blob: d7def2b407514d5bff36bf55fd508f5fa21d07c1 [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <arm_neon.h>
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "aom_ports/mem.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/arm/highbd_convolve_neon.h"
static INLINE void highbd_convolve_y_sr_6tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *y_filter_ptr, const int bd) {
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
const int32x4_t zero_s32 = vdupq_n_s32(0);
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
uint16x4_t d0, d1, d2, d3;
uint16x8_t d01, d23;
const int16_t *s = (const int16_t *)(src_ptr + src_stride);
uint16_t *d = dst_ptr;
load_s16_4x5(s, src_stride, &s0, &s1, &s2, &s3, &s4);
s += 5 * src_stride;
do {
load_s16_4x4(s, src_stride, &s5, &s6, &s7, &s8);
d0 = highbd_convolve6_4_s32_s16(s0, s1, s2, s3, s4, s5, y_filter_0_7,
zero_s32);
d1 = highbd_convolve6_4_s32_s16(s1, s2, s3, s4, s5, s6, y_filter_0_7,
zero_s32);
d2 = highbd_convolve6_4_s32_s16(s2, s3, s4, s5, s6, s7, y_filter_0_7,
zero_s32);
d3 = highbd_convolve6_4_s32_s16(s3, s4, s5, s6, s7, s8, y_filter_0_7,
zero_s32);
d01 = vcombine_u16(d0, d1);
d23 = vcombine_u16(d2, d3);
d01 = vminq_u16(d01, max);
d23 = vminq_u16(d23, max);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u16q_2x1(d + 2 * dst_stride, d23, 0);
store_u16q_2x1(d + 3 * dst_stride, d23, 2);
}
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
if (h != 2) {
vst1_u16(d + 2 * dst_stride, vget_low_u16(d23));
vst1_u16(d + 3 * dst_stride, vget_high_u16(d23));
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
// if width is a multiple of 8 & height is a multiple of 4
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
uint16x8_t d0, d1, d2, d3;
do {
int height = h;
const int16_t *s = (const int16_t *)(src_ptr + src_stride);
uint16_t *d = dst_ptr;
load_s16_8x5(s, src_stride, &s0, &s1, &s2, &s3, &s4);
s += 5 * src_stride;
do {
load_s16_8x4(s, src_stride, &s5, &s6, &s7, &s8);
d0 = highbd_convolve6_8_s32_s16(s0, s1, s2, s3, s4, s5, y_filter_0_7,
zero_s32);
d1 = highbd_convolve6_8_s32_s16(s1, s2, s3, s4, s5, s6, y_filter_0_7,
zero_s32);
d2 = highbd_convolve6_8_s32_s16(s2, s3, s4, s5, s6, s7, y_filter_0_7,
zero_s32);
d3 = highbd_convolve6_8_s32_s16(s3, s4, s5, s6, s7, s8, y_filter_0_7,
zero_s32);
d0 = vminq_u16(d0, max);
d1 = vminq_u16(d1, max);
d2 = vminq_u16(d2, max);
d3 = vminq_u16(d3, max);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
static INLINE void highbd_convolve_y_sr_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *y_filter_ptr, int bd) {
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
const int32x4_t zero_s32 = vdupq_n_s32(0);
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint16x4_t d0, d1, d2, d3;
uint16x8_t d01, d23;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
d0 = highbd_convolve8_4_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7, y_filter,
zero_s32);
d1 = highbd_convolve8_4_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8, y_filter,
zero_s32);
d2 = highbd_convolve8_4_s32_s16(s2, s3, s4, s5, s6, s7, s8, s9, y_filter,
zero_s32);
d3 = highbd_convolve8_4_s32_s16(s3, s4, s5, s6, s7, s8, s9, s10, y_filter,
zero_s32);
d01 = vcombine_u16(d0, d1);
d23 = vcombine_u16(d2, d3);
d01 = vminq_u16(d01, max);
d23 = vminq_u16(d23, max);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u16q_2x1(d + 2 * dst_stride, d23, 0);
store_u16q_2x1(d + 3 * dst_stride, d23, 2);
}
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
if (h != 2) {
vst1_u16(d + 2 * dst_stride, vget_low_u16(d23));
vst1_u16(d + 3 * dst_stride, vget_high_u16(d23));
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint16x8_t d0, d1, d2, d3;
do {
int height = h;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
d0 = highbd_convolve8_8_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7,
y_filter, zero_s32);
d1 = highbd_convolve8_8_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8,
y_filter, zero_s32);
d2 = highbd_convolve8_8_s32_s16(s2, s3, s4, s5, s6, s7, s8, s9,
y_filter, zero_s32);
d3 = highbd_convolve8_8_s32_s16(s3, s4, s5, s6, s7, s8, s9, s10,
y_filter, zero_s32);
d0 = vminq_u16(d0, max);
d1 = vminq_u16(d1, max);
d2 = vminq_u16(d2, max);
d3 = vminq_u16(d3, max);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
static INLINE void highbd_convolve_y_sr_12tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *y_filter_ptr, int bd) {
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8);
const int32x4_t zero_s32 = vdupq_n_s32(0);
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14;
uint16x4_t d0, d1, d2, d3;
uint16x8_t d01, d23;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_4x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8,
&s9, &s10);
s += 11 * src_stride;
do {
load_s16_4x4(s, src_stride, &s11, &s12, &s13, &s14);
d0 = highbd_convolve12_y_4_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11, y_filter_0_7, y_filter_8_11,
zero_s32);
d1 = highbd_convolve12_y_4_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11, s12, y_filter_0_7,
y_filter_8_11, zero_s32);
d2 = highbd_convolve12_y_4_s32_s16(s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, s12, s13, y_filter_0_7,
y_filter_8_11, zero_s32);
d3 = highbd_convolve12_y_4_s32_s16(s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, s13, s14, y_filter_0_7,
y_filter_8_11, zero_s32);
d01 = vcombine_u16(d0, d1);
d23 = vcombine_u16(d2, d3);
d01 = vminq_u16(d01, max);
d23 = vminq_u16(d23, max);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u16q_2x1(d + 2 * dst_stride, d23, 0);
store_u16q_2x1(d + 3 * dst_stride, d23, 2);
}
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
if (h != 2) {
vst1_u16(d + 2 * dst_stride, vget_low_u16(d23));
vst1_u16(d + 3 * dst_stride, vget_high_u16(d23));
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
uint16x8_t d0, d1, d2, d3;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14;
do {
int height = h;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8,
&s9, &s10);
s += 11 * src_stride;
do {
load_s16_8x4(s, src_stride, &s11, &s12, &s13, &s14);
d0 = highbd_convolve12_y_8_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7, s8,
s9, s10, s11, y_filter_0_7,
y_filter_8_11, zero_s32);
d1 = highbd_convolve12_y_8_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11, s12, y_filter_0_7,
y_filter_8_11, zero_s32);
d2 = highbd_convolve12_y_8_s32_s16(s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, s12, s13, y_filter_0_7,
y_filter_8_11, zero_s32);
d3 = highbd_convolve12_y_8_s32_s16(s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, s13, s14, y_filter_0_7,
y_filter_8_11, zero_s32);
d0 = vminq_u16(d0, max);
d1 = vminq_u16(d1, max);
d2 = vminq_u16(d2, max);
d3 = vminq_u16(d3, max);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
void av1_highbd_convolve_y_sr_neon(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn, int bd) {
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
const int vert_offset = filter_params_y->taps / 2 - 1;
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
src -= vert_offset * src_stride;
if (y_filter_taps > 8) {
highbd_convolve_y_sr_12tap_neon(src, src_stride, dst, dst_stride, w, h,
y_filter_ptr, bd);
return;
}
if (y_filter_taps < 8) {
highbd_convolve_y_sr_6tap_neon(src, src_stride, dst, dst_stride, w, h,
y_filter_ptr, bd);
return;
}
highbd_convolve_y_sr_8tap_neon(src, src_stride, dst, dst_stride, w, h,
y_filter_ptr, bd);
}
static INLINE void highbd_convolve_x_sr_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *x_filter_ptr, ConvolveParams *conv_params,
int bd) {
const int16x8_t x_filter = vld1q_s16(x_filter_ptr);
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
const int32x4_t shift_s32 = vdupq_n_s32(-conv_params->round_0);
const int bits = FILTER_BITS - conv_params->round_0;
const int16x8_t bits_s16 = vdupq_n_s16(-bits);
const int32x4_t zero_s32 = vdupq_n_s32(0);
if (w <= 4) {
int16x8_t s0, s1, s2, s3;
uint16x4_t d0, d1;
uint16x8_t d01;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
do {
load_s16_8x2(s, src_stride, &s0, &s2);
load_s16_8x2(s + 8, src_stride, &s1, &s3);
d0 = highbd_convolve8_horiz4_s32_s16(s0, s1, x_filter, shift_s32,
zero_s32);
d1 = highbd_convolve8_horiz4_s32_s16(s2, s3, x_filter, shift_s32,
zero_s32);
d01 = vcombine_u16(d0, d1);
d01 = vqrshlq_u16(d01, bits_s16);
d01 = vminq_u16(d01, max);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
}
s += 2 * src_stride;
d += 2 * dst_stride;
h -= 2;
} while (h > 0);
} else {
int height = h;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7;
uint16x8_t d0, d1, d2, d3;
do {
int width = w;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x4(s, src_stride, &s0, &s2, &s4, &s6);
s += 8;
do {
load_s16_8x4(s, src_stride, &s1, &s3, &s5, &s7);
d0 = highbd_convolve8_horiz8_s32_s16(s0, s1, x_filter, shift_s32,
zero_s32);
d1 = highbd_convolve8_horiz8_s32_s16(s2, s3, x_filter, shift_s32,
zero_s32);
d2 = highbd_convolve8_horiz8_s32_s16(s4, s5, x_filter, shift_s32,
zero_s32);
d3 = highbd_convolve8_horiz8_s32_s16(s6, s7, x_filter, shift_s32,
zero_s32);
d0 = vqrshlq_u16(d0, bits_s16);
d1 = vqrshlq_u16(d1, bits_s16);
d2 = vqrshlq_u16(d2, bits_s16);
d3 = vqrshlq_u16(d3, bits_s16);
d0 = vminq_u16(d0, max);
d1 = vminq_u16(d1, max);
d2 = vminq_u16(d2, max);
d3 = vminq_u16(d3, max);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s1;
s2 = s3;
s4 = s5;
s6 = s7;
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 0);
}
}
static INLINE void highbd_convolve_x_sr_12tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *x_filter_ptr, ConvolveParams *conv_params,
int bd) {
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
const int32x4_t shift_s32 = vdupq_n_s32(-conv_params->round_0);
const int bits = FILTER_BITS - conv_params->round_0;
const int16x8_t bits_s16 = vdupq_n_s16(-bits);
const int16x8_t x_filter_0_7 = vld1q_s16(x_filter_ptr);
const int16x4_t x_filter_8_11 = vld1_s16(x_filter_ptr + 8);
const int32x4_t zero_s32 = vdupq_n_s32(0);
if (w <= 4) {
int16x8_t s0, s1, s2, s3;
uint16x4_t d0, d1;
uint16x8_t d01;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
do {
load_s16_8x2(s, src_stride, &s0, &s2);
load_s16_8x2(s + 8, src_stride, &s1, &s3);
d0 = highbd_convolve12_horiz4_s32_s16(s0, s1, x_filter_0_7, x_filter_8_11,
shift_s32, zero_s32);
d1 = highbd_convolve12_horiz4_s32_s16(s2, s3, x_filter_0_7, x_filter_8_11,
shift_s32, zero_s32);
d01 = vcombine_u16(d0, d1);
d01 = vqrshlq_u16(d01, bits_s16);
d01 = vminq_u16(d01, max);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
}
s += 2 * src_stride;
d += 2 * dst_stride;
h -= 2;
} while (h > 0);
} else {
int height = h;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11;
uint16x8_t d0, d1, d2, d3;
do {
int width = w;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x4(s, src_stride, &s0, &s3, &s6, &s9);
s += 8;
do {
load_s16_8x4(s, src_stride, &s1, &s4, &s7, &s10);
load_s16_8x4(s + 8, src_stride, &s2, &s5, &s8, &s11);
d0 = highbd_convolve12_horiz8_s32_s16(
s0, s1, s2, x_filter_0_7, x_filter_8_11, shift_s32, zero_s32);
d1 = highbd_convolve12_horiz8_s32_s16(
s3, s4, s5, x_filter_0_7, x_filter_8_11, shift_s32, zero_s32);
d2 = highbd_convolve12_horiz8_s32_s16(
s6, s7, s8, x_filter_0_7, x_filter_8_11, shift_s32, zero_s32);
d3 = highbd_convolve12_horiz8_s32_s16(
s9, s10, s11, x_filter_0_7, x_filter_8_11, shift_s32, zero_s32);
d0 = vqrshlq_u16(d0, bits_s16);
d1 = vqrshlq_u16(d1, bits_s16);
d2 = vqrshlq_u16(d2, bits_s16);
d3 = vqrshlq_u16(d3, bits_s16);
d0 = vminq_u16(d0, max);
d1 = vminq_u16(d1, max);
d2 = vminq_u16(d2, max);
d3 = vminq_u16(d3, max);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s1;
s1 = s2;
s3 = s4;
s4 = s5;
s6 = s7;
s7 = s8;
s9 = s10;
s10 = s11;
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 0);
}
}
void av1_highbd_convolve_x_sr_neon(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params, int bd) {
const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
const int horiz_offset = filter_params_x->taps / 2 - 1;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
src -= horiz_offset;
if (x_filter_taps > 8) {
highbd_convolve_x_sr_12tap_neon(src, src_stride, dst, dst_stride, w, h,
x_filter_ptr, conv_params, bd);
return;
}
highbd_convolve_x_sr_8tap_neon(src, src_stride, dst, dst_stride, w, h,
x_filter_ptr, conv_params, bd);
}
static INLINE void highbd_convolve_2d_y_sr_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *y_filter_ptr, ConvolveParams *conv_params,
int bd, const int offset, const int correction) {
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
const int32x4_t offset_s32 = vdupq_n_s32(offset);
const int round1_shift = conv_params->round_1;
const int32x4_t round1_shift_s32 = vdupq_n_s32(-round1_shift);
const int32x4_t correction_s32 = vdupq_n_s32(correction);
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint16x4_t d0, d1, d2, d3;
uint16x8_t d01, d23;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
d0 = highbd_convolve8_4_sr_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7,
y_filter, round1_shift_s32, offset_s32,
correction_s32);
d1 = highbd_convolve8_4_sr_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8,
y_filter, round1_shift_s32, offset_s32,
correction_s32);
d2 = highbd_convolve8_4_sr_s32_s16(s2, s3, s4, s5, s6, s7, s8, s9,
y_filter, round1_shift_s32, offset_s32,
correction_s32);
d3 = highbd_convolve8_4_sr_s32_s16(s3, s4, s5, s6, s7, s8, s9, s10,
y_filter, round1_shift_s32, offset_s32,
correction_s32);
d01 = vcombine_u16(d0, d1);
d23 = vcombine_u16(d2, d3);
d01 = vminq_u16(d01, max);
d23 = vminq_u16(d23, max);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u16q_2x1(d + 2 * dst_stride, d23, 0);
store_u16q_2x1(d + 3 * dst_stride, d23, 2);
}
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
if (h != 2) {
vst1_u16(d + 2 * dst_stride, vget_low_u16(d23));
vst1_u16(d + 3 * dst_stride, vget_high_u16(d23));
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint16x8_t d0, d1, d2, d3;
do {
int height = h;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
d0 = highbd_convolve8_8_sr_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7,
y_filter, round1_shift_s32,
offset_s32, correction_s32);
d1 = highbd_convolve8_8_sr_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8,
y_filter, round1_shift_s32,
offset_s32, correction_s32);
d2 = highbd_convolve8_8_sr_s32_s16(s2, s3, s4, s5, s6, s7, s8, s9,
y_filter, round1_shift_s32,
offset_s32, correction_s32);
d3 = highbd_convolve8_8_sr_s32_s16(s3, s4, s5, s6, s7, s8, s9, s10,
y_filter, round1_shift_s32,
offset_s32, correction_s32);
d0 = vminq_u16(d0, max);
d1 = vminq_u16(d1, max);
d2 = vminq_u16(d2, max);
d3 = vminq_u16(d3, max);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
static INLINE void highbd_convolve_2d_y_sr_12tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *y_filter_ptr, ConvolveParams *conv_params,
const int bd, const int offset, const int correction) {
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8);
const int32x4_t offset_s32 = vdupq_n_s32(offset);
const int round1_shift = conv_params->round_1;
const int32x4_t round1_shift_s32 = vdupq_n_s32(-round1_shift);
const int32x4_t correction_s32 = vdupq_n_s32(correction);
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14;
uint16x4_t d0, d1, d2, d3;
uint16x8_t d01, d23;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_4x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8,
&s9, &s10);
s += 11 * src_stride;
do {
load_s16_4x4(s, src_stride, &s11, &s12, &s13, &s14);
d0 = highbd_convolve12_y_4_sr_s32_s16(
s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, y_filter_0_7,
y_filter_8_11, round1_shift_s32, offset_s32, correction_s32);
d1 = highbd_convolve12_y_4_sr_s32_s16(
s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, y_filter_0_7,
y_filter_8_11, round1_shift_s32, offset_s32, correction_s32);
d2 = highbd_convolve12_y_4_sr_s32_s16(
s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, y_filter_0_7,
y_filter_8_11, round1_shift_s32, offset_s32, correction_s32);
d3 = highbd_convolve12_y_4_sr_s32_s16(
s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, y_filter_0_7,
y_filter_8_11, round1_shift_s32, offset_s32, correction_s32);
d01 = vcombine_u16(d0, d1);
d23 = vcombine_u16(d2, d3);
d01 = vminq_u16(d01, max);
d23 = vminq_u16(d23, max);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u16q_2x1(d + 2 * dst_stride, d23, 0);
store_u16q_2x1(d + 3 * dst_stride, d23, 2);
}
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
if (h != 2) {
vst1_u16(d + 2 * dst_stride, vget_low_u16(d23));
vst1_u16(d + 3 * dst_stride, vget_high_u16(d23));
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
uint16x8_t d0, d1, d2, d3;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14;
do {
int height = h;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8,
&s9, &s10);
s += 11 * src_stride;
do {
load_s16_8x4(s, src_stride, &s11, &s12, &s13, &s14);
d0 = highbd_convolve12_y_8_sr_s32_s16(
s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, y_filter_0_7,
y_filter_8_11, round1_shift_s32, offset_s32, correction_s32);
d1 = highbd_convolve12_y_8_sr_s32_s16(
s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, y_filter_0_7,
y_filter_8_11, round1_shift_s32, offset_s32, correction_s32);
d2 = highbd_convolve12_y_8_sr_s32_s16(
s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, y_filter_0_7,
y_filter_8_11, round1_shift_s32, offset_s32, correction_s32);
d3 = highbd_convolve12_y_8_sr_s32_s16(
s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, y_filter_0_7,
y_filter_8_11, round1_shift_s32, offset_s32, correction_s32);
d0 = vminq_u16(d0, max);
d1 = vminq_u16(d1, max);
d2 = vminq_u16(d2, max);
d3 = vminq_u16(d3, max);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
static INLINE void highbd_convolve_x_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *x_filter_ptr, ConvolveParams *conv_params,
const int offset) {
const int16x8_t x_filter = vld1q_s16(x_filter_ptr);
const int32x4_t shift_s32 = vdupq_n_s32(-conv_params->round_0);
const int32x4_t offset_s32 = vdupq_n_s32(offset);
if (w <= 4) {
int16x8_t s0, s1, s2, s3;
uint16x4_t d0, d1;
uint16x8_t d01;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
do {
load_s16_8x2(s, src_stride, &s0, &s2);
load_s16_8x2(s + 8, src_stride, &s1, &s3);
d0 = highbd_convolve8_horiz4_s32_s16(s0, s1, x_filter, shift_s32,
offset_s32);
d1 = highbd_convolve8_horiz4_s32_s16(s2, s3, x_filter, shift_s32,
offset_s32);
d01 = vcombine_u16(d0, d1);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
}
s += 2 * src_stride;
d += 2 * dst_stride;
h -= 2;
} while (h > 0);
} else {
int height = h;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7;
uint16x8_t d0, d1, d2, d3;
do {
int width = w;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x4(s, src_stride, &s0, &s2, &s4, &s6);
s += 8;
do {
load_s16_8x4(s, src_stride, &s1, &s3, &s5, &s7);
d0 = highbd_convolve8_horiz8_s32_s16(s0, s1, x_filter, shift_s32,
offset_s32);
d1 = highbd_convolve8_horiz8_s32_s16(s2, s3, x_filter, shift_s32,
offset_s32);
d2 = highbd_convolve8_horiz8_s32_s16(s4, s5, x_filter, shift_s32,
offset_s32);
d3 = highbd_convolve8_horiz8_s32_s16(s6, s7, x_filter, shift_s32,
offset_s32);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s1;
s2 = s3;
s4 = s5;
s6 = s7;
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 0);
}
}
static INLINE void highbd_convolve_2d_x_sr_12tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *x_filter_ptr, ConvolveParams *conv_params,
const int offset) {
const int32x4_t shift_s32 = vdupq_n_s32(-conv_params->round_0);
const int16x8_t x_filter_0_7 = vld1q_s16(x_filter_ptr);
const int16x4_t x_filter_8_11 = vld1_s16(x_filter_ptr + 8);
const int32x4_t offset_s32 = vdupq_n_s32(offset);
if (w <= 4) {
int16x8_t s0, s1, s2, s3;
uint16x4_t d0, d1;
uint16x8_t d01;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
do {
load_s16_8x2(s, src_stride, &s0, &s2);
load_s16_8x2(s + 8, src_stride, &s1, &s3);
d0 = highbd_convolve12_horiz4_s32_s16(s0, s1, x_filter_0_7, x_filter_8_11,
shift_s32, offset_s32);
d1 = highbd_convolve12_horiz4_s32_s16(s2, s3, x_filter_0_7, x_filter_8_11,
shift_s32, offset_s32);
d01 = vcombine_u16(d0, d1);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
}
s += 2 * src_stride;
d += 2 * dst_stride;
h -= 2;
} while (h > 0);
} else {
int height = h;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11;
uint16x8_t d0, d1, d2, d3;
do {
int width = w;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x4(s, src_stride, &s0, &s3, &s6, &s9);
s += 8;
do {
load_s16_8x4(s, src_stride, &s1, &s4, &s7, &s10);
load_s16_8x4(s + 8, src_stride, &s2, &s5, &s8, &s11);
d0 = highbd_convolve12_horiz8_s32_s16(
s0, s1, s2, x_filter_0_7, x_filter_8_11, shift_s32, offset_s32);
d1 = highbd_convolve12_horiz8_s32_s16(
s3, s4, s5, x_filter_0_7, x_filter_8_11, shift_s32, offset_s32);
d2 = highbd_convolve12_horiz8_s32_s16(
s6, s7, s8, x_filter_0_7, x_filter_8_11, shift_s32, offset_s32);
d3 = highbd_convolve12_horiz8_s32_s16(
s9, s10, s11, x_filter_0_7, x_filter_8_11, shift_s32, offset_s32);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s1;
s1 = s2;
s3 = s4;
s4 = s5;
s6 = s7;
s7 = s8;
s9 = s10;
s10 = s11;
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 0);
}
}
void av1_highbd_convolve_2d_sr_neon(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn,
const int subpel_y_qn,
ConvolveParams *conv_params, int bd) {
DECLARE_ALIGNED(16, uint16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
const int im_h = h + filter_params_y->taps - 1;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = filter_params_y->taps / 2 - 1;
const int horiz_offset = filter_params_x->taps / 2 - 1;
const int x_offset_initial = (1 << (bd + FILTER_BITS - 1));
const int y_offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int y_offset_initial = (1 << y_offset_bits);
const int y_offset_correction =
((1 << (y_offset_bits - conv_params->round_1)) +
(1 << (y_offset_bits - conv_params->round_1 - 1)));
const uint16_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
if (filter_params_x->taps > 8) {
highbd_convolve_2d_x_sr_12tap_neon(src_ptr, src_stride, im_block, im_stride,
w, im_h, x_filter_ptr, conv_params,
x_offset_initial);
highbd_convolve_2d_y_sr_12tap_neon(im_block, im_stride, dst, dst_stride, w,
h, y_filter_ptr, conv_params, bd,
y_offset_initial, y_offset_correction);
} else {
highbd_convolve_x_8tap_neon(src_ptr, src_stride, im_block, im_stride, w,
im_h, x_filter_ptr, conv_params,
x_offset_initial);
highbd_convolve_2d_y_sr_8tap_neon(im_block, im_stride, dst, dst_stride, w,
h, y_filter_ptr, conv_params, bd,
y_offset_initial, y_offset_correction);
}
}
static INLINE void highbd_convolve_2d_x_scale_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int subpel_x_qn, const int x_step_qn,
const InterpFilterParams *filter_params, ConvolveParams *conv_params,
const int offset) {
const uint32x4_t idx = { 0, 1, 2, 3 };
const uint32x4_t subpel_mask = vdupq_n_u32(SCALE_SUBPEL_MASK);
const int32x4_t shift_s32 = vdupq_n_s32(-conv_params->round_0);
const int32x4_t offset_s32 = vdupq_n_s32(offset);
if (w <= 4) {
int height = h;
int16x8_t s0, s1, s2, s3;
uint16x4_t d0;
uint16_t *d = dst_ptr;
do {
int x_qn = subpel_x_qn;
// Load 4 src vectors at a time, they might be the same, but we have to
// calculate the indices anyway. Doing it in SIMD and then storing the
// indices is faster than having to calculate the expression
// &src_ptr[((x_qn + 0*x_step_qn) >> SCALE_SUBPEL_BITS)] 4 times
// Ideally this should be a gather using the indices, but NEON does not
// have that, so have to emulate
const uint32x4_t xqn_idx = vmlaq_n_u32(vdupq_n_u32(x_qn), idx, x_step_qn);
// We have to multiply x2 to get the actual pointer as sizeof(uint16_t) =
// 2
const uint32x4_t src_idx_u32 =
vshlq_n_u32(vshrq_n_u32(xqn_idx, SCALE_SUBPEL_BITS), 1);
#if defined(__aarch64__)
uint64x2_t src4[2];
src4[0] = vaddw_u32(vdupq_n_u64((const uint64_t)src_ptr),
vget_low_u32(src_idx_u32));
src4[1] = vaddw_u32(vdupq_n_u64((const uint64_t)src_ptr),
vget_high_u32(src_idx_u32));
int16_t *src4_ptr[4];
uint64_t *tmp_ptr = (uint64_t *)&src4_ptr;
vst1q_u64(tmp_ptr, src4[0]);
vst1q_u64(tmp_ptr + 2, src4[1]);
#else
uint32x4_t src4;
src4 = vaddq_u32(vdupq_n_u32((const uint32_t)src_ptr), src_idx_u32);
int16_t *src4_ptr[4];
uint32_t *tmp_ptr = (uint32_t *)&src4_ptr;
vst1q_u32(tmp_ptr, src4);
#endif // defined(__aarch64__)
// Same for the filter vectors
const int32x4_t filter_idx_s32 = vreinterpretq_s32_u32(
vshrq_n_u32(vandq_u32(xqn_idx, subpel_mask), SCALE_EXTRA_BITS));
int32_t x_filter4_idx[4];
vst1q_s32(x_filter4_idx, filter_idx_s32);
const int16_t *x_filter4_ptr[4];
// Load source
s0 = vld1q_s16(src4_ptr[0]);
s1 = vld1q_s16(src4_ptr[1]);
s2 = vld1q_s16(src4_ptr[2]);
s3 = vld1q_s16(src4_ptr[3]);
// We could easily do this using SIMD as well instead of calling the
// inline function 4 times.
