| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "config/aom_config.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/thread_common.h" |
| #include "av1/common/reconinter.h" |
| |
| // Set up nsync by width. |
| static INLINE int get_sync_range(int width) { |
| // nsync numbers are picked by testing. For example, for 4k |
| // video, using 4 gives best performance. |
| if (width < 640) |
| return 1; |
| else if (width <= 1280) |
| return 2; |
| else if (width <= 4096) |
| return 4; |
| else |
| return 8; |
| } |
| |
| // Allocate memory for lf row synchronization |
| static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, |
| int width, int num_workers) { |
| lf_sync->rows = rows; |
| #if CONFIG_MULTITHREAD |
| { |
| int i, j; |
| |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| CHECK_MEM_ERROR(cm, lf_sync->mutex_[j], |
| aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows)); |
| if (lf_sync->mutex_[j]) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&lf_sync->mutex_[j][i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->cond_[j], |
| aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows)); |
| if (lf_sync->cond_[j]) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&lf_sync->cond_[j][i], NULL); |
| } |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->job_mutex, |
| aom_malloc(sizeof(*(lf_sync->job_mutex)))); |
| if (lf_sync->job_mutex) { |
| pthread_mutex_init(lf_sync->job_mutex, NULL); |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| CHECK_MEM_ERROR(cm, lf_sync->lfdata, |
| aom_malloc(num_workers * sizeof(*(lf_sync->lfdata)))); |
| lf_sync->num_workers = num_workers; |
| |
| for (int j = 0; j < MAX_MB_PLANE; j++) { |
| CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j], |
| aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows)); |
| } |
| CHECK_MEM_ERROR( |
| cm, lf_sync->job_queue, |
| aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2)); |
| // Set up nsync. |
| lf_sync->sync_range = get_sync_range(width); |
| } |
| |
| // Deallocate lf synchronization related mutex and data |
| void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { |
| if (lf_sync != NULL) { |
| int j; |
| #if CONFIG_MULTITHREAD |
| int i; |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| if (lf_sync->mutex_[j] != NULL) { |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_mutex_destroy(&lf_sync->mutex_[j][i]); |
| } |
| aom_free(lf_sync->mutex_[j]); |
| } |
| if (lf_sync->cond_[j] != NULL) { |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_cond_destroy(&lf_sync->cond_[j][i]); |
| } |
| aom_free(lf_sync->cond_[j]); |
| } |
| } |
| if (lf_sync->job_mutex != NULL) { |
| pthread_mutex_destroy(lf_sync->job_mutex); |
| aom_free(lf_sync->job_mutex); |
| } |
| #endif // CONFIG_MULTITHREAD |
| aom_free(lf_sync->lfdata); |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| aom_free(lf_sync->cur_sb_col[j]); |
| } |
| |
| aom_free(lf_sync->job_queue); |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*lf_sync); |
| } |
| } |
| |
| static void loop_filter_data_reset(LFWorkerData *lf_data, |
| YV12_BUFFER_CONFIG *frame_buffer, |
| struct AV1Common *cm, MACROBLOCKD *xd) { |
| struct macroblockd_plane *pd = xd->plane; |
| lf_data->frame_buffer = frame_buffer; |
| lf_data->cm = cm; |
| lf_data->xd = xd; |
| for (int i = 0; i < MAX_MB_PLANE; i++) { |
| memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst)); |
| lf_data->planes[i].subsampling_x = pd[i].subsampling_x; |
| lf_data->planes[i].subsampling_y = pd[i].subsampling_y; |
| } |
| } |
| |
| static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c, |
| int plane) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) { |
| pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, |
| const int sb_cols, int plane) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| int cur; |
| // Only signal when there are enough filtered SB for next row to run. |
| int sig = 1; |
| |
| if (c < sb_cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = sb_cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&lf_sync->mutex_[plane][r]); |
| |
| lf_sync->cur_sb_col[plane][r] = cur; |
| |
| pthread_cond_broadcast(&lf_sync->cond_[plane][r]); |
| pthread_mutex_unlock(&lf_sync->mutex_[plane][r]); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| (void)sb_cols; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start, |
