| /* |
| * Copyright (c) 2017, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| |
| #include "./aom_dsp_rtcd.h" |
| #include "./av1_rtcd.h" |
| #include "aom_dsp/aom_convolve.h" |
| #include "aom_dsp/x86/convolve_avx2.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_dsp/x86/synonyms.h" |
| #include "av1/common/convolve.h" |
| |
| void av1_convolve_2d_avx2(const uint8_t *src, int src_stride, uint8_t *dst0, |
| int dst_stride0, int w, int h, |
| InterpFilterParams *filter_params_x, |
| InterpFilterParams *filter_params_y, |
| const int subpel_x_q4, const int subpel_y_q4, |
| ConvolveParams *conv_params) { |
| CONV_BUF_TYPE *dst = conv_params->dst; |
| int dst_stride = conv_params->dst_stride; |
| const int bd = 8; |
| (void)dst0; |
| (void)dst_stride0; |
| |
| DECLARE_ALIGNED(32, int16_t, |
| im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]); |
| int im_h = h + filter_params_y->taps - 1; |
| int im_stride = MAX_SB_SIZE; |
| int i, j; |
| const int fo_vert = filter_params_y->taps / 2 - 1; |
| const int fo_horiz = filter_params_x->taps / 2 - 1; |
| const int do_average = conv_params->do_average; |
| const uint8_t *const src_ptr = src - fo_vert * src_stride - fo_horiz; |
| |
| __m256i filt[4], s[4]; |
| |
| filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2); |
| filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2); |
| filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2); |
| filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2); |
| |
| /* Horizontal filter */ |
| { |
| const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( |
| *filter_params_x, subpel_x_q4 & SUBPEL_MASK); |
| |
| const __m128i coeffs_x8 = _mm_loadu_si128((__m128i *)x_filter); |
| // since not all compilers yet support _mm256_set_m128i() |
| const __m256i coeffs_x = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(coeffs_x8), coeffs_x8, 1); |
| |
| // right shift all filter co-efficients by 1 to reduce the bits required. |
| // This extra right shift will be taken care of at the end while rounding |
| // the result. |
| // Since all filter co-efficients are even, this change will not affect the |
| // end result |
| const __m256i coeffs_x_1 = _mm256_srai_epi16(coeffs_x, 1); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| const __m256i coeff_01 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0200u)); |
| // coeffs 2 3 2 3 2 3 2 3 |
| const __m256i coeff_23 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0604u)); |
| // coeffs 4 5 4 5 4 5 4 5 |
| const __m256i coeff_45 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0a08u)); |
| // coeffs 6 7 6 7 6 7 6 7 |
| const __m256i coeff_67 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0e0cu)); |
| |
| const __m256i round_const = |
| _mm256_set1_epi16(((1 << (conv_params->round_0 - 1)) >> 1) + |
| (1 << (bd + FILTER_BITS - 2))); |
| const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_0 - 1); |
| |
| for (i = 0; i < im_h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15 16 17 18 |
| // 19 20 21 22 23 |
| const __m256i data = _mm256_inserti128_si256( |
| _mm256_loadu_si256((__m256i *)&src_ptr[(i * src_stride) + j]), |
