| /* |
| * Copyright (c) 2017, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| |
| #include "./av1_rtcd.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/x86/convolve_avx2.h" |
| #include "aom_dsp/x86/synonyms.h" |
| |
| static const uint32_t sindex[8] = { 0, 4, 1, 5, 2, 6, 3, 7 }; |
| |
| // 16 epi16 pixels |
| static INLINE void pixel_clamp_avx2(__m256i *u, int bd) { |
| const __m256i one = _mm256_set1_epi16(1); |
| const __m256i max = _mm256_sub_epi16(_mm256_slli_epi16(one, bd), one); |
| __m256i clamped, mask; |
| |
| mask = _mm256_cmpgt_epi16(*u, max); |
| clamped = _mm256_andnot_si256(mask, *u); |
| mask = _mm256_and_si256(mask, max); |
| clamped = _mm256_or_si256(mask, clamped); |
| |
| const __m256i zero = _mm256_setzero_si256(); |
| mask = _mm256_cmpgt_epi16(clamped, zero); |
| *u = _mm256_and_si256(clamped, mask); |
| } |
| |
| // 8 epi16 pixels |
| static INLINE void pixel_clamp_sse2(__m128i *u, int bd) { |
| const __m128i one = _mm_set1_epi16(1); |
| const __m128i max = _mm_sub_epi16(_mm_slli_epi16(one, bd), one); |
| __m128i clamped, mask; |
| |
| mask = _mm_cmpgt_epi16(*u, max); |
| clamped = _mm_andnot_si128(mask, *u); |
| mask = _mm_and_si128(mask, max); |
| clamped = _mm_or_si128(mask, clamped); |
| |
| const __m128i zero = _mm_setzero_si128(); |
| mask = _mm_cmpgt_epi16(clamped, zero); |
| *u = _mm_and_si128(clamped, mask); |
| } |
| |
| // Work on multiple of 32 pixels |
| static INLINE void cal_rounding_32xn_avx2(const int32_t *src, uint8_t *dst, |
| const __m256i *rnd, int shift, |
| int num) { |
| do { |
| __m256i x0 = _mm256_loadu_si256((const __m256i *)src); |
| __m256i x1 = _mm256_loadu_si256((const __m256i *)src + 1); |
| __m256i x2 = _mm256_loadu_si256((const __m256i *)src + 2); |
| __m256i x3 = _mm256_loadu_si256((const __m256i *)src + 3); |
| |
| x0 = _mm256_add_epi32(x0, *rnd); |
| x1 = _mm256_add_epi32(x1, *rnd); |
| x2 = _mm256_add_epi32(x2, *rnd); |
| x3 = _mm256_add_epi32(x3, *rnd); |
| |
| x0 = _mm256_srai_epi32(x0, shift); |
| x1 = _mm256_srai_epi32(x1, shift); |
| x2 = _mm256_srai_epi32(x2, shift); |
| x3 = _mm256_srai_epi32(x3, shift); |
| |
| x0 = _mm256_packs_epi32(x0, x1); |
| x2 = _mm256_packs_epi32(x2, x3); |
| |
| pixel_clamp_avx2(&x0, 8); |
| pixel_clamp_avx2(&x2, 8); |
| |
| x0 = _mm256_packus_epi16(x0, x2); |
| x1 = _mm256_loadu_si256((const __m256i *)sindex); |
| x2 = _mm256_permutevar8x32_epi32(x0, x1); |
| |
| _mm256_storeu_si256((__m256i *)dst, x2); |
| src += 32; |
| dst += 32; |
| num--; |
| } while (num > 0); |
| } |
| |
| static INLINE void cal_rounding_16_avx2(const int32_t *src, uint8_t *dst, |
| const __m256i *rnd, int shift) { |
| __m256i x0 = _mm256_loadu_si256((const __m256i *)src); |
| __m256i x1 = _mm256_loadu_si256((const __m256i *)src + 1); |
| |
| x0 = _mm256_add_epi32(x0, *rnd); |
| x1 = _mm256_add_epi32(x1, *rnd); |
| |
| x0 = _mm256_srai_epi32(x0, shift); |
| x1 = _mm256_srai_epi32(x1, shift); |
| |
| x0 = _mm256_packs_epi32(x0, x1); |
| pixel_clamp_avx2(&x0, 8); |
| |
| const __m256i x2 = _mm256_packus_epi16(x0, x0); |
| x1 = _mm256_loadu_si256((const __m256i *)sindex); |
| x0 = _mm256_permutevar8x32_epi32(x2, x1); |
| |
| _mm_storeu_si128((__m128i *)dst, _mm256_castsi256_si128(x0)); |
| } |
| |
| static INLINE void cal_rounding_8_avx2(const int32_t *src, uint8_t *dst, |
| const __m256i *rnd, int shift) { |
| __m256i x0 = _mm256_loadu_si256((const __m256i *)src); |
| x0 = _mm256_add_epi32(x0, *rnd); |
| x0 = _mm256_srai_epi32(x0, shift); |
| |
| x0 = _mm256_packs_epi32(x0, x0); |
| pixel_clamp_avx2(&x0, 8); |
| |