x_filter4_ptr[0] =
av1_get_interp_filter_subpel_kernel(filter_params, x_filter4_idx[0]);
x_filter4_ptr[1] =
av1_get_interp_filter_subpel_kernel(filter_params, x_filter4_idx[1]);
x_filter4_ptr[2] =
av1_get_interp_filter_subpel_kernel(filter_params, x_filter4_idx[2]);
x_filter4_ptr[3] =
av1_get_interp_filter_subpel_kernel(filter_params, x_filter4_idx[3]);
// Actually load the filters
const int16x8_t x_filter0 = vld1q_s16(x_filter4_ptr[0]);
const int16x8_t x_filter1 = vld1q_s16(x_filter4_ptr[1]);
const int16x8_t x_filter2 = vld1q_s16(x_filter4_ptr[2]);
const int16x8_t x_filter3 = vld1q_s16(x_filter4_ptr[3]);
// Group low and high parts and transpose
int16x4_t filters_lo[] = { vget_low_s16(x_filter0),
vget_low_s16(x_filter1),
vget_low_s16(x_filter2),
vget_low_s16(x_filter3) };
int16x4_t filters_hi[] = { vget_high_s16(x_filter0),
vget_high_s16(x_filter1),
vget_high_s16(x_filter2),
vget_high_s16(x_filter3) };
transpose_u16_4x4((uint16x4_t *)filters_lo);
transpose_u16_4x4((uint16x4_t *)filters_hi);
// Run the 2D Scale convolution
d0 = highbd_convolve8_2d_scale_horiz4x8_s32_s16(
s0, s1, s2, s3, filters_lo, filters_hi, shift_s32, offset_s32);
if (w == 2) {
store_u16_2x1(d + 0 * dst_stride, d0, 0);
} else {
vst1_u16(d + 0 * dst_stride, d0);
}
src_ptr += src_stride;
d += dst_stride;
height--;
} while (height > 0);
} else {
int height = h;
int16x8_t s0, s1, s2, s3;
uint16x4_t d0;
do {
int width = w;
int x_qn = subpel_x_qn;
uint16_t *d = dst_ptr;
const uint16_t *s = src_ptr;
do {
// Load 4 src vectors at a time, they might be the same, but we have to
// calculate the indices anyway. Doing it in SIMD and then storing the
// indices is faster than having to calculate the expression
// &src_ptr[((x_qn + 0*x_step_qn) >> SCALE_SUBPEL_BITS)] 4 times
// Ideally this should be a gather using the indices, but NEON does not
// have that, so have to emulate
const uint32x4_t xqn_idx =
vmlaq_n_u32(vdupq_n_u32(x_qn), idx, x_step_qn);
// We have to multiply x2 to get the actual pointer as sizeof(uint16_t)
// = 2
const uint32x4_t src_idx_u32 =
vshlq_n_u32(vshrq_n_u32(xqn_idx, SCALE_SUBPEL_BITS), 1);
#if defined(__aarch64__)
uint64x2_t src4[2];
src4[0] = vaddw_u32(vdupq_n_u64((const uint64_t)s),
vget_low_u32(src_idx_u32));
src4[1] = vaddw_u32(vdupq_n_u64((const uint64_t)s),
vget_high_u32(src_idx_u32));
int16_t *src4_ptr[4];
uint64_t *tmp_ptr = (uint64_t *)&src4_ptr;
vst1q_u64(tmp_ptr, src4[0]);
vst1q_u64(tmp_ptr + 2, src4[1]);
#else
uint32x4_t src4;
src4 = vaddq_u32(vdupq_n_u32((const uint32_t)s), src_idx_u32);
int16_t *src4_ptr[4];
uint32_t *tmp_ptr = (uint32_t *)&src4_ptr;
vst1q_u32(tmp_ptr, src4);
#endif // defined(__aarch64__)
// Same for the filter vectors
const int32x4_t filter_idx_s32 = vreinterpretq_s32_u32(
vshrq_n_u32(vandq_u32(xqn_idx, subpel_mask), SCALE_EXTRA_BITS));
int32_t x_filter4_idx[4];
vst1q_s32(x_filter4_idx, filter_idx_s32);
const int16_t *x_filter4_ptr[4];
// Load source
s0 = vld1q_s16(src4_ptr[0]);
s1 = vld1q_s16(src4_ptr[1]);
s2 = vld1q_s16(src4_ptr[2]);
s3 = vld1q_s16(src4_ptr[3]);
// We could easily do this using SIMD as well instead of calling the
// inline function 4 times.
x_filter4_ptr[0] = av1_get_interp_filter_subpel_kernel(
filter_params, x_filter4_idx[0]);
x_filter4_ptr[1] = av1_get_interp_filter_subpel_kernel(
filter_params, x_filter4_idx[1]);
x_filter4_ptr[2] = av1_get_interp_filter_subpel_kernel(
filter_params, x_filter4_idx[2]);
x_filter4_ptr[3] = av1_get_interp_filter_subpel_kernel(
filter_params, x_filter4_idx[3]);
// Actually load the filters
const int16x8_t x_filter0 = vld1q_s16(x_filter4_ptr[0]);
const int16x8_t x_filter1 = vld1q_s16(x_filter4_ptr[1]);
const int16x8_t x_filter2 = vld1q_s16(x_filter4_ptr[2]);
const int16x8_t x_filter3 = vld1q_s16(x_filter4_ptr[3]);
// Group low and high parts and transpose
int16x4_t filters_lo[] = { vget_low_s16(x_filter0),
vget_low_s16(x_filter1),
vget_low_s16(x_filter2),
vget_low_s16(x_filter3) };
int16x4_t filters_hi[] = { vget_high_s16(x_filter0),
vget_high_s16(x_filter1),
vget_high_s16(x_filter2),
vget_high_s16(x_filter3) };
transpose_u16_4x4((uint16x4_t *)filters_lo);
transpose_u16_4x4((uint16x4_t *)filters_hi);
// Run the 2D Scale X convolution
d0 = highbd_convolve8_2d_scale_horiz4x8_s32_s16(
s0, s1, s2, s3, filters_lo, filters_hi, shift_s32, offset_s32);
vst1_u16(d, d0);
x_qn += 4 * x_step_qn;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
height--;
} while (height > 0);
}
}
static INLINE void highbd_convolve_2d_y_scale_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int subpel_y_qn, const int y_step_qn,
const InterpFilterParams *filter_params, const int round1_bits,
const int offset) {
const int32x4_t offset_s32 = vdupq_n_s32(1 << offset);
const int32x4_t round1_shift_s32 = vdupq_n_s32(-round1_bits);
if (w <= 4) {
int height = h;
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7;
uint16x4_t d0;
uint16_t *d = dst_ptr;
int y_qn = subpel_y_qn;
do {
const int16_t *s =
(const int16_t *)&src_ptr[(y_qn >> SCALE_SUBPEL_BITS) * src_stride];
load_s16_4x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7);
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
const int16_t *y_filter_ptr =
av1_get_interp_filter_subpel_kernel(filter_params, y_filter_idx);
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
d0 = highbd_convolve8_4_sr_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7,
y_filter, round1_shift_s32, offset_s32,
vdupq_n_s32(0));
if (w == 2) {
store_u16_2x1(d, d0, 0);
} else {
vst1_u16(d, d0);
}
y_qn += y_step_qn;
d += dst_stride;
height--;
} while (height > 0);
} else {
int width = w;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7;
uint16x8_t d0;
do {
int height = h;
int y_qn = subpel_y_qn;
uint16_t *d = dst_ptr;
do {
const int16_t *s =
(const int16_t *)&src_ptr[(y_qn >> SCALE_SUBPEL_BITS) * src_stride];
load_s16_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7);
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
const int16_t *y_filter_ptr =
av1_get_interp_filter_subpel_kernel(filter_params, y_filter_idx);
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
d0 = highbd_convolve8_8_sr_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7,
y_filter, round1_shift_s32,
offset_s32, vdupq_n_s32(0));
vst1q_u16(d, d0);
y_qn += y_step_qn;
d += dst_stride;
height--;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
width -= 8;
} while (width > 0);
}
}
static INLINE void highbd_dist_wtd_comp_avg_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, ConvolveParams *conv_params, const int round_bits,
const int offset, const int bd) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int dst16_stride = conv_params->dst_stride;
const int32x4_t round_shift_s32 = vdupq_n_s32(-round_bits);
const int16x4_t offset_s16 = vdup_n_s16(offset);
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
uint16x4_t fwd_offset_u16 = vdup_n_u16(conv_params->fwd_offset);
uint16x4_t bck_offset_u16 = vdup_n_u16(conv_params->bck_offset);
// Weighted averaging
if (w <= 4) {
for (int y = 0; y < h; ++y) {
const uint16x4_t s = vld1_u16(src_ptr + y * src_stride);
const uint16x4_t d16 = vld1_u16(dst16 + y * dst16_stride);
// We use vmull_u16/vmlal_u16 instead of of vmull_s16/vmlal_s16
// because the latter sign-extend and the values are non-negative.