| _mm_loadu_si128((__m128i *)&src_ptr[(i * src_stride) + (j + 8)]), |
| 1); |
| |
| // filter the source buffer |
| s[0] = _mm256_shuffle_epi8(data, filt[0]); |
| s[1] = _mm256_shuffle_epi8(data, filt[1]); |
| s[2] = _mm256_shuffle_epi8(data, filt[2]); |
| s[3] = _mm256_shuffle_epi8(data, filt[3]); |
| |
| const __m256i res_0 = _mm256_maddubs_epi16(s[0], coeff_01); |
| const __m256i res_1 = _mm256_maddubs_epi16(s[1], coeff_23); |
| const __m256i res_2 = _mm256_maddubs_epi16(s[2], coeff_45); |
| const __m256i res_3 = _mm256_maddubs_epi16(s[3], coeff_67); |
| |
| const __m256i res_a = _mm256_add_epi16(res_0, res_2); |
| const __m256i res_b = _mm256_add_epi16(res_1, res_3); |
| |
| __m256i res = _mm256_add_epi16(res_a, res_b); |
| res = _mm256_sra_epi16(_mm256_add_epi16(res, round_const), round_shift); |
| res = _mm256_permute4x64_epi64(res, 216); |
| |
| // 0 1 2 3 8 9 10 11 4 5 6 7 12 13 14 15 |
| _mm256_storeu_si256((__m256i *)&im_block[i * im_stride + j], res); |
| } |
| } |
| } |
| |
| /* Vertical filter */ |
| { |
| const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( |
| *filter_params_y, subpel_y_q4 & SUBPEL_MASK); |
| |
| const __m128i coeffs_y8 = _mm_loadu_si128((__m128i *)y_filter); |
| const __m256i coeffs_y = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(coeffs_y8), coeffs_y8, 1); |
| |
| // coeffs 0 1 0 1 2 3 2 3 |
| const __m256i tmp_0 = _mm256_unpacklo_epi32(coeffs_y, coeffs_y); |
| // coeffs 4 5 4 5 6 7 6 7 |
| const __m256i tmp_1 = _mm256_unpackhi_epi32(coeffs_y, coeffs_y); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| const __m256i coeff_01 = _mm256_unpacklo_epi64(tmp_0, tmp_0); |
| // coeffs 2 3 2 3 2 3 2 3 |
| const __m256i coeff_23 = _mm256_unpackhi_epi64(tmp_0, tmp_0); |
| // coeffs 4 5 4 5 4 5 4 5 |
| const __m256i coeff_45 = _mm256_unpacklo_epi64(tmp_1, tmp_1); |
| // coeffs 6 7 6 7 6 7 6 7 |
| const __m256i coeff_67 = _mm256_unpackhi_epi64(tmp_1, tmp_1); |
| |
| const __m256i round_const = _mm256_set1_epi32( |
| ((1 << conv_params->round_1) >> 1) - |
| (1 << (bd + 2 * FILTER_BITS - conv_params->round_0 - 1))); |
| const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_1); |
| |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| // Filter 0 1 2 3 4 5 6 7 |
| const int16_t *data = &im_block[i * im_stride + j]; |
| const __m256i src_0 = |
| _mm256_unpacklo_epi16(*(__m256i *)(data + 0 * im_stride), |
| *(__m256i *)(data + 1 * im_stride)); |
| const __m256i src_1 = |
| _mm256_unpacklo_epi16(*(__m256i *)(data + 2 * im_stride), |
| *(__m256i *)(data + 3 * im_stride)); |
| const __m256i src_2 = |
| _mm256_unpacklo_epi16(*(__m256i *)(data + 4 * im_stride), |
| *(__m256i *)(data + 5 * im_stride)); |
| const __m256i src_3 = |
| _mm256_unpacklo_epi16(*(__m256i *)(data + 6 * im_stride), |
| *(__m256i *)(data + 7 * im_stride)); |
| |
| const __m256i res_0 = _mm256_madd_epi16(src_0, coeff_01); |
| const __m256i res_1 = _mm256_madd_epi16(src_1, coeff_23); |
| const __m256i res_2 = _mm256_madd_epi16(src_2, coeff_45); |
| const __m256i res_3 = _mm256_madd_epi16(src_3, coeff_67); |
| |
| const __m256i res_a = _mm256_add_epi32(_mm256_add_epi32(res_0, res_1), |
| _mm256_add_epi32(res_2, res_3)); |
