blob: 97ce6bab1fd2429bb8b770b4154f423496be79f3 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <string.h>
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#define MAX_BLOCK_WIDTH (MAX_SB_SIZE)
#define MAX_BLOCK_HEIGHT (MAX_SB_SIZE)
#define MAX_STEP (32)
#define MAX_FILTER_TAP (12)
void av1_convolve_horiz_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
ConvolveParams *conv_params) {
int x, y;
int filter_size = filter_params.taps;
src -= filter_size / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = subpel_x_q4;
for (x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params, x_q4 & SUBPEL_MASK);
int k, sum = 0;
for (k = 0; k < filter_size; ++k) sum += src_x[k] * x_filter[k];
if (conv_params->round == CONVOLVE_OPT_ROUND) {
sum = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
if (conv_params->ref)
dst[x] = ROUND_POWER_OF_TWO(dst[x] + sum, 1);
else
dst[x] = sum;
} else {
int tmp = conv_params->dst[y * conv_params->dst_stride + x];
if (conv_params->ref)
tmp = ROUND_POWER_OF_TWO(tmp + sum, 1);
else
tmp = sum;
conv_params->dst[y * conv_params->dst_stride + x] =
clamp(tmp, INT32_MIN, INT32_MAX);
}
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
void av1_convolve_vert_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
int x, y;
int filter_size = filter_params.taps;
src -= src_stride * (filter_size / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = subpel_y_q4;
for (y = 0; y < h; ++y) {
const uint8_t *const src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params, y_q4 & SUBPEL_MASK);
int k, sum = 0;
for (k = 0; k < filter_size; ++k)
sum += src_y[k * src_stride] * y_filter[k];
if (conv_params->round == CONVOLVE_OPT_ROUND) {
sum = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
if (conv_params->ref)
dst[y * dst_stride] =
ROUND_POWER_OF_TWO(dst[y * dst_stride] + sum, 1);
else
dst[y * dst_stride] = sum;
} else {
int tmp = conv_params->dst[y * conv_params->dst_stride + x];
if (conv_params->ref)
tmp = ROUND_POWER_OF_TWO(tmp + sum, 1);
else
tmp = sum;
conv_params->dst[y * conv_params->dst_stride + x] =
clamp(tmp, INT32_MIN, INT32_MAX);
}
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve_copy(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
ConvolveParams *conv_params) {
if (conv_params->ref == 0) {
int r, c;
for (r = 0; r < h; ++r) {
if (conv_params->round == CONVOLVE_OPT_ROUND) {
memcpy(dst, src, w);
} else {
for (c = 0; c < w; ++c)
conv_params->dst[r * conv_params->dst_stride + c] = ((uint16_t)src[c])
<< FILTER_BITS;
}
src += src_stride;
dst += dst_stride;
}
} else {
int r, c;
for (r = 0; r < h; ++r) {
for (c = 0; c < w; ++c) {
if (conv_params->round == CONVOLVE_OPT_ROUND) {
dst[c] = clip_pixel(ROUND_POWER_OF_TWO(dst[c] + src[c], 1));
} else {
int tmp = conv_params->dst[r * conv_params->dst_stride + c];
tmp = ROUND_POWER_OF_TWO(tmp + (((int32_t)src[c]) << FILTER_BITS), 1);
conv_params->dst[r * conv_params->dst_stride + c] =
clamp(tmp, INT32_MIN, INT32_MAX);
}
}
src += src_stride;
dst += dst_stride;
}
}
}
void av1_convolve_horiz_facade(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
ConvolveParams *conv_params) {
if (filter_params.taps == SUBPEL_TAPS &&
conv_params->round == CONVOLVE_OPT_ROUND) {
const int16_t *filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4);
if (conv_params->ref == 0)
aom_convolve8_horiz(src, src_stride, dst, dst_stride, filter_x, x_step_q4,
NULL, -1, w, h);
else
aom_convolve8_avg_horiz(src, src_stride, dst, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h);
} else {
if (conv_params->round == CONVOLVE_OPT_ROUND) {
av1_convolve_horiz(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_x_q4, x_step_q4, conv_params);
} else {
// TODO(angiebird) need SIMD implementation here
av1_convolve_horiz_c(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_x_q4, x_step_q4, conv_params);
}
}
}
void av1_convolve_vert_facade(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
if (filter_params.taps == SUBPEL_TAPS &&
conv_params->round == CONVOLVE_OPT_ROUND) {
const int16_t *filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4);
if (conv_params->ref == 0) {
