blob: 2e4353838105cb295439910ca210f0538666eb32 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/intrapred_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
static INLINE void v_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left) {
int r;
(void)left;
for (r = 0; r < bh; r++) {
memcpy(dst, above, bw);
dst += stride;
}
}
static INLINE void h_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left) {
int r;
(void)above;
for (r = 0; r < bh; r++) {
memset(dst, left[r], bw);
dst += stride;
}
}
static INLINE int abs_diff(int a, int b) { return (a > b) ? a - b : b - a; }
static INLINE uint16_t paeth_predictor_single(uint16_t left, uint16_t top,
uint16_t top_left) {
const int base = top + left - top_left;
const int p_left = abs_diff(base, left);
const int p_top = abs_diff(base, top);
const int p_top_left = abs_diff(base, top_left);
// Return nearest to base of left, top and top_left.
return (p_left <= p_top && p_left <= p_top_left)
? left
: (p_top <= p_top_left) ? top : top_left;
}
static INLINE void paeth_predictor(uint8_t *dst, ptrdiff_t stride, int bw,
int bh, const uint8_t *above,
const uint8_t *left) {
int r, c;
const uint8_t ytop_left = above[-1];
for (r = 0; r < bh; r++) {
for (c = 0; c < bw; c++)
dst[c] = (uint8_t)paeth_predictor_single(left[r], above[c], ytop_left);
dst += stride;
}
}
// Some basic checks on weights for smooth predictor.
#define sm_weights_sanity_checks(weights_w, weights_h, weights_scale, \
pred_scale) \
assert(weights_w[0] < weights_scale); \
assert(weights_h[0] < weights_scale); \
assert(weights_scale - weights_w[bw - 1] < weights_scale); \
assert(weights_scale - weights_h[bh - 1] < weights_scale); \
assert(pred_scale < 31) // ensures no overflow when calculating predictor.
#define divide_round(value, bits) (((value) + (1 << ((bits)-1))) >> (bits))
static INLINE void smooth_predictor(uint8_t *dst, ptrdiff_t stride, int bw,
int bh, const uint8_t *above,
const uint8_t *left) {
const uint8_t below_pred = left[bh - 1]; // estimated by bottom-left pixel
const uint8_t right_pred = above[bw - 1]; // estimated by top-right pixel
const uint8_t *const sm_weights_w = sm_weight_arrays + bw;
const uint8_t *const sm_weights_h = sm_weight_arrays + bh;
// scale = 2 * 2^sm_weight_log2_scale
const int log2_scale = 1 + sm_weight_log2_scale;
const uint16_t scale = (1 << sm_weight_log2_scale);
sm_weights_sanity_checks(sm_weights_w, sm_weights_h, scale,
log2_scale + sizeof(*dst));
int r;
for (r = 0; r < bh; ++r) {
int c;
for (c = 0; c < bw; ++c) {
const uint8_t pixels[] = { above[c], below_pred, left[r], right_pred };
const uint8_t weights[] = { sm_weights_h[r], scale - sm_weights_h[r],
sm_weights_w[c], scale - sm_weights_w[c] };
uint32_t this_pred = 0;
int i;
assert(scale >= sm_weights_h[r] && scale >= sm_weights_w[c]);
for (i = 0; i < 4; ++i) {
this_pred += weights[i] * pixels[i];
}
dst[c] = divide_round(this_pred, log2_scale);
}
dst += stride;
}
}
static INLINE void smooth_v_predictor(uint8_t *dst, ptrdiff_t stride, int bw,
int bh, const uint8_t *above,
const uint8_t *left) {
const uint8_t below_pred = left[bh - 1]; // estimated by bottom-left pixel
const uint8_t *const sm_weights = sm_weight_arrays + bh;
// scale = 2^sm_weight_log2_scale
const int log2_scale = sm_weight_log2_scale;
const uint16_t scale = (1 << sm_weight_log2_scale);
sm_weights_sanity_checks(sm_weights, sm_weights, scale,
log2_scale + sizeof(*dst));
int r;
for (r = 0; r < bh; r++) {
int c;
for (c = 0; c < bw; ++c) {