| x0 = _mm256_packus_epi16(x0, x0); |
| const __m256i x1 = _mm256_loadu_si256((const __m256i *)sindex); |
| x0 = _mm256_permutevar8x32_epi32(x0, x1); |
| |
| _mm_storel_epi64((__m128i *)dst, _mm256_castsi256_si128(x0)); |
| } |
| |
| static INLINE void cal_rounding_4_sse2(const int32_t *src, uint8_t *dst, |
| const __m128i *rnd, int shift) { |
| __m128i x = _mm_loadu_si128((const __m128i *)src); |
| x = _mm_add_epi32(x, *rnd); |
| x = _mm_srai_epi32(x, shift); |
| |
| x = _mm_packs_epi32(x, x); |
| pixel_clamp_sse2(&x, 8); |
| |
| x = _mm_packus_epi16(x, x); |
| *(uint32_t *)dst = _mm_cvtsi128_si32(x); |
| } |
| |
| void av1_convolve_rounding_avx2(const int32_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int w, int h, |
| int bits) { |
| const __m256i rnd_num = _mm256_set1_epi32((int32_t)(1 << (bits - 1))); |
| const __m128i rnd_num_sse2 = _mm256_castsi256_si128(rnd_num); |
| |
| if (w > 64) { // width = 128 |
| do { |
| cal_rounding_32xn_avx2(src, dst, &rnd_num, bits, 4); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 32) { // width = 64 |
| do { |
| cal_rounding_32xn_avx2(src, dst, &rnd_num, bits, 2); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 16) { // width = 32 |
| do { |
| cal_rounding_32xn_avx2(src, dst, &rnd_num, bits, 1); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 8) { // width = 16 |
| do { |
| cal_rounding_16_avx2(src, dst, &rnd_num, bits); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 4) { // width = 8 |
| do { |
| cal_rounding_8_avx2(src, dst, &rnd_num, bits); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 2) { // width = 4 |
| do { |
| cal_rounding_4_sse2(src, dst, &rnd_num_sse2, bits); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else { // width = 2 |
| do { |
| dst[0] = clip_pixel(ROUND_POWER_OF_TWO(src[0], bits)); |
| dst[1] = clip_pixel(ROUND_POWER_OF_TWO(src[1], bits)); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } |
| } |
| |
| static INLINE void cal_highbd_rounding_32xn_avx2(const int32_t *src, |
| uint16_t *dst, |
| const __m256i *rnd, int shift, |
| int num, int bd) { |
| do { |
| __m256i x0 = _mm256_loadu_si256((const __m256i *)src); |
| __m256i x1 = _mm256_loadu_si256((const __m256i *)src + 1); |
| __m256i x2 = _mm256_loadu_si256((const __m256i *)src + 2); |
| __m256i x3 = _mm256_loadu_si256((const __m256i *)src + 3); |
| |
| x0 = _mm256_add_epi32(x0, *rnd); |
| x1 = _mm256_add_epi32(x1, *rnd); |
| x2 = _mm256_add_epi32(x2, *rnd); |
| x3 = _mm256_add_epi32(x3, *rnd); |
| |
| x0 = _mm256_srai_epi32(x0, shift); |
| x1 = _mm256_srai_epi32(x1, shift); |
| x2 = _mm256_srai_epi32(x2, shift); |
| x3 = _mm256_srai_epi32(x3, shift); |
| |
| x0 = _mm256_packs_epi32(x0, x1); |
| x2 = _mm256_packs_epi32(x2, x3); |
| |
| pixel_clamp_avx2(&x0, bd); |
| pixel_clamp_avx2(&x2, bd); |
| |
| x0 = _mm256_permute4x64_epi64(x0, 0xD8); |
| x2 = _mm256_permute4x64_epi64(x2, 0xD8); |
| |
| _mm256_storeu_si256((__m256i *)dst, x0); |
| _mm256_storeu_si256((__m256i *)(dst + 16), x2); |
| src += 32; |
| dst += 32; |
| num--; |
| } while (num > 0); |
| } |
| |
| static INLINE void cal_highbd_rounding_16_avx2(const int32_t *src, |
| uint16_t *dst, |
| const __m256i *rnd, int shift, |
| int bd) { |
| __m256i x0 = _mm256_loadu_si256((const __m256i *)src); |
| __m256i x1 = _mm256_loadu_si256((const __m256i *)src + 1); |
| |
| x0 = _mm256_add_epi32(x0, *rnd); |
| x1 = _mm256_add_epi32(x1, *rnd); |
| |
| x0 = _mm256_srai_epi32(x0, shift); |
| x1 = _mm256_srai_epi32(x1, shift); |
| |
| x0 = _mm256_packs_epi32(x0, x1); |
| pixel_clamp_avx2(&x0, bd); |
| |