| |
| // Filter 8 9 10 11 12 13 14 15 |
| const __m256i src_4 = |
| _mm256_unpackhi_epi16(*(__m256i *)(data + 0 * im_stride), |
| *(__m256i *)(data + 1 * im_stride)); |
| const __m256i src_5 = |
| _mm256_unpackhi_epi16(*(__m256i *)(data + 2 * im_stride), |
| *(__m256i *)(data + 3 * im_stride)); |
| const __m256i src_6 = |
| _mm256_unpackhi_epi16(*(__m256i *)(data + 4 * im_stride), |
| *(__m256i *)(data + 5 * im_stride)); |
| const __m256i src_7 = |
| _mm256_unpackhi_epi16(*(__m256i *)(data + 6 * im_stride), |
| *(__m256i *)(data + 7 * im_stride)); |
| |
| const __m256i res_4 = _mm256_madd_epi16(src_4, coeff_01); |
| const __m256i res_5 = _mm256_madd_epi16(src_5, coeff_23); |
| const __m256i res_6 = _mm256_madd_epi16(src_6, coeff_45); |
| const __m256i res_7 = _mm256_madd_epi16(src_7, coeff_67); |
| |
| const __m256i res_b = _mm256_add_epi32(_mm256_add_epi32(res_4, res_5), |
| _mm256_add_epi32(res_6, res_7)); |
| |
| const __m256i res_a_round = |
| _mm256_sra_epi32(_mm256_add_epi32(res_a, round_const), round_shift); |
| const __m256i res_b_round = |
| _mm256_sra_epi32(_mm256_add_epi32(res_b, round_const), round_shift); |
| |
| // Accumulate values into the destination buffer |
| __m256i *const p = (__m256i *)&dst[i * dst_stride + j]; |
| if (do_average) { |
| _mm256_storeu_si256( |
| p + 0, _mm256_add_epi32(_mm256_loadu_si256(p + 0), res_a_round)); |
| if (w - j > 8) { |
| _mm256_storeu_si256( |
| p + 1, |
| _mm256_add_epi32(_mm256_loadu_si256(p + 1), res_b_round)); |
| } |
| } else { |
| _mm256_storeu_si256(p + 0, res_a_round); |
| if (w - j > 8) { |
| _mm256_storeu_si256(p + 1, res_b_round); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void av1_convolve_2d_sr_avx2(const uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, int w, int h, |
| InterpFilterParams *filter_params_x, |
| InterpFilterParams *filter_params_y, |
| const int subpel_x_q4, const int subpel_y_q4, |
| ConvolveParams *conv_params) { |
| const int bd = 8; |
| |
| DECLARE_ALIGNED(32, int16_t, |
| im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]); |
| int im_h = h + filter_params_y->taps - 1; |
| int im_stride = MAX_SB_SIZE; |
| int i, j; |
| const int fo_vert = filter_params_y->taps / 2 - 1; |
| const int fo_horiz = filter_params_x->taps / 2 - 1; |
| const uint8_t *const src_ptr = src - fo_vert * src_stride - fo_horiz; |
| |
| __m256i filt[4], s[4]; |
| |
| filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2); |
| filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2); |
| filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2); |
| filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2); |
| |
| /* Horizontal filter */ |
| { |
| const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( |
| *filter_params_x, subpel_x_q4 & SUBPEL_MASK); |
| |
| const __m128i coeffs_x8 = _mm_loadu_si128((__m128i *)x_filter); |
| // since not all compilers yet support _mm256_set_m128i() |
| const __m256i coeffs_x = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(coeffs_x8), coeffs_x8, 1); |
| |
| // right shift all filter co-efficients by 1 to reduce the bits required. |
| // This extra right shift will be taken care of at the end while rounding |