const uint8_t pixels[] = { above[c], below_pred };
const uint8_t weights[] = { sm_weights[r], scale - sm_weights[r] };
uint32_t this_pred = 0;
assert(scale >= sm_weights[r]);
int i;
for (i = 0; i < 2; ++i) {
this_pred += weights[i] * pixels[i];
}
dst[c] = divide_round(this_pred, log2_scale);
}
dst += stride;
}
}
static INLINE void smooth_h_predictor(uint8_t *dst, ptrdiff_t stride, int bw,
int bh, const uint8_t *above,
const uint8_t *left) {
const uint8_t right_pred = above[bw - 1]; // estimated by top-right pixel
const uint8_t *const sm_weights = sm_weight_arrays + bw;
// scale = 2^sm_weight_log2_scale
const int log2_scale = sm_weight_log2_scale;
const uint16_t scale = (1 << sm_weight_log2_scale);
sm_weights_sanity_checks(sm_weights, sm_weights, scale,
log2_scale + sizeof(*dst));
int r;
for (r = 0; r < bh; r++) {
int c;
for (c = 0; c < bw; ++c) {
const uint8_t pixels[] = { left[r], right_pred };
const uint8_t weights[] = { sm_weights[c], scale - sm_weights[c] };
uint32_t this_pred = 0;
assert(scale >= sm_weights[c]);
int i;
for (i = 0; i < 2; ++i) {
this_pred += weights[i] * pixels[i];
}
dst[c] = divide_round(this_pred, log2_scale);
}
dst += stride;
}
}
static INLINE void dc_128_predictor(uint8_t *dst, ptrdiff_t stride, int bw,
int bh, const uint8_t *above,
const uint8_t *left) {
int r;
(void)above;
(void)left;
for (r = 0; r < bh; r++) {
memset(dst, 128, bw);
dst += stride;
}
}
static INLINE void dc_left_predictor(uint8_t *dst, ptrdiff_t stride, int bw,
int bh, const uint8_t *above,
const uint8_t *left) {
int i, r, expected_dc, sum = 0;
(void)above;
for (i = 0; i < bh; i++) sum += left[i];
expected_dc = (sum + (bh >> 1)) / bh;
for (r = 0; r < bh; r++) {
memset(dst, expected_dc, bw);
dst += stride;
}
}
static INLINE void dc_top_predictor(uint8_t *dst, ptrdiff_t stride, int bw,
int bh, const uint8_t *above,
const uint8_t *left) {
int i, r, expected_dc, sum = 0;
(void)left;
for (i = 0; i < bw; i++) sum += above[i];
expected_dc = (sum + (bw >> 1)) / bw;
for (r = 0; r < bh; r++) {
memset(dst, expected_dc, bw);
dst += stride;
}
}
static INLINE void dc_predictor(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left) {
int i, r, expected_dc, sum = 0;
const int count = bw + bh;
for (i = 0; i < bw; i++) {
sum += above[i];
}
for (i = 0; i < bh; i++) {
sum += left[i];
}
expected_dc = (sum + (count >> 1)) / count;
for (r = 0; r < bh; r++) {
memset(dst, expected_dc, bw);
dst += stride;
}
}
static INLINE int divide_using_multiply_shift(int num, int shift1,
int multiplier, int shift2) {
const int interm = num >> shift1;
return interm * multiplier >> shift2;
}
// The constants (multiplier and shifts) for a given block size are obtained
// as follows:
// - Let sum_w_h = block width + block height.
// - Shift 'sum_w_h' right until we reach an odd number. Let the number of
// shifts for that block size be called 'shift1' (see the parameter in
// dc_predictor_rect() function), and let the odd number be 'd'. [d has only 2
// possible values: d = 3 for a 1:2 rect block and d = 5 for a 1:4 rect
// block].
// - Find multipliers for (i) dividing by 3, and (ii) dividing by 5,
// using the "Algorithm 1" in:
// http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467632
// by ensuring that m + n = 16 (in that algorithm). This ensures that our 2nd
// shift will be 16, regardless of the block size.
// Note: For low bitdepth, assembly code may be optimized by using smaller
// constants for smaller block sizes, where the range of the 'sum' is
// restricted to fewer bits.