| x0 = _mm256_permute4x64_epi64(x0, 0xD8); |
| _mm256_storeu_si256((__m256i *)dst, x0); |
| } |
| |
| static INLINE void cal_highbd_rounding_8_avx2(const int32_t *src, uint16_t *dst, |
| const __m256i *rnd, int shift, |
| int bd) { |
| __m256i x = _mm256_loadu_si256((const __m256i *)src); |
| x = _mm256_add_epi32(x, *rnd); |
| x = _mm256_srai_epi32(x, shift); |
| |
| x = _mm256_packs_epi32(x, x); |
| pixel_clamp_avx2(&x, bd); |
| |
| x = _mm256_permute4x64_epi64(x, 0xD8); |
| _mm_storeu_si128((__m128i *)dst, _mm256_castsi256_si128(x)); |
| } |
| |
| static INLINE void cal_highbd_rounding_4_sse2(const int32_t *src, uint16_t *dst, |
| const __m128i *rnd, int shift, |
| int bd) { |
| __m128i x = _mm_loadu_si128((const __m128i *)src); |
| x = _mm_add_epi32(x, *rnd); |
| x = _mm_srai_epi32(x, shift); |
| |
| x = _mm_packs_epi32(x, x); |
| pixel_clamp_sse2(&x, bd); |
| _mm_storel_epi64((__m128i *)dst, x); |
| } |
| |
| void av1_highbd_convolve_rounding_avx2(const int32_t *src, int src_stride, |
| uint8_t *dst8, int dst_stride, int w, |
| int h, int bits, int bd) { |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| const __m256i rnd_num = _mm256_set1_epi32((int32_t)(1 << (bits - 1))); |
| const __m128i rnd_num_sse2 = _mm256_castsi256_si128(rnd_num); |
| |
| if (w > 64) { // width = 128 |
| do { |
| cal_highbd_rounding_32xn_avx2(src, dst, &rnd_num, bits, 4, bd); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 32) { // width = 64 |
| do { |
| cal_highbd_rounding_32xn_avx2(src, dst, &rnd_num, bits, 2, bd); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 16) { // width = 32 |
| do { |
| cal_highbd_rounding_32xn_avx2(src, dst, &rnd_num, bits, 1, bd); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 8) { // width = 16 |
| do { |
| cal_highbd_rounding_16_avx2(src, dst, &rnd_num, bits, bd); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 4) { // width = 8 |
| do { |
| cal_highbd_rounding_8_avx2(src, dst, &rnd_num, bits, bd); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else if (w > 2) { // width = 4 |
| do { |
| cal_highbd_rounding_4_sse2(src, dst, &rnd_num_sse2, bits, bd); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } else { // width = 2 |
| do { |
| dst[0] = clip_pixel_highbd(ROUND_POWER_OF_TWO(src[0], bits), bd); |
| dst[1] = clip_pixel_highbd(ROUND_POWER_OF_TWO(src[1], bits), bd); |
| src += src_stride; |
| dst += dst_stride; |
| h--; |
| } while (h > 0); |
| } |
| } |
| |
| DECLARE_ALIGNED(32, static const uint8_t, g_shuf1[32]) = { |
| 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15, |
| 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 |
| }; |
| |
| void av1_convolve_y_avx2(const uint8_t *src, int src_stride, uint8_t *dst0, |
| int dst_stride0, int w, int h, |
| InterpFilterParams *filter_params_x, |
| InterpFilterParams *filter_params_y, |
| const int subpel_x_q4, const int subpel_y_q4, |
| ConvolveParams *conv_params) { |
| if (w < 16) { |
| av1_convolve_y_sse2(src, src_stride, dst0, dst_stride0, w, h, |
| filter_params_x, filter_params_y, subpel_x_q4, |
| subpel_y_q4, conv_params); |
| return; |
| } |
| { |
| CONV_BUF_TYPE *dst = conv_params->dst; |
| int dst_stride = conv_params->dst_stride; |
| int i, j; |
| const int fo_vert = filter_params_y->taps / 2 - 1; |
| const int do_average = conv_params->do_average; |
| const uint8_t *const src_ptr = src - fo_vert * src_stride; |
| const int bits = |
| FILTER_BITS - conv_params->round_0 - (conv_params->round_1 - 1); |
| const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( |
| *filter_params_y, subpel_y_q4 & SUBPEL_MASK); |
