  | output_nodes[out] = _mm_cvtss_f32(total); | 
|  | } | 
|  | } else if (num_inputs % 4 == 0) { | 
|  | for (int out = 0; out < num_outputs; out++) { | 
|  | __m128 total = _mm_load1_ps(&layer_bias[out]); | 
|  | for (int in = 0; in < num_inputs; in += 4) { | 
|  | nn_propagate_4to1(&input_nodes[in], | 
|  | &layer_weights[out * num_inputs + in], &total); | 
|  | } | 
|  | if (!output_layer) nn_activate4(&total); | 
|  | output_nodes[out] = _mm_cvtss_f32(total); | 
|  | } | 
|  | } else { | 
|  | // Use SSE instructions for scalar operations to avoid the latency of | 
|  | // swapping between SIMD and FPU modes. | 
|  | for (int out = 0; out < num_outputs; out++) { | 
|  | __m128 total = _mm_load1_ps(&layer_bias[out]); | 
|  | for (int in_node = 0; in_node < num_inputs; in_node++) { | 
|  | __m128 input = _mm_load1_ps(&input_nodes[in_node]); | 
|  | __m128 weight = | 
|  | _mm_load1_ps(&layer_weights[num_inputs * out + in_node]); | 
|  | total = _mm_add_ps(total, _mm_mul_ps(input, weight)); | 
|  | } | 
|  | if (!output_layer) nn_activate4(&total); | 
|  | output_nodes[out] = _mm_cvtss_f32(total); | 
|  | } | 
|  | } | 
|  | input_nodes = output_nodes; | 
|  | num_inputs = num_outputs; | 
|  | buf_index = 1 - buf_index; | 
|  | } | 
|  | if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs); | 
|  | } | 
|  |  | 
|  | // Based on N. N. Schraudolph. A Fast, Compact Approximation of the Exponential | 
|  | // Function. Neural Computation, 11(4):853–862, 1999. | 
|  | static AOM_INLINE __m128 approx_exp(__m128 y) { | 
|  | #define A ((1 << 23) / 0.69314718056f)  // (1 << 23) / ln(2) | 
|  | #define B \ | 
|  | 127  // Offset for the exponent according to IEEE floating point standard. | 
|  | #define C 60801  // Magic number controls the accuracy of approximation | 
|  | const __m128 multiplier = _mm_set1_ps(A); | 
|  | const __m128i offset = _mm_set1_epi32(B * (1 << 23) - C); | 
|  |  | 
|  | y = _mm_mul_ps(y, multiplier); | 
|  | y = _mm_castsi128_ps(_mm_add_epi32(_mm_cvtps_epi32(y), offset)); | 
|  | return y; | 
|  | #undef A | 
|  | #undef B | 
|  | #undef C | 
|  | } | 
|  |  | 
|  | static AOM_INLINE __m128 reduce_max(__m128 reg) { | 
|  | __m128 tmp_reg; | 
|  |  | 
|  | tmp_reg = _mm_shuffle_ps(reg, reg, 0x4e);  // 01 00 11 10 | 
|  | reg = _mm_max_ps(reg, tmp_reg); | 
|  |  | 
|  | tmp_reg = _mm_shuffle_ps(reg, reg, 0xb1);  // 10 11 00 01 | 
|  | reg = _mm_max_ps(reg, tmp_reg); | 
|  |  | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE __m128 reduce_sum(__m128 reg) { | 
|  | __m128 tmp_reg; | 
|  |  | 
|  | tmp_reg = _mm_shuffle_ps(reg, reg, 0x4e);  // 01 00 11 10 | 
|  | reg = _mm_add_ps(reg, tmp_reg); | 
|  |  | 
|  | tmp_reg = _mm_shuffle_ps(reg, reg, 0xb1);  // 10 11 00 01 | 
|  | reg = _mm_add_ps(reg, tmp_reg); | 
|  |  | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | void av1_nn_fast_softmax_16_sse3(const float *input, float *output) { | 
|  | // Clips at -10 to avoid underflowing | 
|  | const __m128 clipper = _mm_set1_ps(-10.0f); | 
|  |  | 
|  | // Load in 16 values | 
|  | __m128 in_0 = _mm_loadu_ps(&input[0]); | 
|  | __m128 in_1 = _mm_loadu_ps(&input[4]); | 
|  | __m128 in_2 = _mm_loadu_ps(&input[8]); | 
|  | __m128 in_3 = _mm_loadu_ps(&input[12]); | 
|  |  | 
|  | // Get the max | 
|  | __m128 max_0 = _mm_max_ps(in_0, in_1); | 
|  | __m128 max_1 = _mm_max_ps(in_2, in_3); | 
|  |  | 
|  | max_0 = _mm_max_ps(max_0, max_1); | 
|  | max_0 = reduce_max(max_0); | 
|  |  | 
|  | // Subtract the max off and clip | 
|  | in_0 = _mm_sub_ps(in_0, max_0); | 
|  | in_1 = _mm_sub_ps(in_1, max_0); | 
|  | in_2 = _mm_sub_ps(in_2, max_0); | 
|  | in_3 = _mm_sub_ps(in_3, max_0); | 
|  |  | 
|  | in_0 = _mm_max_ps(in_0, clipper); | 
|  | in_1 = _mm_max_ps(in_1, clipper); | 
|  | in_2 = _mm_max_ps(in_2, clipper); | 
|  | in_3 = _mm_max_ps(in_3, clipper); | 
|  |  | 
|  | // Exponentiate and compute the denominator | 
|  | __m128 sum = in_0 = approx_exp(in_0); | 
|  | in_1 = approx_exp(in_1); | 
|  | sum = _mm_add_ps(sum, in_1); | 
|  | in_2 = approx_exp(in_2); | 
|  | sum = _mm_add_ps(sum, in_2); | 
|  | in_3 = approx_exp(in_3); | 
|  | sum = _mm_add_ps(sum, in_3); | 
|  | sum = reduce_sum(sum); | 
|  |  | 
|  | // Divide to get the probability | 
|  | in_0 = _mm_div_ps(in_0, sum); | 
|  | in_1 = _mm_div_ps(in_1, sum); | 
|  | in_2 = _mm_div_ps(in_2, sum); | 
|  | in_3 = _mm_div_ps(in_3, sum); | 
|  |  | 
|  | _mm_storeu_ps(&output[0], in_0); | 
|  | _mm_storeu_ps(&output[4], in_1); | 
|  | _mm_storeu_ps(&output[8], in_2); | 
|  | _mm_storeu_ps(&output[12], in_3); | 
|  | } |