// However, d0/d1 are signed-integers and we use vqmovun
// to do saturated narrowing to unsigned.
int32x4_t d0 = vreinterpretq_s32_u32(vmull_u16(d16, fwd_offset_u16));
d0 = vreinterpretq_s32_u32(
vmlal_u16(vreinterpretq_u32_s32(d0), s, bck_offset_u16));
d0 = vshrq_n_s32(d0, DIST_PRECISION_BITS);
// Subtract round offset and convolve round
d0 = vqrshlq_s32(vsubw_s16(d0, offset_s16), round_shift_s32);
uint16x4_t d = vqmovun_s32(d0);
d = vmin_u16(d, vget_low_u16(max));
if (w == 2) {
store_u16_2x1(dst_ptr + y * dst_stride, d, 0);
} else {
vst1_u16(dst_ptr + y * dst_stride, d);
}
}
} else {
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; x += 8) {
const uint16x8_t s = vld1q_u16(src_ptr + y * src_stride + x);
const uint16x8_t d16 = vld1q_u16(dst16 + y * dst16_stride + x);
// We use vmull_u16/vmlal_u16 instead of of vmull_s16/vmlal_s16
// because the latter sign-extend and the values are non-negative.
// However, d0/d1 are signed-integers and we use vqmovun
// to do saturated narrowing to unsigned.
int32x4_t d0 =
vreinterpretq_s32_u32(vmull_u16(vget_low_u16(d16), fwd_offset_u16));
int32x4_t d1 = vreinterpretq_s32_u32(
vmull_u16(vget_high_u16(d16), fwd_offset_u16));
d0 = vreinterpretq_s32_u32(vmlal_u16(vreinterpretq_u32_s32(d0),
vget_low_u16(s), bck_offset_u16));
d1 = vreinterpretq_s32_u32(vmlal_u16(vreinterpretq_u32_s32(d1),
vget_high_u16(s), bck_offset_u16));
d0 = vshrq_n_s32(d0, DIST_PRECISION_BITS);
d1 = vshrq_n_s32(d1, DIST_PRECISION_BITS);
d0 = vqrshlq_s32(vsubw_s16(d0, offset_s16), round_shift_s32);
d1 = vqrshlq_s32(vsubw_s16(d1, offset_s16), round_shift_s32);
uint16x8_t d01 = vcombine_u16(vqmovun_s32(d0), vqmovun_s32(d1));
d01 = vminq_u16(d01, max);
vst1q_u16(dst_ptr + y * dst_stride + x, d01);
}
}
}
}
static INLINE void highbd_comp_avg_neon(const uint16_t *src_ptr, int src_stride,
uint16_t *dst_ptr, int dst_stride,
int w, int h,
ConvolveParams *conv_params,
const int round_bits, const int offset,
const int bd) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int dst16_stride = conv_params->dst_stride;
const int32x4_t round_shift_s32 = vdupq_n_s32(-round_bits);
const int16x4_t offset_s16 = vdup_n_s16(offset);
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
if (w <= 4) {
for (int y = 0; y < h; ++y) {
const uint16x4_t s = vld1_u16(src_ptr + y * src_stride);
const uint16x4_t d16 = vld1_u16(dst16 + y * dst16_stride);
int32x4_t s_s32 = vreinterpretq_s32_u32(vmovl_u16(s));
int32x4_t d16_s32 = vreinterpretq_s32_u32(vmovl_u16(d16));
int32x4_t d0 = vhaddq_s32(s_s32, d16_s32);
d0 = vsubw_s16(d0, offset_s16);
d0 = vqrshlq_s32(d0, round_shift_s32);
uint16x4_t d = vqmovun_s32(d0);
d = vmin_u16(d, vget_low_u16(max));
if (w == 2) {
store_u16_2x1(dst_ptr + y * dst_stride, d, 0);
} else {
vst1_u16(dst_ptr + y * dst_stride, d);
}
}
} else {
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; x += 8) {
const uint16x8_t s = vld1q_u16(src_ptr + y * src_stride + x);
const uint16x8_t d16 = vld1q_u16(dst16 + y * dst16_stride + x);
int32x4_t s_lo = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(s)));
int32x4_t s_hi = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(s)));
int32x4_t d16_lo = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(d16)));
int32x4_t d16_hi = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(d16)));
int32x4_t d0 = vhaddq_s32(s_lo, d16_lo);
int32x4_t d1 = vhaddq_s32(s_hi, d16_hi);
d0 = vsubw_s16(d0, offset_s16);
d1 = vsubw_s16(d1, offset_s16);
d0 = vqrshlq_s32(d0, round_shift_s32);
d1 = vqrshlq_s32(d1, round_shift_s32);
uint16x8_t d01 = vcombine_u16(vqmovun_s32(d0), vqmovun_s32(d1));
d01 = vminq_u16(d01, max);
vst1q_u16(dst_ptr + y * dst_stride + x, d01);
}
}
}
}
static INLINE void highbd_convolve_correct_offset_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int round_bits, const int offset, const int bd) {
const int32x4_t round_shift_s32 = vdupq_n_s32(-round_bits);
const int16x4_t offset_s16 = vdup_n_s16(offset);
const uint16x8_t max = vdupq_n_u16((1 << bd) - 1);
if (w <= 4) {
for (int y = 0; y < h; ++y) {
const int16x4_t s = vld1_s16((const int16_t *)src_ptr + y * src_stride);
const int32x4_t d0 =
vqrshlq_s32(vsubl_s16(s, offset_s16), round_shift_s32);
uint16x4_t d = vqmovun_s32(d0);
d = vmin_u16(d, vget_low_u16(max));
if (w == 2) {
store_u16_2x1(dst_ptr + y * dst_stride, d, 0);
} else {
vst1_u16(dst_ptr + y * dst_stride, d);
}
}
} else {
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; x += 8) {
// Subtract round offset and convolve round
const int16x8_t s =
vld1q_s16((const int16_t *)src_ptr + y * src_stride + x);
const int32x4_t d0 = vqrshlq_s32(vsubl_s16(vget_low_s16(s), offset_s16),
round_shift_s32);
const int32x4_t d1 = vqrshlq_s32(
vsubl_s16(vget_high_s16(s), offset_s16), round_shift_s32);
uint16x8_t d01 = vcombine_u16(vqmovun_s32(d0), vqmovun_s32(d1));
d01 = vminq_u16(d01, max);
vst1q_u16(dst_ptr + y * dst_stride + x, d01);
}
}
}
}
void av1_highbd_convolve_2d_scale_neon(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int x_step_qn, const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params, int bd) {
uint16_t *im_block = (uint16_t *)aom_memalign(
16, 2 * sizeof(uint16_t) * MAX_SB_SIZE * (MAX_SB_SIZE + MAX_FILTER_TAP));
if (!im_block) return;
uint16_t *im_block2 = (uint16_t *)aom_memalign(
16, 2 * sizeof(uint16_t) * MAX_SB_SIZE * (MAX_SB_SIZE + MAX_FILTER_TAP));
if (!im_block2) {
aom_free(im_block); // free the first block and return.