| const __m128i coeffs_y8 = _mm_loadu_si128((__m128i *)y_filter); |
| const __m256i coeffs_y = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(coeffs_y8), coeffs_y8, 1); |
| |
| (void)conv_params; |
| |
| // right shift all filter co-efficients by 1 to reduce the bits required. |
| // This extra right shift will be taken care of at the end while rounding |
| // the result. Since all filter co-efficients are even, this change will not |
| // affect the end result |
| const __m256i coeffs_y_1 = _mm256_srai_epi16(coeffs_y, 1); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| const __m256i coeff_01 = |
| _mm256_shuffle_epi8(coeffs_y_1, _mm256_set1_epi16(0x0200u)); |
| // coeffs 2 3 2 3 2 3 2 3 |
| const __m256i coeff_23 = |
| _mm256_shuffle_epi8(coeffs_y_1, _mm256_set1_epi16(0x0604u)); |
| // coeffs 4 5 4 5 4 5 4 5 |
| const __m256i coeff_45 = |
| _mm256_shuffle_epi8(coeffs_y_1, _mm256_set1_epi16(0x0a08u)); |
| // coeffs 6 7 6 7 6 7 6 7 |
| const __m256i coeff_67 = |
| _mm256_shuffle_epi8(coeffs_y_1, _mm256_set1_epi16(0x0e0cu)); |
| |
| const __m256i shuf = _mm256_load_si256((__m256i const *)g_shuf1); |
| |
| (void)filter_params_x; |
| (void)subpel_x_q4; |
| (void)dst0; |
| (void)dst_stride0; |
| |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| const uint8_t *data = &src_ptr[i * src_stride + j]; |
| // Load lines a and b. Line a to lower 128, line b to upper 128 |
| const __m256i src_01a = _mm256_permute2x128_si256( |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 0 * src_stride))), |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 1 * src_stride))), |
| 0x20); |
| const __m256i src_23a = _mm256_permute2x128_si256( |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 2 * src_stride))), |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 3 * src_stride))), |
| 0x20); |
| const __m256i src_45a = _mm256_permute2x128_si256( |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 4 * src_stride))), |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 5 * src_stride))), |
| 0x20); |
| const __m256i src_67a = _mm256_permute2x128_si256( |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 6 * src_stride))), |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 7 * src_stride))), |
| 0x20); |
| |
| // Permute across lanes. (a_lo a_hi b_lo b_hi -> a_lo b_lo a_hi b_hi) |
| const __m256i src_01b = _mm256_permute4x64_epi64(src_01a, 0xd8); |
| const __m256i src_23b = _mm256_permute4x64_epi64(src_23a, 0xd8); |
| const __m256i src_45b = _mm256_permute4x64_epi64(src_45a, 0xd8); |
| const __m256i src_67b = _mm256_permute4x64_epi64(src_67a, 0xd8); |
| // Interleave a and b within lanes. |
| const __m256i src_01 = _mm256_shuffle_epi8(src_01b, shuf); |
| const __m256i src_23 = _mm256_shuffle_epi8(src_23b, shuf); |
| const __m256i src_45 = _mm256_shuffle_epi8(src_45b, shuf); |
| const __m256i src_67 = _mm256_shuffle_epi8(src_67b, shuf); |
| |
| // Filter source pixels |
| const __m256i res_01 = _mm256_maddubs_epi16(src_01, coeff_01); |
| const __m256i res_23 = _mm256_maddubs_epi16(src_23, coeff_23); |
| const __m256i res_45 = _mm256_maddubs_epi16(src_45, coeff_45); |
| const __m256i res_67 = _mm256_maddubs_epi16(src_67, coeff_67); |
| |
| // order: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| __m256i res = _mm256_add_epi16(_mm256_add_epi16(res_01, res_45), |
| _mm256_add_epi16(res_23, res_67)); |
| |
| const __m256i res_01_32b = |
| _mm256_cvtepi16_epi32(_mm256_castsi256_si128(res)); |
| const __m256i res_23_32b = |
| _mm256_cvtepi16_epi32(_mm256_extracti128_si256(res, 1)); |
| |