aom_convolve8_vert(src, src_stride, dst, dst_stride, NULL, -1, filter_y,
y_step_q4, w, h);
} else {
aom_convolve8_avg_vert(src, src_stride, dst, dst_stride, NULL, -1,
filter_y, y_step_q4, w, h);
}
} else {
if (conv_params->round == CONVOLVE_OPT_ROUND) {
av1_convolve_vert(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_y_q4, y_step_q4, conv_params);
} else {
// TODO(angiebird) need SIMD implementation here
av1_convolve_vert_c(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_y_q4, y_step_q4, conv_params);
}
}
}
#if CONFIG_CONVOLVE_ROUND
void av1_convolve_rounding(const int32_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h, int bits) {
int r, c;
for (r = 0; r < h; ++r) {
for (c = 0; c < w; ++c) {
dst[r * dst_stride + c] =
clip_pixel(ROUND_POWER_OF_TWO_SIGNED(src[r * src_stride + c], bits));
}
}
}
void av1_convolve_2d(const uint8_t *src, int src_stride, CONV_BUF_TYPE *dst,
int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y, const int subpel_x_q4,
const int subpel_y_q4, ConvolveParams *conv_params) {
int x, y, k;
CONV_BUF_TYPE im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
(void)conv_params;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (y = 0; y < im_h; ++y) {
for (x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 0;
for (k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO_SIGNED(sum, conv_params->round_0);
}
}
// vertical filter
CONV_BUF_TYPE *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 0;
for (k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
dst[y * dst_stride + x] +=
ROUND_POWER_OF_TWO_SIGNED(sum, conv_params->round_1);
}
}
}
void av1_convolve_2d_facade(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilter *interp_filter,
const int subpel_x_q4, int x_step_q4,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
(void)x_step_q4;
(void)y_step_q4;
(void)dst;
(void)dst_stride;
InterpFilterParams filter_params_x =
av1_get_interp_filter_params(interp_filter[1 + 2 * conv_params->ref]);
InterpFilterParams filter_params_y =
av1_get_interp_filter_params(interp_filter[0 + 2 * conv_params->ref]);
av1_convolve_2d(src, src_stride, conv_params->dst, conv_params->dst_stride, w,
h, &filter_params_x, &filter_params_y, subpel_x_q4,
subpel_y_q4, conv_params);
}
#endif // CONFIG_CONVOLVE_ROUND
void av1_convolve(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
const int subpel_x_q4, int x_step_q4, const int subpel_y_q4,
int y_step_q4, ConvolveParams *conv_params) {
int ignore_horiz = x_step_q4 == 16 && subpel_x_q4 == 0;
int ignore_vert = y_step_q4 == 16 && subpel_y_q4 == 0;
#if CONFIG_DUAL_FILTER
InterpFilterParams filter_params_x =
av1_get_interp_filter_params(interp_filter[1 + 2 * conv_params->ref]);
InterpFilterParams filter_params_y =
av1_get_interp_filter_params(interp_filter[0 + 2 * conv_params->ref]);
InterpFilterParams filter_params;
#else
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
assert(w <= MAX_BLOCK_WIDTH);
assert(h <= MAX_BLOCK_HEIGHT);
assert(y_step_q4 <= MAX_STEP);
assert(x_step_q4 <= MAX_STEP);
if (ignore_horiz && ignore_vert) {
convolve_copy(src, src_stride, dst, dst_stride, w, h, conv_params);
} else if (ignore_vert) {
#if CONFIG_DUAL_FILTER
filter_params = filter_params_x;
#endif
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_convolve_horiz_facade(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_x_q4, x_step_q4,
conv_params);
} else if (ignore_horiz) {
#if CONFIG_DUAL_FILTER
filter_params = filter_params_y;
#endif
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_convolve_vert_facade(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_y_q4, y_step_q4,
conv_params);
} else {
// temp's size is set to a 256 aligned value to facilitate SIMD
// implementation. The value is greater than (maximum possible intermediate
// height or width) * MAX_SB_SIZE
DECLARE_ALIGNED(16, uint8_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
int max_intermediate_size = ((MAX_SB_SIZE * 2 + 16) + 16);
int filter_size;
#if CONFIG_DUAL_FILTER
if (interp_filter[0 + 2 * conv_params->ref] == MULTITAP_SHARP &&
interp_filter[1 + 2 * conv_params->ref] == MULTITAP_SHARP) {
// Avoid two directions both using 12-tap filter.