return;
}
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
const int im_stride = MAX_SB_SIZE;
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
assert(bits >= 0);
const int vert_offset = filter_params_y->taps / 2 - 1;
const int horiz_offset = filter_params_x->taps / 2 - 1;
const int x_offset_bits = (1 << (bd + FILTER_BITS - 1));
const int y_offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int y_offset_correction =
((1 << (y_offset_bits - conv_params->round_1)) +
(1 << (y_offset_bits - conv_params->round_1 - 1)));
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int dst16_stride = conv_params->dst_stride;
const uint16_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
highbd_convolve_2d_x_scale_8tap_neon(
src_ptr, src_stride, im_block, im_stride, w, im_h, subpel_x_qn, x_step_qn,
filter_params_x, conv_params, x_offset_bits);
if (conv_params->is_compound && !conv_params->do_average) {
highbd_convolve_2d_y_scale_8tap_neon(
im_block, im_stride, dst16, dst16_stride, w, h, subpel_y_qn, y_step_qn,
filter_params_y, conv_params->round_1, y_offset_bits);
} else {
highbd_convolve_2d_y_scale_8tap_neon(
im_block, im_stride, im_block2, im_stride, w, h, subpel_y_qn, y_step_qn,
filter_params_y, conv_params->round_1, y_offset_bits);
}
// Do the compound averaging outside the loop, avoids branching within the
// main loop
if (conv_params->is_compound) {
if (conv_params->do_average) {
if (conv_params->use_dist_wtd_comp_avg) {
highbd_dist_wtd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w,
h, conv_params, bits, y_offset_correction,
bd);
} else {
highbd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h,
conv_params, bits, y_offset_correction, bd);
}
}
} else {
highbd_convolve_correct_offset_neon(im_block2, im_stride, dst, dst_stride,
w, h, bits, y_offset_correction, bd);
}
aom_free(im_block);
aom_free(im_block2);
}
static INLINE void highbd_convolve_dist_wtd_x_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *x_filter_ptr, ConvolveParams *conv_params,
const int offset) {
const int16x8_t x_filter = vld1q_s16(x_filter_ptr);
const int32x4_t shift_s32 = vdupq_n_s32(-conv_params->round_0);
const int weight_bits = FILTER_BITS - conv_params->round_1;
const int32x4_t zero_s32 = vdupq_n_s32(0);
const int32x4_t weight_s32 = vdupq_n_s32(1 << weight_bits);
const int32x4_t offset_s32 = vdupq_n_s32(offset);
if (w <= 4) {
int16x8_t s0, s1, s2, s3;
uint16x4_t d0, d1;
uint16x8_t d01;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
do {
load_s16_8x2(s, src_stride, &s0, &s2);
load_s16_8x2(s + 8, src_stride, &s1, &s3);
d0 = highbd_convolve8_wtd_horiz4_s32_s16(
s0, s1, x_filter, shift_s32, zero_s32, weight_s32, offset_s32);
d1 = highbd_convolve8_wtd_horiz4_s32_s16(
s2, s3, x_filter, shift_s32, zero_s32, weight_s32, offset_s32);
d01 = vcombine_u16(d0, d1);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
}
s += 2 * src_stride;
d += 2 * dst_stride;
h -= 2;
} while (h > 0);
} else {
int height = h;
int16x8_t s0, s1, s2, s3;
uint16x8_t d0, d1;
do {
int width = w;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x2(s, src_stride, &s0, &s2);
s += 8;
do {
load_s16_8x2(s, src_stride, &s1, &s3);
d0 = highbd_convolve8_wtd_horiz8_s32_s16(
s0, s1, x_filter, shift_s32, zero_s32, weight_s32, offset_s32);
d1 = highbd_convolve8_wtd_horiz8_s32_s16(
s2, s3, x_filter, shift_s32, zero_s32, weight_s32, offset_s32);
store_u16_8x2(d, dst_stride, d0, d1);
s0 = s1;
s2 = s3;
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 2 * src_stride;
dst_ptr += 2 * dst_stride;
height -= 2;
} while (height > 0);
}
}
static INLINE void highbd_convolve_dist_wtd_y_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *y_filter_ptr, ConvolveParams *conv_params,
const int offset) {
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
const int32x4_t shift_s32 = vdupq_n_s32(-conv_params->round_0);
const int weight_bits = FILTER_BITS - conv_params->round_1;
const int32x4_t zero_s32 = vdupq_n_s32(0);
const int32x4_t weight_s32 = vdupq_n_s32(1 << weight_bits);
const int32x4_t offset_s32 = vdupq_n_s32(offset);
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint16x4_t d0, d1;
uint16x8_t d01;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
d0 = highbd_convolve8_wtd_4_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7,
y_filter, shift_s32, zero_s32,
weight_s32, offset_s32);
d1 = highbd_convolve8_wtd_4_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8,
y_filter, shift_s32, zero_s32,
weight_s32, offset_s32);
d01 = vcombine_u16(d0, d1);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
}
s0 = s2;
s1 = s3;
s2 = s4;
s3 = s5;
s4 = s6;
s5 = s7;
s6 = s8;
s += 2 * src_stride;
d += 2 * dst_stride;
h -= 2;
} while (h > 0);
} else {
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
uint16x8_t d0, d1;
do {
int height = h;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
load_s16_8x2(s, src_stride, &s7, &s8);
d0 = highbd_convolve8_wtd_8_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7,
y_filter, shift_s32, zero_s32,
weight_s32, offset_s32);
d1 = highbd_convolve8_wtd_8_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8,
y_filter, shift_s32, zero_s32,
weight_s32, offset_s32);
store_u16_8x2(d, dst_stride, d0, d1);
s0 = s2;
s1 = s3;
s2 = s4;
s3 = s5;
s4 = s6;
s5 = s7;
s6 = s8;
s += 2 * src_stride;
d += 2 * dst_stride;
height -= 2;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
void av1_highbd_dist_wtd_convolve_x_neon(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn,
ConvolveParams *conv_params, int bd) {
DECLARE_ALIGNED(16, uint16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int im_stride = MAX_SB_SIZE;
const int horiz_offset = filter_params_x->taps / 2 - 1;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
assert(round_bits >= 0);
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
src -= horiz_offset;
// horizontal filter
if (conv_params->do_average) {
highbd_convolve_dist_wtd_x_8tap_neon(src, src_stride, im_block, im_stride,
w, h, x_filter_ptr, conv_params,
round_offset);
} else {
highbd_convolve_dist_wtd_x_8tap_neon(src, src_stride, dst16, dst16_stride,
w, h, x_filter_ptr, conv_params,
round_offset);
}
if (conv_params->do_average) {
if (conv_params->use_dist_wtd_comp_avg) {
highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params, round_bits, round_offset, bd);
} else {
highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params, round_bits, round_offset, bd);
}
}
}
void av1_highbd_dist_wtd_convolve_y_neon(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn,
ConvolveParams *conv_params, int bd) {
DECLARE_ALIGNED(16, uint16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = filter_params_y->taps / 2 - 1;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
assert(round_bits >= 0);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
src -= vert_offset * src_stride;
// vertical filter
if (conv_params->do_average) {
highbd_convolve_dist_wtd_y_8tap_neon(src, src_stride, im_block, im_stride,
w, h, y_filter_ptr, conv_params,
round_offset);
} else {
highbd_convolve_dist_wtd_y_8tap_neon(src, src_stride, dst16, dst16_stride,
w, h, y_filter_ptr, conv_params,
round_offset);
}
if (conv_params->do_average) {
if (conv_params->use_dist_wtd_comp_avg) {
highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params, round_bits, round_offset, bd);
} else {
highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params, round_bits, round_offset, bd);
}
}
}
static INLINE void highbd_2d_copy_neon(const uint16_t *src_ptr, int src_stride,
uint16_t *dst_ptr, int dst_stride, int w,
int h, const int round_bits,
const int offset) {