| const __m256i res_01_shift = _mm256_slli_epi32(res_01_32b, bits); |
| const __m256i res_23_shift = _mm256_slli_epi32(res_23_32b, bits); |
| |
| // Accumulate values into the destination buffer |
| __m256i *const p = (__m256i *)&dst[i * dst_stride + j]; |
| if (do_average) { |
| const __m256i dst_lo = _mm256_loadu_si256(p + 0); |
| const __m256i dst_hi = _mm256_loadu_si256(p + 1); |
| const __m256i res_lo = _mm256_add_epi32(dst_lo, res_01_shift); |
| const __m256i res_hi = _mm256_add_epi32(dst_hi, res_23_shift); |
| _mm256_storeu_si256(p + 0, res_lo); |
| if (w - j > 8) { |
| _mm256_storeu_si256(p + 1, res_hi); |
| } |
| } else { |
| _mm256_storeu_si256(p + 0, res_01_shift); |
| if (w - j > 8) { |
| _mm256_storeu_si256(p + 1, res_23_shift); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void av1_convolve_y_sr_avx2(const uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, int w, int h, |
| InterpFilterParams *filter_params_x, |
| InterpFilterParams *filter_params_y, |
| const int subpel_x_q4, const int subpel_y_q4, |
| ConvolveParams *conv_params) { |
| if (w < 16) { |
| av1_convolve_y_sr_sse2(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_q4, |
| subpel_y_q4, conv_params); |
| return; |
| } |
| { |
| int i, j; |
| const int fo_vert = filter_params_y->taps / 2 - 1; |
| const uint8_t *const src_ptr = src - fo_vert * src_stride; |
| const int16_t *y_filter = av1_get_interp_filter_subpel_kernel( |
| *filter_params_y, subpel_y_q4 & SUBPEL_MASK); |
| const __m128i coeffs_y8 = _mm_loadu_si128((__m128i *)y_filter); |
| const __m256i coeffs_y = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(coeffs_y8), coeffs_y8, 1); |
| // right shift is F-1 because we are already dividing |
| // filter co-efficients by 2 |
| const int right_shift_bits = (FILTER_BITS - 1); |
| const __m128i right_shift = _mm_cvtsi32_si128(right_shift_bits); |
| const __m256i right_shift_const = |
| _mm256_set1_epi16((1 << right_shift_bits) >> 1); |
| |
| // right shift all filter co-efficients by 1 to reduce the bits required. |
| // This extra right shift will be taken care of at the end while rounding |
| // the result. |
| // Since all filter co-efficients are even, this change will not affect the |
| // end result |
| const __m256i coeffs_y_1 = _mm256_srai_epi16(coeffs_y, 1); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| const __m256i coeff_01 = |
| _mm256_shuffle_epi8(coeffs_y_1, _mm256_set1_epi16(0x0200u)); |
| // coeffs 2 3 2 3 2 3 2 3 |
| const __m256i coeff_23 = |
| _mm256_shuffle_epi8(coeffs_y_1, _mm256_set1_epi16(0x0604u)); |
| // coeffs 4 5 4 5 4 5 4 5 |
| const __m256i coeff_45 = |
| _mm256_shuffle_epi8(coeffs_y_1, _mm256_set1_epi16(0x0a08u)); |
| // coeffs 6 7 6 7 6 7 6 7 |
| const __m256i coeff_67 = |
| _mm256_shuffle_epi8(coeffs_y_1, _mm256_set1_epi16(0x0e0cu)); |
| |
| const __m256i shuf = _mm256_load_si256((__m256i const *)g_shuf1); |
| |
| (void)filter_params_x; |
| (void)subpel_x_q4; |
| |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| const uint8_t *data = &src_ptr[i * src_stride + j]; |
| // Load lines a and b. Line a to lower 128, line b to upper 128 |
| const __m256i src_01a = _mm256_permute2x128_si256( |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 0 * src_stride))), |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 1 * src_stride))), |
| 0x20); |
| const __m256i src_23a = _mm256_permute2x128_si256( |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 2 * src_stride))), |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 3 * src_stride))), |
| 0x20); |