#define DC_MULTIPLIER_1X2 0x5556
#define DC_MULTIPLIER_1X4 0x3334
#define DC_SHIFT2 16
static INLINE void dc_predictor_rect(uint8_t *dst, ptrdiff_t stride, int bw,
int bh, const uint8_t *above,
const uint8_t *left, int shift1,
int multiplier) {
int sum = 0;
for (int i = 0; i < bw; i++) {
sum += above[i];
}
for (int i = 0; i < bh; i++) {
sum += left[i];
}
const int expected_dc = divide_using_multiply_shift(
sum + ((bw + bh) >> 1), shift1, multiplier, DC_SHIFT2);
assert(expected_dc < (1 << 8));
for (int r = 0; r < bh; r++) {
memset(dst, expected_dc, bw);
dst += stride;
}
}
#undef DC_SHIFT2
void aom_dc_predictor_4x8_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 4, 8, above, left, 2, DC_MULTIPLIER_1X2);
}
void aom_dc_predictor_8x4_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 8, 4, above, left, 2, DC_MULTIPLIER_1X2);
}
void aom_dc_predictor_4x16_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 4, 16, above, left, 2, DC_MULTIPLIER_1X4);
}
void aom_dc_predictor_16x4_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 16, 4, above, left, 2, DC_MULTIPLIER_1X4);
}
void aom_dc_predictor_8x16_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 8, 16, above, left, 3, DC_MULTIPLIER_1X2);
}
void aom_dc_predictor_16x8_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 16, 8, above, left, 3, DC_MULTIPLIER_1X2);
}
void aom_dc_predictor_8x32_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 8, 32, above, left, 3, DC_MULTIPLIER_1X4);
}
void aom_dc_predictor_32x8_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 32, 8, above, left, 3, DC_MULTIPLIER_1X4);
}
void aom_dc_predictor_16x32_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 16, 32, above, left, 4, DC_MULTIPLIER_1X2);
}
void aom_dc_predictor_32x16_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 32, 16, above, left, 4, DC_MULTIPLIER_1X2);
}
void aom_dc_predictor_16x64_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 16, 64, above, left, 4, DC_MULTIPLIER_1X4);
}
void aom_dc_predictor_64x16_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 64, 16, above, left, 4, DC_MULTIPLIER_1X4);
}
void aom_dc_predictor_32x64_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 32, 64, above, left, 5, DC_MULTIPLIER_1X2);
}
void aom_dc_predictor_64x32_c(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left) {
dc_predictor_rect(dst, stride, 64, 32, above, left, 5, DC_MULTIPLIER_1X2);
}
#undef DC_MULTIPLIER_1X2
#undef DC_MULTIPLIER_1X4
static INLINE void highbd_v_predictor(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int bd) {
int r;
(void)left;
(void)bd;
for (r = 0; r < bh; r++) {
memcpy(dst, above, bw * sizeof(uint16_t));
dst += stride;
}
}
static INLINE void highbd_h_predictor(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int bd) {
int r;
(void)above;
(void)bd;
for (r = 0; r < bh; r++) {
aom_memset16(dst, left[r], bw);
dst += stride;
}
}
static INLINE void highbd_paeth_predictor(uint16_t *dst, ptrdiff_t stride,
int bw, int bh, const uint16_t *above,
const uint16_t *left, int bd) {
int r, c;
const uint16_t ytop_left = above[-1];
(void)bd;
for (r = 0; r < bh; r++) {
for (c = 0; c < bw; c++)
dst[c] = paeth_predictor_single(left[r], above[c], ytop_left);
dst += stride;
}
}
static INLINE void highbd_smooth_predictor(uint16_t *dst, ptrdiff_t stride,
int bw, int bh,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)bd;
const uint16_t below_pred = left[bh - 1]; // estimated by bottom-left pixel
const uint16_t right_pred = above[bw - 1]; // estimated by top-right pixel
const uint8_t *const sm_weights_w = sm_weight_arrays + bw;
const uint8_t *const sm_weights_h = sm_weight_arrays + bh;
// scale = 2 * 2^sm_weight_log2_scale
const int log2_scale = 1 + sm_weight_log2_scale;
const uint16_t scale = (1 << sm_weight_log2_scale);
sm_weights_sanity_checks(sm_weights_w, sm_weights_h, scale,
log2_scale + sizeof(*dst));
int r;
for (r = 0; r < bh; ++r) {
int c;
for (c = 0; c < bw; ++c) {
const uint16_t pixels[] = { above[c], below_pred, left[r], right_pred };