if (w <= 4) {
const int16x4_t round_shift_s16 = vdup_n_s16(round_bits);
const uint16x4_t offset_u16 = vdup_n_u16(offset);
for (int y = 0; y < h; ++y) {
const uint16x4_t s = vld1_u16(src_ptr + y * src_stride);
uint16x4_t d = vshl_u16(s, round_shift_s16);
d = vadd_u16(d, offset_u16);
if (w == 2) {
store_u16_2x1(dst_ptr + y * dst_stride, d, 0);
} else {
vst1_u16(dst_ptr + y * dst_stride, d);
}
}
} else {
const int16x8_t round_shift_s16 = vdupq_n_s16(round_bits);
const uint16x8_t offset_u16 = vdupq_n_u16(offset);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; x += 8) {
const uint16x8_t s = vld1q_u16(src_ptr + y * src_stride + x);
uint16x8_t d = vshlq_u16(s, round_shift_s16);
d = vaddq_u16(d, offset_u16);
vst1q_u16(dst_ptr + y * dst_stride + x, d);
}
}
}
}
void av1_highbd_dist_wtd_convolve_2d_copy_neon(const uint16_t *src,
int src_stride, uint16_t *dst,
int dst_stride, int w, int h,
ConvolveParams *conv_params,
int bd) {
DECLARE_ALIGNED(16, uint16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
const int im_stride = MAX_SB_SIZE;
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
assert(round_bits >= 0);
if (conv_params->do_average) {
highbd_2d_copy_neon(src, src_stride, im_block, im_stride, w, h, round_bits,
round_offset);
} else {
highbd_2d_copy_neon(src, src_stride, dst16, dst16_stride, w, h, round_bits,
round_offset);
}
if (conv_params->do_average) {
if (conv_params->use_dist_wtd_comp_avg) {
highbd_dist_wtd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params, round_bits, round_offset, bd);
} else {
highbd_comp_avg_neon(im_block, im_stride, dst, dst_stride, w, h,
conv_params, round_bits, round_offset, bd);
}
}
}
static INLINE void highbd_convolve_y_8tap_neon(
const uint16_t *src_ptr, int src_stride, uint16_t *dst_ptr, int dst_stride,
int w, int h, const int16_t *y_filter_ptr, ConvolveParams *conv_params,
int offset) {
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
const int32x4_t offset_s32 = vdupq_n_s32(offset);
const int32x4_t shift_s32 = vdupq_n_s32(-conv_params->round_1);
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint16x4_t d0, d1, d2, d3;
uint16x8_t d01, d23;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
d0 = highbd_convolve8_sr_4_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7,
y_filter, shift_s32, offset_s32);
d1 = highbd_convolve8_sr_4_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8,
y_filter, shift_s32, offset_s32);
d2 = highbd_convolve8_sr_4_s32_s16(s2, s3, s4, s5, s6, s7, s8, s9,
y_filter, shift_s32, offset_s32);
d3 = highbd_convolve8_sr_4_s32_s16(s3, s4, s5, s6, s7, s8, s9, s10,
y_filter, shift_s32, offset_s32);
d01 = vcombine_u16(d0, d1);
d23 = vcombine_u16(d2, d3);
if (w == 2) {
store_u16q_2x1(d + 0 * dst_stride, d01, 0);
store_u16q_2x1(d + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u16q_2x1(d + 2 * dst_stride, d23, 0);
store_u16q_2x1(d + 3 * dst_stride, d23, 2);
}
} else {
vst1_u16(d + 0 * dst_stride, vget_low_u16(d01));
vst1_u16(d + 1 * dst_stride, vget_high_u16(d01));
if (h != 2) {
vst1_u16(d + 2 * dst_stride, vget_low_u16(d23));
vst1_u16(d + 3 * dst_stride, vget_high_u16(d23));
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint16x8_t d0, d1, d2, d3;
do {
int height = h;
const int16_t *s = (const int16_t *)src_ptr;
uint16_t *d = dst_ptr;
load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
d0 = highbd_convolve8_8_s32_s16(s0, s1, s2, s3, s4, s5, s6, s7,
y_filter, offset_s32);
d1 = highbd_convolve8_8_s32_s16(s1, s2, s3, s4, s5, s6, s7, s8,
y_filter, offset_s32);
d2 = highbd_convolve8_8_s32_s16(s2, s3, s4, s5, s6, s7, s8, s9,
y_filter, offset_s32);
d3 = highbd_convolve8_8_s32_s16(s3, s4, s5, s6, s7, s8, s9, s10,
y_filter, offset_s32);
if (h == 2) {
store_u16_8x2(d, dst_stride, d0, d1);
} else {
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
void av1_highbd_dist_wtd_convolve_2d_neon(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
DECLARE_ALIGNED(16, uint16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
DECLARE_ALIGNED(16, uint16_t,
im_block2[(MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]);
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int im_h = h + filter_params_y->taps - 1;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = filter_params_y->taps / 2 - 1;
const int horiz_offset = filter_params_x->taps / 2 - 1;
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
const int x_offset_initial = (1 << (bd + FILTER_BITS - 1));
const int y_offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int y_offset_initial = (1 << y_offset_bits);
const int y_offset_correction =
((1 << (y_offset_bits - conv_params->round_1)) +
(1 << (y_offset_bits - conv_params->round_1 - 1)));
const uint16_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
// horizontal filter
highbd_convolve_x_8tap_neon(src_ptr, src_stride, im_block, im_stride, w, im_h,
x_filter_ptr, conv_params, x_offset_initial);
// vertical filter
if (conv_params->do_average) {
highbd_convolve_y_8tap_neon(im_block, im_stride, im_block2, im_stride, w, h,
y_filter_ptr, conv_params, y_offset_initial);
} else {
highbd_convolve_y_8tap_neon(im_block, im_stride, dst16, dst16_stride, w, h,
y_filter_ptr, conv_params, y_offset_initial);
}
// Do the compound averaging outside the loop, avoids branching within the
// main loop
if (conv_params->do_average) {
if (conv_params->use_dist_wtd_comp_avg) {
highbd_dist_wtd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h,
conv_params, round_bits,
y_offset_correction, bd);
} else {
highbd_comp_avg_neon(im_block2, im_stride, dst, dst_stride, w, h,
conv_params, round_bits, y_offset_correction, bd);
}
}
}
#define UPSCALE_NORMATIVE_TAPS 8
void av1_highbd_convolve_horiz_rs_neon(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w,
int h, const int16_t *x_filters,
int x0_qn, int x_step_qn, int bd) {
const int horiz_offset = UPSCALE_NORMATIVE_TAPS / 2 - 1;
const int32x4_t idx = { 0, 1, 2, 3 };
const int32x4_t subpel_mask = vdupq_n_s32(RS_SCALE_SUBPEL_MASK);
const int32x4_t shift_s32 = vdupq_n_s32(-FILTER_BITS);
const int32x4_t offset_s32 = vdupq_n_s32(0);
const uint16x4_t max = vdup_n_u16((1 << bd) - 1);
const uint16_t *src_ptr = src - horiz_offset;
uint16_t *dst_ptr = dst;
if (w <= 4) {
int height = h;
int16x8_t s0, s1, s2, s3;
uint16x4_t d0;
uint16_t *d = dst_ptr;
do {
int x_qn = x0_qn;
// Load 4 src vectors at a time, they might be the same, but we have to
// calculate the indices anyway. Doing it in SIMD and then storing the
// indices is faster than having to calculate the expression
// &src_ptr[((x_qn + 0*x_step_qn) >> RS_SCALE_SUBPEL_BITS)] 4 times
// Ideally this should be a gather using the indices, but NEON does not
// have that, so have to emulate
const int32x4_t xqn_idx = vmlaq_n_s32(vdupq_n_s32(x_qn), idx, x_step_qn);
// We have to multiply x2 to get the actual pointer as sizeof(uint16_t) =
// 2
const int32x4_t src_idx =
vshlq_n_s32(vshrq_n_s32(xqn_idx, RS_SCALE_SUBPEL_BITS), 1);
// Similarly for the filter vector indices, we calculate the filter
// indices for 4 columns. First we calculate the indices:
// x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS
// Then we calculate the actual pointers, multiplying with
// UPSCALE_UPSCALE_NORMATIVE_TAPS
// again shift left by 1
const int32x4_t x_filter4_idx = vshlq_n_s32(
vshrq_n_s32(vandq_s32(xqn_idx, subpel_mask), RS_SCALE_EXTRA_BITS), 1);
// Even though pointers are unsigned 32/64-bit ints we do signed
// addition The reason for this is that x_qn can be negative, leading to
// negative offsets. Argon test
// profile0_core/streams/test10573_11003.obu was failing because of
// this.