| // the result. |
| // Since all filter co-efficients are even, this change will not affect |
| // the end result |
| const __m256i coeffs_x_1 = _mm256_srai_epi16(coeffs_x, 1); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| const __m256i coeff_01 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0200u)); |
| // coeffs 2 3 2 3 2 3 2 3 |
| const __m256i coeff_23 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0604u)); |
| // coeffs 4 5 4 5 4 5 4 5 |
| const __m256i coeff_45 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0a08u)); |
| // coeffs 6 7 6 7 6 7 6 7 |
| const __m256i coeff_67 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0e0cu)); |
| |
| const __m256i round_const = |
| _mm256_set1_epi16(((1 << (conv_params->round_0 - 1)) >> 1) + |
| (1 << (bd + FILTER_BITS - 2))); |
| const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_0 - 1); |
| |
| for (i = 0; i < im_h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15 16 17 |
| // 18 19 20 21 22 23 |
| const __m256i data = _mm256_inserti128_si256( |
| _mm256_loadu_si256((__m256i *)&src_ptr[(i * src_stride) + j]), |
| _mm_loadu_si128((__m128i *)&src_ptr[(i * src_stride) + (j + 8)]), |
| 1); |
| |
| // filter the source buffer |
| s[0] = _mm256_shuffle_epi8(data, filt[0]); |
| s[1] = _mm256_shuffle_epi8(data, filt[1]); |
| s[2] = _mm256_shuffle_epi8(data, filt[2]); |
| s[3] = _mm256_shuffle_epi8(data, filt[3]); |
| |
| const __m256i res_0 = _mm256_maddubs_epi16(s[0], coeff_01); |
| const __m256i res_1 = _mm256_maddubs_epi16(s[1], coeff_23); |
| const __m256i res_2 = _mm256_maddubs_epi16(s[2], coeff_45); |
| const __m256i res_3 = _mm256_maddubs_epi16(s[3], coeff_67); |
| |
| const __m256i res_a = _mm256_add_epi16(res_0, res_2); |
| const __m256i res_b = _mm256_add_epi16(res_1, res_3); |
| |
| __m256i res = _mm256_add_epi16(res_a, res_b); |
| res = _mm256_sra_epi16(_mm256_add_epi16(res, round_const), round_shift); |
| |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| _mm256_storeu_si256((__m256i *)&im_block[i * im_stride + j], res); |
| } |
| } |
| } |
| |
| /* Vertical filter */ |
| { |
| const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( |
| *filter_params_y, subpel_y_q4 & SUBPEL_MASK); |
| |
| const __m128i coeffs_y8 = _mm_loadu_si128((__m128i *)y_filter); |
| const __m256i coeffs_y = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(coeffs_y8), coeffs_y8, 1); |
| |
| // coeffs 0 1 0 1 2 3 2 3 |
| const __m256i tmp_0 = _mm256_unpacklo_epi32(coeffs_y, coeffs_y); |
| // coeffs 4 5 4 5 6 7 6 7 |
| const __m256i tmp_1 = _mm256_unpackhi_epi32(coeffs_y, coeffs_y); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| const __m256i coeff_01 = _mm256_unpacklo_epi64(tmp_0, tmp_0); |
| // coeffs 2 3 2 3 2 3 2 3 |
| const __m256i coeff_23 = _mm256_unpackhi_epi64(tmp_0, tmp_0); |
| // coeffs 4 5 4 5 4 5 4 5 |
| const __m256i coeff_45 = _mm256_unpacklo_epi64(tmp_1, tmp_1); |
| // coeffs 6 7 6 7 6 7 6 7 |
| const __m256i coeff_67 = _mm256_unpackhi_epi64(tmp_1, tmp_1); |
| |
| const __m256i round_const = _mm256_set1_epi32( |
| ((1 << conv_params->round_1) >> 1) - |
| (1 << (bd + 2 * FILTER_BITS - conv_params->round_0 - 1)) + |