| const __m256i src_45a = _mm256_permute2x128_si256( |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 4 * src_stride))), |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 5 * src_stride))), |
| 0x20); |
| const __m256i src_67a = _mm256_permute2x128_si256( |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 6 * src_stride))), |
| _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(data + 7 * src_stride))), |
| 0x20); |
| |
| // Permute across lanes. (a_lo a_hi b_lo b_hi -> a_lo b_lo a_hi b_hi) |
| const __m256i src_01b = _mm256_permute4x64_epi64(src_01a, 0xd8); |
| const __m256i src_23b = _mm256_permute4x64_epi64(src_23a, 0xd8); |
| const __m256i src_45b = _mm256_permute4x64_epi64(src_45a, 0xd8); |
| const __m256i src_67b = _mm256_permute4x64_epi64(src_67a, 0xd8); |
| // Interleave a and b within lanes. |
| const __m256i src_01 = _mm256_shuffle_epi8(src_01b, shuf); |
| const __m256i src_23 = _mm256_shuffle_epi8(src_23b, shuf); |
| const __m256i src_45 = _mm256_shuffle_epi8(src_45b, shuf); |
| const __m256i src_67 = _mm256_shuffle_epi8(src_67b, shuf); |
| |
| // Filter source pixels |
| const __m256i res_01 = _mm256_maddubs_epi16(src_01, coeff_01); |
| const __m256i res_23 = _mm256_maddubs_epi16(src_23, coeff_23); |
| const __m256i res_45 = _mm256_maddubs_epi16(src_45, coeff_45); |
| const __m256i res_67 = _mm256_maddubs_epi16(src_67, coeff_67); |
| |
| // order: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| __m256i res_16b = _mm256_add_epi16(_mm256_add_epi16(res_01, res_45), |
| _mm256_add_epi16(res_23, res_67)); |
| |
| /* rounding code */ |
| // shift by F - 1 |
| __m256i res_16b_shift = _mm256_sra_epi16( |
| _mm256_add_epi16(res_16b, right_shift_const), right_shift); |
| // 8 bit conversion and saturation to uint8 |
| __m256i res_8b = _mm256_packus_epi16(res_16b_shift, res_16b_shift); |
| res_8b = _mm256_permute4x64_epi64(res_8b, 216); |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| __m128i res = _mm256_castsi256_si128(res_8b); |
| |
| // Store values into the destination buffer |
| if (w - j > 8) { |
| _mm_storeu_si128((__m128i *)&dst[i * dst_stride + j], res); |
| } else if (w - j > 4) { |
| _mm_storel_epi64((__m128i *)&dst[i * dst_stride + j], res); |
| } else { |
| xx_storel_32(&dst[i * dst_stride + j], res); |
| } |
| } |
| } |
| } |
| } |
| |
| void av1_convolve_x_avx2(const uint8_t *src, int src_stride, uint8_t *dst0, |
| int dst_stride0, int w, int h, |
| InterpFilterParams *filter_params_x, |
| InterpFilterParams *filter_params_y, |
| const int subpel_x_q4, const int subpel_y_q4, |
| ConvolveParams *conv_params) { |
| CONV_BUF_TYPE *dst = conv_params->dst; |
| int dst_stride = conv_params->dst_stride; |
| int i, j; |
| const int fo_horiz = filter_params_x->taps / 2 - 1; |
| const int do_average = conv_params->do_average; |
| const uint8_t *const src_ptr = src - fo_horiz; |
| const int bits = FILTER_BITS - conv_params->round_1; |
| |
| __m256i filt[4], s[4]; |
| |
| filt[0] = _mm256_loadu_si256((__m256i const *)filt1_global_avx2); |
| filt[1] = _mm256_loadu_si256((__m256i const *)filt2_global_avx2); |
| filt[2] = _mm256_loadu_si256((__m256i const *)filt3_global_avx2); |
| filt[3] = _mm256_loadu_si256((__m256i const *)filt4_global_avx2); |
| |
| const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( |
| *filter_params_x, subpel_x_q4 & SUBPEL_MASK); |
| |
| const __m128i coeffs_x8 = _mm_loadu_si128((__m128i *)x_filter); |
| // since not all compilers yet support _mm256_set_m128i() |
| const __m256i coeffs_x = |
| _mm256_insertf128_si256(_mm256_castsi128_si256(coeffs_x8), coeffs_x8, 1); |
| |
| // right shift all filter co-efficients by 1 to reduce the bits required. |
| // This extra right shift will be taken care of at the end while rounding the |
| // result. |
| // Since all filter co-efficients are even, this change will not affect the |
| // end result |
| const __m256i coeffs_x_1 = _mm256_srai_epi16(coeffs_x, 1); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| const __m256i coeff_01 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0200u)); |
| // coeffs 2 3 2 3 2 3 2 3 |
| const __m256i coeff_23 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0604u)); |
| // coeffs 4 5 4 5 4 5 4 5 |
| const __m256i coeff_45 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0a08u)); |
| // coeffs 6 7 6 7 6 7 6 7 |
| const __m256i coeff_67 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0e0cu)); |
| |
| const __m256i round_const = |
| _mm256_set1_epi16((1 << (conv_params->round_0 - 1)) >> 1); |
| const __m128i round_shift = _mm_cvtsi32_si128(conv_params->round_0 - 1); |
| |
| (void)filter_params_y; |
| (void)subpel_y_q4; |
| (void)dst0; |
| (void)dst_stride0; |
| |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15 16 17 18 19 |
| // 20 21 22 23 |
| const __m256i data = _mm256_permute4x64_epi64( |
| _mm256_loadu_si256((__m256i *)&src_ptr[i * src_stride + j]), |
| _MM_SHUFFLE(2, 1, 1, 0)); |
| |
| // filter the source buffer |
| s[0] = _mm256_shuffle_epi8(data, filt[0]); |
| s[1] = _mm256_shuffle_epi8(data, filt[1]); |
| s[2] = _mm256_shuffle_epi8(data, filt[2]); |
| s[3] = _mm256_shuffle_epi8(data, filt[3]); |
| |
| const __m256i res_0 = _mm256_maddubs_epi16(s[0], coeff_01); |
| const __m256i res_1 = _mm256_maddubs_epi16(s[1], coeff_23); |
| const __m256i res_2 = _mm256_maddubs_epi16(s[2], coeff_45); |
| const __m256i res_3 = _mm256_maddubs_epi16(s[3], coeff_67); |
| |
| const __m256i res_a = _mm256_add_epi16(res_0, res_2); |
| const __m256i res_b = _mm256_add_epi16(res_1, res_3); |
| |
| __m256i res = _mm256_add_epi16(res_a, res_b); |
| res = _mm256_sra_epi16(_mm256_add_epi16(res, round_const), round_shift); |
| |
| const __m256i res_lo_round = |
| _mm256_cvtepi16_epi32(_mm256_castsi256_si128(res)); |
| const __m256i res_hi_round = |
| _mm256_cvtepi16_epi32(_mm256_extracti128_si256(res, 1)); |
| |
| const __m256i res_lo_shift = _mm256_slli_epi32(res_lo_round, bits); |
| const __m256i res_hi_shift = _mm256_slli_epi32(res_hi_round, bits); |
| |
| // Accumulate values into the destination buffer |
| __m256i *const p = (__m256i *)&dst[i * dst_stride + j]; |
| if (do_average) { |
| const __m256i dst_lo = _mm256_loadu_si256(p + 0); |
| const __m256i dst_hi = _mm256_loadu_si256(p + 1); |
| const __m256i res_lo = _mm256_add_epi32(dst_lo, res_lo_shift); |
| const __m256i res_hi = _mm256_add_epi32(dst_hi, res_hi_shift); |
| _mm256_storeu_si256(p + 0, res_lo); |
| if (w - j > 8) { |
| _mm256_storeu_si256(p + 1, res_hi); |
| } |
| } else { |
| _mm256_storeu_si256(p + 0, res_lo_shift); |
| if (w - j > 8) { |
| _mm256_storeu_si256(p + 1, res_hi_shift); |
| } |
| } |
| } |
| } |
| } |
| |
| void av1_convolve_x_sr_avx2(const uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, int w, int h, |
| InterpFilterParams *filter_params_x, |
| InterpFilterParams *filter_params_y, |
| const int subpel_x_q4, const int subpel_y_q4, |
| ConvolveParams *conv_params) { |
| if (w < 4) { |
| av1_convolve_x_sr_sse2(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_q4, |
| subpel_y_q4, conv_params); |
| return; |
| } |
| { |
| int i, j; |
| const int fo_horiz = filter_params_x->taps / 2 - 1; |