#if defined(__aarch64__)
uint64x2_t tmp4[2];
tmp4[0] = vreinterpretq_u64_s64(vaddw_s32(
vdupq_n_s64((const int64_t)src_ptr), vget_low_s32(src_idx)));
tmp4[1] = vreinterpretq_u64_s64(vaddw_s32(
vdupq_n_s64((const int64_t)src_ptr), vget_high_s32(src_idx)));
int16_t *src4_ptr[4];
uint64_t *tmp_ptr = (uint64_t *)&src4_ptr;
vst1q_u64(tmp_ptr, tmp4[0]);
vst1q_u64(tmp_ptr + 2, tmp4[1]);
// filter vectors
tmp4[0] = vreinterpretq_u64_s64(vmlal_s32(
vdupq_n_s64((const int64_t)x_filters), vget_low_s32(x_filter4_idx),
vdup_n_s32(UPSCALE_NORMATIVE_TAPS)));
tmp4[1] = vreinterpretq_u64_s64(vmlal_s32(
vdupq_n_s64((const int64_t)x_filters), vget_high_s32(x_filter4_idx),
vdup_n_s32(UPSCALE_NORMATIVE_TAPS)));
const int16_t *x_filter4_ptr[4];
tmp_ptr = (uint64_t *)&x_filter4_ptr;
vst1q_u64(tmp_ptr, tmp4[0]);
vst1q_u64(tmp_ptr + 2, tmp4[1]);
#else
uint32x4_t tmp4;
tmp4 = vreinterpretq_u32_s32(
vaddq_s32(vdupq_n_s32((const int32_t)src_ptr), src_idx));
int16_t *src4_ptr[4];
uint32_t *tmp_ptr = (uint32_t *)&src4_ptr;
vst1q_u32(tmp_ptr, tmp4);
// filter vectors
tmp4 = vreinterpretq_u32_s32(
vmlaq_s32(vdupq_n_s32((const int32_t)x_filters), x_filter4_idx,
vdupq_n_s32(UPSCALE_NORMATIVE_TAPS)));
const int16_t *x_filter4_ptr[4];
tmp_ptr = (uint32_t *)&x_filter4_ptr;
vst1q_u32(tmp_ptr, tmp4);
#endif // defined(__aarch64__)
// Load source
s0 = vld1q_s16(src4_ptr[0]);
s1 = vld1q_s16(src4_ptr[1]);
s2 = vld1q_s16(src4_ptr[2]);
s3 = vld1q_s16(src4_ptr[3]);
// Actually load the filters
const int16x8_t x_filter0 = vld1q_s16(x_filter4_ptr[0]);
const int16x8_t x_filter1 = vld1q_s16(x_filter4_ptr[1]);
const int16x8_t x_filter2 = vld1q_s16(x_filter4_ptr[2]);
const int16x8_t x_filter3 = vld1q_s16(x_filter4_ptr[3]);
// Group low and high parts and transpose
int16x4_t filters_lo[] = { vget_low_s16(x_filter0),
vget_low_s16(x_filter1),
vget_low_s16(x_filter2),
vget_low_s16(x_filter3) };
int16x4_t filters_hi[] = { vget_high_s16(x_filter0),
vget_high_s16(x_filter1),
vget_high_s16(x_filter2),
vget_high_s16(x_filter3) };
transpose_u16_4x4((uint16x4_t *)filters_lo);
transpose_u16_4x4((uint16x4_t *)filters_hi);
// Run the 2D Scale convolution
d0 = highbd_convolve8_2d_scale_horiz4x8_s32_s16(
s0, s1, s2, s3, filters_lo, filters_hi, shift_s32, offset_s32);
d0 = vmin_u16(d0, max);
if (w == 2) {
store_u16_2x1(d + 0 * dst_stride, d0, 0);
} else {
vst1_u16(d + 0 * dst_stride, d0);
}
src_ptr += src_stride;
d += dst_stride;
height--;
} while (height > 0);
} else {
int height = h;
int16x8_t s0, s1, s2, s3;
uint16x4_t d0;
do {
int width = w;
int x_qn = x0_qn;
uint16_t *d = dst_ptr;
const uint16_t *s = src_ptr;
do {
// Load 4 src vectors at a time, they might be the same, but we have to
// calculate the indices anyway. Doing it in SIMD and then storing the
// indices is faster than having to calculate the expression
// &src_ptr[((x_qn + 0*x_step_qn) >> RS_SCALE_SUBPEL_BITS)] 4 times
// Ideally this should be a gather using the indices, but NEON does not
// have that, so have to emulate
const int32x4_t xqn_idx =
vmlaq_n_s32(vdupq_n_s32(x_qn), idx, x_step_qn);
// We have to multiply x2 to get the actual pointer as sizeof(uint16_t)
// = 2
const int32x4_t src_idx =
vshlq_n_s32(vshrq_n_s32(xqn_idx, RS_SCALE_SUBPEL_BITS), 1);
// Similarly for the filter vector indices, we calculate the filter
// indices for 4 columns. First we calculate the indices:
// x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS
// Then we calculate the actual pointers, multiplying with
// UPSCALE_UPSCALE_NORMATIVE_TAPS
// again shift left by 1
const int32x4_t x_filter4_idx = vshlq_n_s32(
vshrq_n_s32(vandq_s32(xqn_idx, subpel_mask), RS_SCALE_EXTRA_BITS),
1);
// Even though pointers are unsigned 32/64-bit ints we do signed
// addition The reason for this is that x_qn can be negative, leading to
// negative offsets. Argon test
// profile0_core/streams/test10573_11003.obu was failing because of
// this.
#if defined(__aarch64__)
uint64x2_t tmp4[2];
tmp4[0] = vreinterpretq_u64_s64(
vaddw_s32(vdupq_n_s64((const int64_t)s), vget_low_s32(src_idx)));
tmp4[1] = vreinterpretq_u64_s64(
vaddw_s32(vdupq_n_s64((const int64_t)s), vget_high_s32(src_idx)));
int16_t *src4_ptr[4];
uint64_t *tmp_ptr = (uint64_t *)&src4_ptr;
vst1q_u64(tmp_ptr, tmp4[0]);
vst1q_u64(tmp_ptr + 2, tmp4[1]);
// filter vectors
tmp4[0] = vreinterpretq_u64_s64(vmlal_s32(
vdupq_n_s64((const int64_t)x_filters), vget_low_s32(x_filter4_idx),
vdup_n_s32(UPSCALE_NORMATIVE_TAPS)));
tmp4[1] = vreinterpretq_u64_s64(vmlal_s32(
vdupq_n_s64((const int64_t)x_filters), vget_high_s32(x_filter4_idx),
vdup_n_s32(UPSCALE_NORMATIVE_TAPS)));
const int16_t *x_filter4_ptr[4];
tmp_ptr = (uint64_t *)&x_filter4_ptr;
vst1q_u64(tmp_ptr, tmp4[0]);
vst1q_u64(tmp_ptr + 2, tmp4[1]);
#else
uint32x4_t tmp4;
tmp4 = vreinterpretq_u32_s32(
vaddq_s32(vdupq_n_s32((const int32_t)s), src_idx));
int16_t *src4_ptr[4];
uint32_t *tmp_ptr = (uint32_t *)&src4_ptr;
vst1q_u32(tmp_ptr, tmp4);
// filter vectors
tmp4 = vreinterpretq_u32_s32(
vmlaq_s32(vdupq_n_s32((const int32_t)x_filters), x_filter4_idx,
vdupq_n_s32(UPSCALE_NORMATIVE_TAPS)));
const int16_t *x_filter4_ptr[4];
tmp_ptr = (uint32_t *)&x_filter4_ptr;
vst1q_u32(tmp_ptr, tmp4);
#endif // defined(__aarch64__)
// Load source
s0 = vld1q_s16(src4_ptr[0]);
s1 = vld1q_s16(src4_ptr[1]);
s2 = vld1q_s16(src4_ptr[2]);
s3 = vld1q_s16(src4_ptr[3]);
// Actually load the filters
const int16x8_t x_filter0 = vld1q_s16(x_filter4_ptr[0]);
const int16x8_t x_filter1 = vld1q_s16(x_filter4_ptr[1]);
const int16x8_t x_filter2 = vld1q_s16(x_filter4_ptr[2]);
const int16x8_t x_filter3 = vld1q_s16(x_filter4_ptr[3]);
// Group low and high parts and transpose
int16x4_t filters_lo[] = { vget_low_s16(x_filter0),
vget_low_s16(x_filter1),
vget_low_s16(x_filter2),
vget_low_s16(x_filter3) };
int16x4_t filters_hi[] = { vget_high_s16(x_filter0),
vget_high_s16(x_filter1),
vget_high_s16(x_filter2),
vget_high_s16(x_filter3) };
transpose_u16_4x4((uint16x4_t *)filters_lo);
transpose_u16_4x4((uint16x4_t *)filters_hi);
// Run the 2D Scale X convolution
d0 = highbd_convolve8_2d_scale_horiz4x8_s32_s16(
s0, s1, s2, s3, filters_lo, filters_hi, shift_s32, offset_s32);
d0 = vmin_u16(d0, max);
vst1_u16(d, d0);
x_qn += 4 * x_step_qn;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
height--;
} while (height > 0);
}
}