// This will reduce hardware implementation cost.
filter_params_y = av1_get_interp_filter_params(EIGHTTAP_SHARP);
}
// we do filter with fewer taps first to reduce hardware implementation
// complexity
if (filter_params_y.taps < filter_params_x.taps) {
int intermediate_width;
int temp_stride = max_intermediate_size;
ConvolveParams temp_conv_params;
temp_conv_params.ref = 0;
temp_conv_params.round = CONVOLVE_OPT_ROUND;
filter_params = filter_params_y;
filter_size = filter_params_x.taps;
intermediate_width =
(((w - 1) * x_step_q4 + subpel_x_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_width <= max_intermediate_size);
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_convolve_vert_facade(src - (filter_size / 2 - 1), src_stride, temp,
temp_stride, intermediate_width, h,
filter_params, subpel_y_q4, y_step_q4,
&temp_conv_params);
filter_params = filter_params_x;
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_convolve_horiz_facade(temp + (filter_size / 2 - 1), temp_stride, dst,
dst_stride, w, h, filter_params, subpel_x_q4,
x_step_q4, conv_params);
} else
#endif // CONFIG_DUAL_FILTER
{
int intermediate_height;
int temp_stride = MAX_SB_SIZE;
ConvolveParams temp_conv_params;
temp_conv_params.ref = 0;
temp_conv_params.round = CONVOLVE_OPT_ROUND;
#if CONFIG_DUAL_FILTER
filter_params = filter_params_x;
filter_size = filter_params_y.taps;
#else
filter_size = filter_params.taps;
#endif
intermediate_height =
(((h - 1) * y_step_q4 + subpel_y_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_height <= max_intermediate_size);
(void)max_intermediate_size;
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_convolve_horiz_facade(src - src_stride * (filter_size / 2 - 1),
src_stride, temp, temp_stride, w,
intermediate_height, filter_params, subpel_x_q4,
x_step_q4, &temp_conv_params);
#if CONFIG_DUAL_FILTER
filter_params = filter_params_y;
#endif
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_convolve_vert_facade(
temp + temp_stride * (filter_size / 2 - 1), temp_stride, dst,
dst_stride, w, h, filter_params, subpel_y_q4, y_step_q4, conv_params);
}
}
}
void av1_convolve_init_c(void) {
// A placeholder for SIMD initialization
return;
}
#if CONFIG_AOM_HIGHBITDEPTH
void av1_highbd_convolve_horiz_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4, int avg,
int bd) {
int x, y;
int filter_size = filter_params.taps;
src -= filter_size / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = subpel_x_q4;
for (x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params, x_q4 & SUBPEL_MASK);
int k, sum = 0;
for (k = 0; k < filter_size; ++k) sum += src_x[k] * x_filter[k];
if (avg)
dst[x] = ROUND_POWER_OF_TWO(
dst[x] +
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
else
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
void av1_highbd_convolve_vert_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4, int avg,
int bd) {
int x, y;
int filter_size = filter_params.taps;
src -= src_stride * (filter_size / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = subpel_y_q4;
for (y = 0; y < h; ++y) {
const uint16_t *const src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params, y_q4 & SUBPEL_MASK);
int k, sum = 0;
for (k = 0; k < filter_size; ++k)
sum += src_y[k * src_stride] * y_filter[k];
if (avg) {
dst[y * dst_stride] = ROUND_POWER_OF_TWO(
dst[y * dst_stride] +
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
} else {
dst[y * dst_stride] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
}
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void highbd_convolve_copy(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
int avg, int bd) {
if (avg == 0) {
int r;
for (r = 0; r < h; ++r) {
memcpy(dst, src, w * sizeof(*src));
src += src_stride;
dst += dst_stride;
}
} else {
int r, c;
for (r = 0; r < h; ++r) {
for (c = 0; c < w; ++c) {
dst[c] = clip_pixel_highbd(ROUND_POWER_OF_TWO(dst[c] + src[c], 1), bd);
}
src += src_stride;
dst += dst_stride;
}
}
}
void av1_highbd_convolve_horiz_facade(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int w,
int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
int avg, int bd) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4);
if (avg == 0)
aom_highbd_convolve8_horiz(src8, src_stride, dst8, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h, bd);
else
aom_highbd_convolve8_avg_horiz(src8, src_stride, dst8, dst_stride,
filter_x, x_step_q4, NULL, -1, w, h, bd);
} else {
av1_highbd_convolve_horiz(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_x_q4, x_step_q4, avg, bd);
}
}