| const uint8_t *const src_ptr = src - fo_horiz; |
| |
| __m256i filt[4], s[4]; |
| |
| filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2); |
| filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2); |
| filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2); |
| filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2); |
| |
| const int16_t *x_filter = av1_get_interp_filter_subpel_kernel( |
| *filter_params_x, subpel_x_q4 & SUBPEL_MASK); |
| |
| const __m128i coeffs_x8 = _mm_loadu_si128((__m128i *)x_filter); |
| // since not all compilers yet support _mm256_set_m128i() |
| const __m256i coeffs_x = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(coeffs_x8), coeffs_x8, 1); |
| |
| // right shift all filter co-efficients by 1 to reduce the bits required. |
| // This extra right shift will be taken care of at the end while rounding |
| // the result. |
| // Since all filter co-efficients are even, this change will not affect the |
| // end result |
| const __m256i coeffs_x_1 = _mm256_srai_epi16(coeffs_x, 1); |
| |
| // coeffs 0 1 0 1 0 1 0 1 |
| const __m256i coeff_01 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0200u)); |
| // coeffs 2 3 2 3 2 3 2 3 |
| const __m256i coeff_23 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0604u)); |
| // coeffs 4 5 4 5 4 5 4 5 |
| const __m256i coeff_45 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0a08u)); |
| // coeffs 6 7 6 7 6 7 6 7 |
| const __m256i coeff_67 = |
| _mm256_shuffle_epi8(coeffs_x_1, _mm256_set1_epi16(0x0e0cu)); |
| |
| const __m256i round_const = |
| _mm256_set1_epi16(((1 << (conv_params->round_0 - 1)) >> 1) + |
| ((1 << (FILTER_BITS - 1)) >> 1)); |
| const __m128i round_shift = _mm_cvtsi32_si128(FILTER_BITS - 1); |
| |
| (void)filter_params_y; |
| (void)subpel_y_q4; |
| |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; j += 16) { |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15 16 17 18 |
| // 19 20 21 22 23 |
| const __m256i data = _mm256_inserti128_si256( |
| _mm256_loadu_si256((__m256i *)&src_ptr[(i * src_stride) + j]), |
| _mm_loadu_si128((__m128i *)&src_ptr[(i * src_stride) + (j + 8)]), |
| 1); |
| |
| // filter the source buffer |
| s[0] = _mm256_shuffle_epi8(data, filt[0]); |
| s[1] = _mm256_shuffle_epi8(data, filt[1]); |
| s[2] = _mm256_shuffle_epi8(data, filt[2]); |
| s[3] = _mm256_shuffle_epi8(data, filt[3]); |
| |
| const __m256i res_0 = _mm256_maddubs_epi16(s[0], coeff_01); |
| const __m256i res_1 = _mm256_maddubs_epi16(s[1], coeff_23); |
| const __m256i res_2 = _mm256_maddubs_epi16(s[2], coeff_45); |
| const __m256i res_3 = _mm256_maddubs_epi16(s[3], coeff_67); |
| |
| const __m256i res_a = _mm256_add_epi16(res_0, res_2); |
| const __m256i res_b = _mm256_add_epi16(res_1, res_3); |
| |
| __m256i res_16b = _mm256_add_epi16(res_a, res_b); |
| // Combine V round and 2F-H-V round into a single rounding |
| res_16b = _mm256_sra_epi16(_mm256_add_epi16(res_16b, round_const), |
| round_shift); |
| |
| /* rounding code */ |
| // 8 bit conversion and saturation to uint8 |
| __m256i res_8b = _mm256_packus_epi16(res_16b, res_16b); |
| res_8b = _mm256_permute4x64_epi64(res_8b, 216); |
| // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| __m128i res = _mm256_castsi256_si128(res_8b); |
| |
| // Store values into the destination buffer |
| if (w - j > 8) { |
| _mm_storeu_si128((__m128i *)&dst[i * dst_stride + j], res); |
| } else if (w - j > 4) { |
| _mm_storel_epi64((__m128i *)&dst[i * dst_stride + j], res); |
| } else { |
| xx_storel_32(&dst[i * dst_stride + j], res); |
| } |
| } |
| } |
| } |
| } |