blob: 735b80625b70f9157f8e1a9c375c8ecd0f1c4198 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <tmmintrin.h>
#include "./av1_rtcd.h"
#include "av1/common/cfl.h"
#include "av1/common/x86/cfl_simd.h"
/**
* Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
* precise version of a box filter 4:2:0 pixel subsampling in Q3.
*
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
* active area is specified using width and height.
*
* Note: We don't need to worry about going over the active area, as long as we
* stay inside the CfL prediction buffer.
*/
static INLINE void cfl_luma_subsampling_420_lbd_ssse3(const uint8_t *input,
int input_stride,
int16_t *pred_buf_q3,
int width, int height) {
const __m128i twos = _mm_set1_epi8(2);
const int16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE;
const int luma_stride = input_stride << 1;
__m128i top, bot, next_top, next_bot, top_16x8, bot_16x8, next_top_16x8,
next_bot_16x8, sum_16x8, next_sum_16x8;
do {
if (width == 4) {
top = _mm_cvtsi32_si128(*((int *)input));
bot = _mm_cvtsi32_si128(*((int *)(input + input_stride)));
} else if (width == 8) {
top = _mm_loadl_epi64((__m128i *)input);
bot = _mm_loadl_epi64((__m128i *)(input + input_stride));
} else {
top = _mm_loadu_si128((__m128i *)input);
bot = _mm_loadu_si128((__m128i *)(input + input_stride));
if (width == 32) {
next_top = _mm_loadu_si128((__m128i *)(input + 16));
next_bot = _mm_loadu_si128((__m128i *)(input + 16 + input_stride));
}
}
top_16x8 = _mm_maddubs_epi16(top, twos);
bot_16x8 = _mm_maddubs_epi16(bot, twos);
sum_16x8 = _mm_add_epi16(top_16x8, bot_16x8);
if (width == 32) {
next_top_16x8 = _mm_maddubs_epi16(next_top, twos);
next_bot_16x8 = _mm_maddubs_epi16(next_bot, twos);
next_sum_16x8 = _mm_add_epi16(next_top_16x8, next_bot_16x8);
}
if (width == 4) {
*((int *)pred_buf_q3) = _mm_cvtsi128_si32(sum_16x8);
} else if (width == 8) {
_mm_storel_epi64((__m128i *)pred_buf_q3, sum_16x8);
} else {
_mm_storeu_si128((__m128i *)pred_buf_q3, sum_16x8);
if (width == 32) {
_mm_storeu_si128((__m128i *)(pred_buf_q3 + 8), next_sum_16x8);
}
}
input += luma_stride;
pred_buf_q3 += CFL_BUF_LINE;
} while (pred_buf_q3 < end);
}
CFL_GET_SUBSAMPLE_FUNCTION(ssse3)
static INLINE __m128i predict_unclipped(const __m128i *input, __m128i alpha_q12,
__m128i alpha_sign, __m128i dc_q0) {
__m128i ac_q3 = _mm_loadu_si128(input);
__m128i ac_sign = _mm_sign_epi16(alpha_sign, ac_q3);
__m128i scaled_luma_q0 = _mm_mulhrs_epi16(_mm_abs_epi16(ac_q3), alpha_q12);
scaled_luma_q0 = _mm_sign_epi16(scaled_luma_q0, ac_sign);
return _mm_add_epi16(scaled_luma_q0, dc_q0);
}
static INLINE void cfl_predict_lbd_ssse3(const int16_t *pred_buf_q3,
uint8_t *dst, int dst_stride,
int alpha_q3, int width, int height) {
const __m128i alpha_sign = _mm_set1_epi16(alpha_q3);
const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9);
const __m128i dc_q0 = _mm_set1_epi16(*dst);
__m128i *row = (__m128i *)pred_buf_q3;
const __m128i *row_end = row + height * CFL_BUF_LINE_I128;
do {
__m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
if (width < 16) {
res = _mm_packus_epi16(res, res);
if (width == 4)
*(uint32_t *)dst = _mm_cvtsi128_si32(res);
else
_mm_storel_epi64((__m128i *)dst, res);
} else {
__m128i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
res = _mm_packus_epi16(res, next);
_mm_storeu_si128((__m128i *)dst, res);
if (width == 32) {
res = predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0);
next = predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0);
res = _mm_packus_epi16(res, next);
_mm_storeu_si128((__m128i *)(dst + 16), res);
}
}
dst += dst_stride;
} while ((row += CFL_BUF_LINE_I128) < row_end);
}
CFL_PREDICT_FN(ssse3, lbd)
static INLINE __m128i highbd_max_epi16(int bd) {
const __m128i neg_one = _mm_set1_epi16(-1);
// (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd)
return _mm_xor_si128(_mm_slli_epi16(neg_one, bd), neg_one);
}
static INLINE __m128i highbd_clamp_epi16(__m128i u, __m128i zero, __m128i max) {
return _mm_max_epi16(_mm_min_epi16(u, max), zero);
}
static INLINE void cfl_predict_hbd(__m128i *dst, __m128i *src,
__m128i alpha_q12, __m128i alpha_sign,
__m128i dc_q0, __m128i max) {
__m128i res = predict_unclipped(src, alpha_q12, alpha_sign, dc_q0);
_mm_storeu_si128(dst, highbd_clamp_epi16(res, _mm_setzero_si128(), max));
}
static INLINE void cfl_predict_hbd_ssse3(const int16_t *pred_buf_q3,
uint16_t *dst, int dst_stride,
int alpha_q3, int bd, int width,
int height) {
const __m128i alpha_sign = _mm_set1_epi16(alpha_q3);
const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9);
const __m128i dc_q0 = _mm_set1_epi16(*dst);
const __m128i max = highbd_max_epi16(bd);
__m128i *row = (__m128i *)pred_buf_q3;
const __m128i *row_end = row + height * CFL_BUF_LINE_I128;
do {
if (width == 4) {
__m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
_mm_storel_epi64((__m128i *)dst,
highbd_clamp_epi16(res, _mm_setzero_si128(), max));
} else {
cfl_predict_hbd((__m128i *)dst, row, alpha_q12, alpha_sign, dc_q0, max);
}
if (width >= 16)
cfl_predict_hbd((__m128i *)(dst + 8), row + 1, alpha_q12, alpha_sign,
dc_q0, max);
if (width == 32) {
cfl_predict_hbd((__m128i *)(dst + 16), row + 2, alpha_q12, alpha_sign,
dc_q0, max);
cfl_predict_hbd((__m128i *)(dst + 24), row + 3, alpha_q12, alpha_sign,
dc_q0, max);
}
dst += dst_stride;
} while ((row += CFL_BUF_LINE_I128) < row_end);
}
CFL_PREDICT_FN(ssse3, hbd)