void av1_highbd_convolve_vert_facade(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int w,
int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
int avg, int bd) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4);
if (avg == 0) {
aom_highbd_convolve8_vert(src8, src_stride, dst8, dst_stride, NULL, -1,
filter_y, y_step_q4, w, h, bd);
} else {
aom_highbd_convolve8_avg_vert(src8, src_stride, dst8, dst_stride, NULL,
-1, filter_y, y_step_q4, w, h, bd);
}
} else {
av1_highbd_convolve_vert(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_y_q4, y_step_q4, avg, bd);
}
}
void av1_highbd_convolve(const uint8_t *src8, int src_stride, uint8_t *dst8,
int dst_stride, int w, int h,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
const int subpel_x_q4, int x_step_q4,
const int subpel_y_q4, int y_step_q4, int ref_idx,
int bd) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
int ignore_horiz = x_step_q4 == 16 && subpel_x_q4 == 0;
int ignore_vert = y_step_q4 == 16 && subpel_y_q4 == 0;
assert(w <= MAX_BLOCK_WIDTH);
assert(h <= MAX_BLOCK_HEIGHT);
assert(y_step_q4 <= MAX_STEP);
assert(x_step_q4 <= MAX_STEP);
if (ignore_horiz && ignore_vert) {
highbd_convolve_copy(src, src_stride, dst, dst_stride, w, h, ref_idx, bd);
} else if (ignore_vert) {
#if CONFIG_DUAL_FILTER
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter[1 + 2 * ref_idx]);
#else
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
av1_highbd_convolve_horiz_facade(src8, src_stride, dst8, dst_stride, w, h,
filter_params, subpel_x_q4, x_step_q4,
ref_idx, bd);
} else if (ignore_horiz) {
#if CONFIG_DUAL_FILTER
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter[0 + 2 * ref_idx]);
#else
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
av1_highbd_convolve_vert_facade(src8, src_stride, dst8, dst_stride, w, h,
filter_params, subpel_y_q4, y_step_q4,
ref_idx, bd);
} else {
// temp's size is set to a 256 aligned value to facilitate SIMD
// implementation. The value is greater than (maximum possible intermediate
// height or width) * MAX_SB_SIZE
DECLARE_ALIGNED(16, uint16_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
uint8_t *temp8 = CONVERT_TO_BYTEPTR(temp);
int max_intermediate_size = ((MAX_SB_SIZE * 2 + 16) + 16);
int filter_size;
InterpFilterParams filter_params;
#if CONFIG_DUAL_FILTER
InterpFilterParams filter_params_x =
av1_get_interp_filter_params(interp_filter[1 + 2 * ref_idx]);
InterpFilterParams filter_params_y =
av1_get_interp_filter_params(interp_filter[0 + 2 * ref_idx]);
if (interp_filter[0 + 2 * ref_idx] == MULTITAP_SHARP &&
interp_filter[1 + 2 * ref_idx] == MULTITAP_SHARP) {
// Avoid two directions both using 12-tap filter.
// This will reduce hardware implementation cost.
filter_params_y = av1_get_interp_filter_params(EIGHTTAP_SHARP);
}
#endif
#if CONFIG_DUAL_FILTER
if (filter_params_y.taps < filter_params_x.taps) {
int intermediate_width;
int temp_stride = max_intermediate_size;
filter_params = filter_params_y;
filter_size = filter_params_x.taps;
intermediate_width =
(((w - 1) * x_step_q4 + subpel_x_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_width <= max_intermediate_size);
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_highbd_convolve_vert_facade(
src8 - (filter_size / 2 - 1), src_stride, temp8, temp_stride,
intermediate_width, h, filter_params, subpel_y_q4, y_step_q4, 0, bd);
filter_params = filter_params_x;
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_highbd_convolve_horiz_facade(
temp8 + (filter_size / 2 - 1), temp_stride, dst8, dst_stride, w, h,
filter_params, subpel_x_q4, x_step_q4, ref_idx, bd);
} else
#endif // CONFIG_DUAL_FILTER
{
int intermediate_height;
int temp_stride = MAX_SB_SIZE;
#if CONFIG_DUAL_FILTER
filter_params = filter_params_x;
filter_size = filter_params_y.taps;
#else
filter_params = av1_get_interp_filter_params(interp_filter);
filter_size = filter_params.taps;
#endif
intermediate_height =
(((h - 1) * y_step_q4 + subpel_y_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_height <= max_intermediate_size);
(void)max_intermediate_size;
av1_highbd_convolve_horiz_facade(
src8 - src_stride * (filter_size / 2 - 1), src_stride, temp8,
temp_stride, w, intermediate_height, filter_params, subpel_x_q4,
x_step_q4, 0, bd);
#if CONFIG_DUAL_FILTER
filter_params = filter_params_y;
#endif
filter_size = filter_params.taps;
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_highbd_convolve_vert_facade(
temp8 + temp_stride * (filter_size / 2 - 1), temp_stride, dst8,
dst_stride, w, h, filter_params, subpel_y_q4, y_step_q4, ref_idx, bd);
}
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH