blob: f4c22fa1be1359386bdbe54980dd36d64290bb8e [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_ENCODER_RD_H_
#define AOM_AV1_ENCODER_RD_H_
#include <limits.h>
#include "av1/common/blockd.h"
#include "av1/encoder/block.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/cost.h"
#ifdef __cplusplus
extern "C" {
#endif
#define RDDIV_BITS 7
#define RD_EPB_SHIFT 6
#define RDCOST(RM, R, D) \
(ROUND_POWER_OF_TWO(((int64_t)(R)) * (RM), AV1_PROB_COST_SHIFT) + \
((D) * (1 << RDDIV_BITS)))
#define RDCOST_NEG_R(RM, R, D) \
(((D) * (1 << RDDIV_BITS)) - \
ROUND_POWER_OF_TWO(((int64_t)(R)) * (RM), AV1_PROB_COST_SHIFT))
#define RDCOST_DBL(RM, R, D) \
(((((double)(R)) * (RM)) / (double)(1 << AV1_PROB_COST_SHIFT)) + \
((double)(D) * (1 << RDDIV_BITS)))
#define QIDX_SKIP_THRESH 115
#define MV_COST_WEIGHT 108
#define MV_COST_WEIGHT_SUB 120
#define RD_THRESH_MAX_FACT 64
#define RD_THRESH_INC 1
// Factor to weigh the rate for switchable interp filters.
#define SWITCHABLE_INTERP_RATE_FACTOR 1
typedef struct RD_OPT {
// Thresh_mult is used to set a threshold for the rd score. A higher value
// means that we will accept the best mode so far more often. This number
// is used in combination with the current block size, and thresh_freq_fact
// to pick a threshold.
int thresh_mult[MAX_MODES];
int threshes[MAX_SEGMENTS][BLOCK_SIZES_ALL][MAX_MODES];
int RDMULT;
double r0, arf_r0;
#if !USE_TPL_CLASSIC_MODEL
double mc_saved_base, mc_count_base;
#endif // !USE_TPL_CLASSIC_MODEL
} RD_OPT;
static INLINE void av1_init_rd_stats(RD_STATS *rd_stats) {
#if CONFIG_RD_DEBUG
int plane;
#endif
rd_stats->rate = 0;
rd_stats->dist = 0;
rd_stats->rdcost = 0;
rd_stats->sse = 0;
rd_stats->skip = 1;
rd_stats->zero_rate = 0;
#if CONFIG_RD_DEBUG
// This may run into problems when monochrome video is
// encoded, as there will only be 1 plane
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
rd_stats->txb_coeff_cost[plane] = 0;
{
int r, c;
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r)
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c)
rd_stats->txb_coeff_cost_map[plane][r][c] = 0;
}
}
#endif
}
static INLINE void av1_invalid_rd_stats(RD_STATS *rd_stats) {
#if CONFIG_RD_DEBUG
int plane;
#endif
rd_stats->rate = INT_MAX;
rd_stats->dist = INT64_MAX;
rd_stats->rdcost = INT64_MAX;
rd_stats->sse = INT64_MAX;
rd_stats->skip = 0;
rd_stats->zero_rate = 0;
#if CONFIG_RD_DEBUG
// This may run into problems when monochrome video is
// encoded, as there will only be 1 plane
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
rd_stats->txb_coeff_cost[plane] = INT_MAX;
{
int r, c;
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r)
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c)
rd_stats->txb_coeff_cost_map[plane][r][c] = INT_MAX;
}
}
#endif
}
static INLINE void av1_merge_rd_stats(RD_STATS *rd_stats_dst,
const RD_STATS *rd_stats_src) {
assert(rd_stats_dst->rate != INT_MAX && rd_stats_src->rate != INT_MAX);
rd_stats_dst->rate = (int)AOMMIN(
((int64_t)rd_stats_dst->rate + (int64_t)rd_stats_src->rate), INT_MAX);
if (!rd_stats_dst->zero_rate)
rd_stats_dst->zero_rate = rd_stats_src->zero_rate;
rd_stats_dst->dist += rd_stats_src->dist;
rd_stats_dst->sse += rd_stats_src->sse;
rd_stats_dst->skip &= rd_stats_src->skip;
#if CONFIG_RD_DEBUG
// This may run into problems when monochrome video is
// encoded, as there will only be 1 plane
for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
rd_stats_dst->txb_coeff_cost[plane] += rd_stats_src->txb_coeff_cost[plane];
{
// TODO(angiebird): optimize this part
int r, c;
int ref_txb_coeff_cost = 0;
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r)
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
rd_stats_dst->txb_coeff_cost_map[plane][r][c] +=
rd_stats_src->txb_coeff_cost_map[plane][r][c];
ref_txb_coeff_cost += rd_stats_dst->txb_coeff_cost_map[plane][r][c];
}
assert(ref_txb_coeff_cost == rd_stats_dst->txb_coeff_cost[plane]);
}
}
#endif
}
static INLINE void av1_accumulate_rd_stats(RD_STATS *rd_stats, int64_t dist,
int rate, int skip, int64_t sse,
int zero_rate) {
assert(rd_stats->rate != INT_MAX && rate != INT_MAX);
rd_stats->rate += rate;
if (!rd_stats->zero_rate) rd_stats->zero_rate = zero_rate;
rd_stats->dist += dist;
rd_stats->skip &= skip;
rd_stats->sse += sse;
}
static INLINE int64_t av1_calculate_rd_cost(int mult, int rate, int64_t dist) {
assert(mult >= 0);
if (rate >= 0) {
return RDCOST(mult, rate, dist);