const uint8_t weights[] = { sm_weights_h[r], scale - sm_weights_h[r],
sm_weights_w[c], scale - sm_weights_w[c] };
uint32_t this_pred = 0;
int i;
assert(scale >= sm_weights_h[r] && scale >= sm_weights_w[c]);
for (i = 0; i < 4; ++i) {
this_pred += weights[i] * pixels[i];
}
dst[c] = divide_round(this_pred, log2_scale);
}
dst += stride;
}
}
static INLINE void highbd_smooth_v_predictor(uint16_t *dst, ptrdiff_t stride,
int bw, int bh,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)bd;
const uint16_t below_pred = left[bh - 1]; // estimated by bottom-left pixel
const uint8_t *const sm_weights = sm_weight_arrays + bh;
// scale = 2^sm_weight_log2_scale
const int log2_scale = sm_weight_log2_scale;
const uint16_t scale = (1 << sm_weight_log2_scale);
sm_weights_sanity_checks(sm_weights, sm_weights, scale,
log2_scale + sizeof(*dst));
int r;
for (r = 0; r < bh; r++) {
int c;
for (c = 0; c < bw; ++c) {
const uint16_t pixels[] = { above[c], below_pred };
const uint8_t weights[] = { sm_weights[r], scale - sm_weights[r] };
uint32_t this_pred = 0;
assert(scale >= sm_weights[r]);
int i;
for (i = 0; i < 2; ++i) {
this_pred += weights[i] * pixels[i];
}
dst[c] = divide_round(this_pred, log2_scale);
}
dst += stride;
}
}
static INLINE void highbd_smooth_h_predictor(uint16_t *dst, ptrdiff_t stride,
int bw, int bh,
const uint16_t *above,
const uint16_t *left, int bd) {
(void)bd;
const uint16_t right_pred = above[bw - 1]; // estimated by top-right pixel
const uint8_t *const sm_weights = sm_weight_arrays + bw;
// scale = 2^sm_weight_log2_scale
const int log2_scale = sm_weight_log2_scale;
const uint16_t scale = (1 << sm_weight_log2_scale);
sm_weights_sanity_checks(sm_weights, sm_weights, scale,
log2_scale + sizeof(*dst));
int r;
for (r = 0; r < bh; r++) {
int c;
for (c = 0; c < bw; ++c) {
const uint16_t pixels[] = { left[r], right_pred };
const uint8_t weights[] = { sm_weights[c], scale - sm_weights[c] };
uint32_t this_pred = 0;
assert(scale >= sm_weights[c]);
int i;
for (i = 0; i < 2; ++i) {
this_pred += weights[i] * pixels[i];
}
dst[c] = divide_round(this_pred, log2_scale);
}
dst += stride;
}
}
static INLINE void highbd_dc_128_predictor(uint16_t *dst, ptrdiff_t stride,
int bw, int bh,
const uint16_t *above,
const uint16_t *left, int bd) {
int r;
(void)above;
(void)left;
for (r = 0; r < bh; r++) {
aom_memset16(dst, 128 << (bd - 8), bw);
dst += stride;
}
}
static INLINE void highbd_dc_left_predictor(uint16_t *dst, ptrdiff_t stride,
int bw, int bh,
const uint16_t *above,
const uint16_t *left, int bd) {
int i, r, expected_dc, sum = 0;
(void)above;
(void)bd;
for (i = 0; i < bh; i++) sum += left[i];
expected_dc = (sum + (bh >> 1)) / bh;
for (r = 0; r < bh; r++) {
aom_memset16(dst, expected_dc, bw);
dst += stride;
}
}
static INLINE void highbd_dc_top_predictor(uint16_t *dst, ptrdiff_t stride,
int bw, int bh,
const uint16_t *above,
const uint16_t *left, int bd) {
int i, r, expected_dc, sum = 0;
(void)left;
(void)bd;
for (i = 0; i < bw; i++) sum += above[i];
expected_dc = (sum + (bw >> 1)) / bw;
for (r = 0; r < bh; r++) {
aom_memset16(dst, expected_dc, bw);
dst += stride;
}
}
static INLINE void highbd_dc_predictor(uint16_t *dst, ptrdiff_t stride, int bw,
int bh, const uint16_t *above,
const uint16_t *left, int bd) {
int i, r, expected_dc, sum = 0;
const int count = bw + bh;
(void)bd;
for (i = 0; i < bw; i++) {
sum += above[i];
}
for (i = 0; i < bh; i++) {
sum += left[i];
}
expected_dc = (sum + (count >> 1)) / count;
for (r = 0; r < bh; r++) {
aom_memset16(dst, expected_dc, bw);
dst += stride;
}
}
// Obtained similarly as DC_MULTIPLIER_1X2 and DC_MULTIPLIER_1X4 above, but
// assume 2nd shift of 17 bits instead of 16.
// Note: Strictly speaking, 2nd shift needs to be 17 only when:
// - bit depth == 12, and
// - bw + bh is divisible by 5 (as opposed to divisible by 3).
// All other cases can use half the multipliers with a shift of 16 instead.
// This special optimization can be used when writing assembly code.