| ((1 << (2 * FILTER_BITS - conv_params->round_0)) >> 1)); |
| const __m128i round_shift = |
| _mm_cvtsi32_si128(2 * FILTER_BITS - conv_params->round_0); |
| |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| // Filter 0 1 2 3 8 9 10 11 |
| const int16_t *data = &im_block[i * im_stride + j]; |
| const __m256i src_0 = |
| _mm256_unpacklo_epi16(*(__m256i *)(data + 0 * im_stride), |
| *(__m256i *)(data + 1 * im_stride)); |
| const __m256i src_1 = |
| _mm256_unpacklo_epi16(*(__m256i *)(data + 2 * im_stride), |
| *(__m256i *)(data + 3 * im_stride)); |
| const __m256i src_2 = |
| _mm256_unpacklo_epi16(*(__m256i *)(data + 4 * im_stride), |
| *(__m256i *)(data + 5 * im_stride)); |
| const __m256i src_3 = |
| _mm256_unpacklo_epi16(*(__m256i *)(data + 6 * im_stride), |
| *(__m256i *)(data + 7 * im_stride)); |
| |
| const __m256i res_0 = _mm256_madd_epi16(src_0, coeff_01); |
| const __m256i res_1 = _mm256_madd_epi16(src_1, coeff_23); |
| const __m256i res_2 = _mm256_madd_epi16(src_2, coeff_45); |
| const __m256i res_3 = _mm256_madd_epi16(src_3, coeff_67); |
| |
| const __m256i res_a = _mm256_add_epi32(_mm256_add_epi32(res_0, res_1), |
| _mm256_add_epi32(res_2, res_3)); |
| |
| // Filter 4 5 6 7 12 13 14 15 |
| const __m256i src_4 = |
| _mm256_unpackhi_epi16(*(__m256i *)(data + 0 * im_stride), |
| *(__m256i *)(data + 1 * im_stride)); |
| const __m256i src_5 = |
| _mm256_unpackhi_epi16(*(__m256i *)(data + 2 * im_stride), |
| *(__m256i *)(data + 3 * im_stride)); |
| const __m256i src_6 = |
| _mm256_unpackhi_epi16(*(__m256i *)(data + 4 * im_stride), |
| *(__m256i *)(data + 5 * im_stride)); |
| const __m256i src_7 = |
| _mm256_unpackhi_epi16(*(__m256i *)(data + 6 * im_stride), |
| *(__m256i *)(data + 7 * im_stride)); |
| |
| const __m256i res_4 = _mm256_madd_epi16(src_4, coeff_01); |
| const __m256i res_5 = _mm256_madd_epi16(src_5, coeff_23); |
| const __m256i res_6 = _mm256_madd_epi16(src_6, coeff_45); |
| const __m256i res_7 = _mm256_madd_epi16(src_7, coeff_67); |
| |
| const __m256i res_b = _mm256_add_epi32(_mm256_add_epi32(res_4, res_5), |
| _mm256_add_epi32(res_6, res_7)); |
| |
| // Combine V round and 2F-H-V round into a single rounding |
| const __m256i res_a_round = |
| _mm256_sra_epi32(_mm256_add_epi32(res_a, round_const), round_shift); |
| const __m256i res_b_round = |
| _mm256_sra_epi32(_mm256_add_epi32(res_b, round_const), round_shift); |
| |
| /* rounding code */ |
| // 16 bit conversion |
| const __m256i res_16bit = _mm256_packs_epi32(res_a_round, res_b_round); |
| // 8 bit conversion and saturation to uint8 |
| __m256i res_8b = _mm256_packus_epi16(res_16bit, res_16bit); |
| res_8b = _mm256_permute4x64_epi64(res_8b, 216); |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| const __m128i res = _mm256_castsi256_si128(res_8b); |
| |
| // Store values into the destination buffer |
| __m128i *const p = (__m128i *)&dst[i * dst_stride + j]; |
| if (w - j > 8) { |
| _mm_storeu_si128(p, res); |
| } else if (w - j > 4) { |
| _mm_storel_epi64(p, res); |
| } else if (w == 4) { |
| xx_storel_32(&dst[i * dst_stride + j], res); |
| } else { |
| *(uint16_t *)p = _mm_cvtsi128_si32(res); |
| } |
| } |
| } |
| } |
| } |