}
return RDCOST_NEG_R(mult, -rate, dist);
}
static INLINE void av1_rd_cost_update(int mult, RD_STATS *rd_cost) {
if (rd_cost->rate < INT_MAX && rd_cost->dist < INT64_MAX &&
rd_cost->rdcost < INT64_MAX) {
rd_cost->rdcost = av1_calculate_rd_cost(mult, rd_cost->rate, rd_cost->dist);
} else {
av1_invalid_rd_stats(rd_cost);
}
}
static INLINE void av1_rd_stats_subtraction(int mult,
const RD_STATS *const left,
const RD_STATS *const right,
RD_STATS *result) {
if (left->rate == INT_MAX || right->rate == INT_MAX ||
left->dist == INT64_MAX || right->dist == INT64_MAX ||
left->rdcost == INT64_MAX || right->rdcost == INT64_MAX) {
av1_invalid_rd_stats(result);
} else {
result->rate = left->rate - right->rate;
result->dist = left->dist - right->dist;
result->rdcost = av1_calculate_rd_cost(mult, result->rate, result->dist);
}
}
struct TileInfo;
struct TileDataEnc;
struct AV1_COMP;
struct macroblock;
int av1_compute_rd_mult_based_on_qindex(const struct AV1_COMP *cpi, int qindex);
int av1_compute_rd_mult(const struct AV1_COMP *cpi, int qindex);
void av1_initialize_rd_consts(struct AV1_COMP *cpi);
void av1_initialize_me_consts(const struct AV1_COMP *cpi, MACROBLOCK *x,
int qindex);
void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n,
unsigned int qstep, int *rate, int64_t *dist);
void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr,
double *rate_f, double *distbysse_f);
void av1_model_rd_surffit(BLOCK_SIZE bsize, double sse_norm, double xm,
double yl, double *rate_f, double *distbysse_f);
int av1_get_switchable_rate(const AV1_COMMON *const cm, MACROBLOCK *x,
const MACROBLOCKD *xd);
int av1_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block,
int stride);
int16_t *av1_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block,
int16_t *base);
YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const struct AV1_COMP *cpi,
int ref_frame);
void av1_init_me_luts(void);
void av1_set_mvcost(MACROBLOCK *x, int ref, int ref_mv_idx);
void av1_get_entropy_contexts(BLOCK_SIZE bsize,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[MAX_MIB_SIZE],
ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]);
void av1_set_rd_speed_thresholds(struct AV1_COMP *cpi);
void av1_update_rd_thresh_fact(const AV1_COMMON *const cm,
int (*fact)[MAX_MODES], int rd_thresh, int bsize,
int best_mode_index);
static INLINE int rd_less_than_thresh(int64_t best_rd, int thresh,
int thresh_fact) {
return best_rd < ((int64_t)thresh * thresh_fact >> 5) || thresh == INT_MAX;
}
void av1_mv_pred(const struct AV1_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride, int ref_frame,
BLOCK_SIZE block_size);
static INLINE void set_error_per_bit(MACROBLOCK *x, int rdmult) {
x->errorperbit = rdmult >> RD_EPB_SHIFT;
x->errorperbit += (x->errorperbit == 0);
}
// Get the threshold for R-D optimization of coefficients depending upon mode
// decision/winner mode processing
static INLINE uint32_t get_rd_opt_coeff_thresh(
const uint32_t *const coeff_opt_dist_threshold,
int enable_winner_mode_for_coeff_opt, int is_winner_mode) {
// Default initialization of threshold
uint32_t coeff_opt_thresh = coeff_opt_dist_threshold[0];
// TODO(any): Experiment with coeff_opt_dist_threshold values when
// enable_winner_mode_for_coeff_opt is ON
// TODO(any): Skip the winner mode processing for blocks with lower residual
// energy as R-D optimization of coefficients would have been enabled during
// mode decision
if (enable_winner_mode_for_coeff_opt) {
// Use conservative threshold during mode decision and perform R-D
// optimization of coeffs always for winner modes
if (is_winner_mode)
coeff_opt_thresh = UINT32_MAX;
else
coeff_opt_thresh = coeff_opt_dist_threshold[1];
}
return coeff_opt_thresh;
}
void av1_setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *scale,
const struct scale_factors *scale_uv,
const int num_planes);
int av1_get_intra_cost_penalty(int qindex, int qdelta,
aom_bit_depth_t bit_depth);
void av1_fill_mode_rates(AV1_COMMON *const cm, MACROBLOCK *x,
FRAME_CONTEXT *fc);
void av1_fill_coeff_costs(MACROBLOCK *x, FRAME_CONTEXT *fc,
const int num_planes);
void av1_fill_mv_costs(const FRAME_CONTEXT *fc, int integer_mv, int usehp,
MACROBLOCK *x);
int av1_get_adaptive_rdmult(const struct AV1_COMP *cpi, double beta);
int av1_get_deltaq_offset(const struct AV1_COMP *cpi, int qindex, double beta);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_RD_H_