#define HIGHBD_DC_MULTIPLIER_1X2 0xAAAB
// Note: This constant is odd, but a smaller even constant (0x199a) with the
// appropriate shift should work for neon in 8/10-bit.
#define HIGHBD_DC_MULTIPLIER_1X4 0x6667
#define HIGHBD_DC_SHIFT2 17
static INLINE void highbd_dc_predictor_rect(uint16_t *dst, ptrdiff_t stride,
int bw, int bh,
const uint16_t *above,
const uint16_t *left, int bd,
int shift1, uint32_t multiplier) {
int sum = 0;
(void)bd;
for (int i = 0; i < bw; i++) {
sum += above[i];
}
for (int i = 0; i < bh; i++) {
sum += left[i];
}
const int expected_dc = divide_using_multiply_shift(
sum + ((bw + bh) >> 1), shift1, multiplier, HIGHBD_DC_SHIFT2);
assert(expected_dc < (1 << bd));
for (int r = 0; r < bh; r++) {
aom_memset16(dst, expected_dc, bw);
dst += stride;
}
}
#undef HIGHBD_DC_SHIFT2
void aom_highbd_dc_predictor_4x8_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd) {
highbd_dc_predictor_rect(dst, stride, 4, 8, above, left, bd, 2,
HIGHBD_DC_MULTIPLIER_1X2);
}
void aom_highbd_dc_predictor_8x4_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd) {
highbd_dc_predictor_rect(dst, stride, 8, 4, above, left, bd, 2,
HIGHBD_DC_MULTIPLIER_1X2);
}
void aom_highbd_dc_predictor_4x16_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd) {
highbd_dc_predictor_rect(dst, stride, 4, 16, above, left, bd, 2,
HIGHBD_DC_MULTIPLIER_1X4);
}
void aom_highbd_dc_predictor_16x4_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd) {
highbd_dc_predictor_rect(dst, stride, 16, 4, above, left, bd, 2,
HIGHBD_DC_MULTIPLIER_1X4);
}
void aom_highbd_dc_predictor_8x16_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd) {
highbd_dc_predictor_rect(dst, stride, 8, 16, above, left, bd, 3,
HIGHBD_DC_MULTIPLIER_1X2);
}
void aom_highbd_dc_predictor_16x8_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd) {
highbd_dc_predictor_rect(dst, stride, 16, 8, above, left, bd, 3,
HIGHBD_DC_MULTIPLIER_1X2);
}
void aom_highbd_dc_predictor_8x32_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd) {
highbd_dc_predictor_rect(dst, stride, 8, 32, above, left, bd, 3,
HIGHBD_DC_MULTIPLIER_1X4);
}
void aom_highbd_dc_predictor_32x8_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd) {
highbd_dc_predictor_rect(dst, stride, 32, 8, above, left, bd, 3,
HIGHBD_DC_MULTIPLIER_1X4);
}
void aom_highbd_dc_predictor_16x32_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_dc_predictor_rect(dst, stride, 16, 32, above, left, bd, 4,
HIGHBD_DC_MULTIPLIER_1X2);
}
void aom_highbd_dc_predictor_32x16_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_dc_predictor_rect(dst, stride, 32, 16, above, left, bd, 4,
HIGHBD_DC_MULTIPLIER_1X2);
}
void aom_highbd_dc_predictor_16x64_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_dc_predictor_rect(dst, stride, 16, 64, above, left, bd, 4,
HIGHBD_DC_MULTIPLIER_1X4);
}
void aom_highbd_dc_predictor_64x16_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_dc_predictor_rect(dst, stride, 64, 16, above, left, bd, 4,
HIGHBD_DC_MULTIPLIER_1X4);
}
void aom_highbd_dc_predictor_32x64_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_dc_predictor_rect(dst, stride, 32, 64, above, left, bd, 5,
HIGHBD_DC_MULTIPLIER_1X2);
}
void aom_highbd_dc_predictor_64x32_c(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_dc_predictor_rect(dst, stride, 64, 32, above, left, bd, 5,
HIGHBD_DC_MULTIPLIER_1X2);
}
#undef HIGHBD_DC_MULTIPLIER_1X2
#undef HIGHBD_DC_MULTIPLIER_1X4
// This serves as a wrapper function, so that all the prediction functions
// can be unified and accessed as a pointer array. Note that the boundary
// above and left are not necessarily used all the time.
#define intra_pred_sized(type, width, height) \
void aom_##type##_predictor_##width##x##height##_c( \
uint8_t *dst, ptrdiff_t stride, const uint8_t *above, \
const uint8_t *left) { \
type##_predictor(dst, stride, width, height, above, left); \
}
#define intra_pred_highbd_sized(type, width, height) \
void aom_highbd_##type##_predictor_##width##x##height##_c( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
highbd_##type##_predictor(dst, stride, width, height, above, left, bd); \
}
/* clang-format off */
#if CONFIG_REALTIME_ONLY
#define intra_pred_rectangular(type) \
intra_pred_sized(type, 4, 8) \
intra_pred_sized(type, 8, 4) \
intra_pred_sized(type, 8, 16) \
intra_pred_sized(type, 16, 8) \
intra_pred_sized(type, 16, 32) \
intra_pred_sized(type, 32, 16) \
intra_pred_sized(type, 32, 64) \
intra_pred_sized(type, 64, 32) \
intra_pred_highbd_sized(type, 4, 8) \
intra_pred_highbd_sized(type, 8, 4) \
intra_pred_highbd_sized(type, 8, 16) \
intra_pred_highbd_sized(type, 16, 8) \
intra_pred_highbd_sized(type, 16, 32) \
intra_pred_highbd_sized(type, 32, 16) \
intra_pred_highbd_sized(type, 32, 64) \
intra_pred_highbd_sized(type, 64, 32)
#else
#define intra_pred_rectangular(type) \
intra_pred_sized(type, 4, 8) \
intra_pred_sized(type, 8, 4) \
intra_pred_sized(type, 8, 16) \
intra_pred_sized(type, 16, 8) \
intra_pred_sized(type, 16, 32) \
intra_pred_sized(type, 32, 16) \
intra_pred_sized(type, 32, 64) \
intra_pred_sized(type, 64, 32) \
intra_pred_sized(type, 4, 16) \
intra_pred_sized(type, 16, 4) \
intra_pred_sized(type, 8, 32) \
intra_pred_sized(type, 32, 8) \
intra_pred_sized(type, 16, 64) \
intra_pred_sized(type, 64, 16) \
intra_pred_highbd_sized(type, 4, 8) \
intra_pred_highbd_sized(type, 8, 4) \
intra_pred_highbd_sized(type, 8, 16) \
intra_pred_highbd_sized(type, 16, 8) \
intra_pred_highbd_sized(type, 16, 32) \
intra_pred_highbd_sized(type, 32, 16) \
intra_pred_highbd_sized(type, 32, 64) \
intra_pred_highbd_sized(type, 64, 32) \
intra_pred_highbd_sized(type, 4, 16) \
intra_pred_highbd_sized(type, 16, 4) \
intra_pred_highbd_sized(type, 8, 32) \
intra_pred_highbd_sized(type, 32, 8) \
intra_pred_highbd_sized(type, 16, 64) \
intra_pred_highbd_sized(type, 64, 16)
#endif
#define intra_pred_above_4x4(type) \
intra_pred_sized(type, 8, 8) \
intra_pred_sized(type, 16, 16) \
intra_pred_sized(type, 32, 32) \
intra_pred_sized(type, 64, 64) \
intra_pred_highbd_sized(type, 4, 4) \
intra_pred_highbd_sized(type, 8, 8) \
intra_pred_highbd_sized(type, 16, 16) \
intra_pred_highbd_sized(type, 32, 32) \
intra_pred_highbd_sized(type, 64, 64) \
intra_pred_rectangular(type)
#define intra_pred_allsizes(type) \
intra_pred_sized(type, 4, 4) \
intra_pred_above_4x4(type)
#define intra_pred_square(type) \
intra_pred_sized(type, 4, 4) \
intra_pred_sized(type, 8, 8) \
intra_pred_sized(type, 16, 16) \
intra_pred_sized(type, 32, 32) \
intra_pred_sized(type, 64, 64) \
intra_pred_highbd_sized(type, 4, 4) \
intra_pred_highbd_sized(type, 8, 8) \
intra_pred_highbd_sized(type, 16, 16) \
intra_pred_highbd_sized(type, 32, 32) \
intra_pred_highbd_sized(type, 64, 64)
intra_pred_allsizes(v)
intra_pred_allsizes(h)
intra_pred_allsizes(smooth)
intra_pred_allsizes(smooth_v)
intra_pred_allsizes(smooth_h)
intra_pred_allsizes(paeth)
intra_pred_allsizes(dc_128)
intra_pred_allsizes(dc_left)
intra_pred_allsizes(dc_top)
intra_pred_square(dc)
/* clang-format on */
#undef intra_pred_allsizes