| int stop, int plane_start, int plane_end) { |
| int mi_row, plane, dir; |
| AV1LfMTInfo *lf_job_queue = lf_sync->job_queue; |
| lf_sync->jobs_enqueued = 0; |
| lf_sync->jobs_dequeued = 0; |
| |
| for (dir = 0; dir < 2; dir++) { |
| for (plane = plane_start; plane < plane_end; plane++) { |
| if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) |
| break; |
| else if (plane == 1 && !(cm->lf.filter_level_u)) |
| continue; |
| else if (plane == 2 && !(cm->lf.filter_level_v)) |
| continue; |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| lf_job_queue->mi_row = mi_row; |
| lf_job_queue->plane = plane; |
| lf_job_queue->dir = dir; |
| lf_job_queue++; |
| lf_sync->jobs_enqueued++; |
| } |
| } |
| } |
| } |
| |
| AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) { |
| AV1LfMTInfo *cur_job_info = NULL; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(lf_sync->job_mutex); |
| |
| if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) { |
| cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued; |
| lf_sync->jobs_dequeued++; |
| } |
| |
| pthread_mutex_unlock(lf_sync->job_mutex); |
| #else |
| (void)lf_sync; |
| #endif |
| |
| return cur_job_info; |
| } |
| |
| // Implement row loopfiltering for each thread. |
| static INLINE void thread_loop_filter_rows( |
| const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, |
| struct macroblockd_plane *planes, MACROBLOCKD *xd, |
| AV1LfSync *const lf_sync) { |
| const int sb_cols = |
| ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; |
| int mi_row, mi_col, plane, dir; |
| int r, c; |
| |
| while (1) { |
| AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync); |
| |
| if (cur_job_info != NULL) { |
| mi_row = cur_job_info->mi_row; |
| plane = cur_job_info->plane; |
| dir = cur_job_info->dir; |
| r = mi_row >> MAX_MIB_SIZE_LOG2; |
| |
| if (dir == 0) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { |
| c = mi_col >> MAX_MIB_SIZE_LOG2; |
| |
| av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer, |
| mi_row, mi_col, plane, plane + 1); |
| |
| av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row, |
| mi_col); |
| sync_write(lf_sync, r, c, sb_cols, plane); |
| } |
| } else if (dir == 1) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { |
| c = mi_col >> MAX_MIB_SIZE_LOG2; |
| |
| // Wait for vertical edge filtering of the top-right block to be |
| // completed |
| sync_read(lf_sync, r, c, plane); |
| |
| // Wait for vertical edge filtering of the right block to be |
| // completed |
| sync_read(lf_sync, r + 1, c, plane); |
| |
| av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer, |
| mi_row, mi_col, plane, plane + 1); |
| av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row, |
| mi_col); |
| } |
| } |
| } else { |
| break; |
| } |
| } |
| } |
| |
| // Row-based multi-threaded loopfilter hook |
| static int loop_filter_row_worker(AV1LfSync *const lf_sync, |
| LFWorkerData *const lf_data) { |
| thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, |
| lf_data->xd, lf_sync); |
| return 1; |
| } |
| |
| static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int start, int stop, |
| int plane_start, int plane_end, |
| AVxWorker *workers, int nworkers, |
| AV1LfSync *lf_sync) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| // Number of superblock rows and cols |
| const int sb_rows = |
| ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; |
| const int num_workers = nworkers; |
| int i; |
| |
| if (!lf_sync->sync_range || sb_rows != lf_sync->rows || |
| num_workers > lf_sync->num_workers) { |
| av1_loop_filter_dealloc(lf_sync); |
| loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); |
| } |
| |
| // Initialize cur_sb_col to -1 for all SB rows. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| memset(lf_sync->cur_sb_col[i], -1, |
| sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows); |
| } |
| |
| enqueue_lf_jobs(lf_sync, cm, start, stop, plane_start, plane_end); |
| |
| // Set up loopfilter thread data. |
| for (i = 0; i < num_workers; ++i) { |
| AVxWorker *const worker = &workers[i]; |
| LFWorkerData *const lf_data = &lf_sync->lfdata[i]; |
| |
| worker->hook = (AVxWorkerHook)loop_filter_row_worker; |
| worker->data1 = lf_sync; |
| worker->data2 = lf_data; |
| |
| // Loopfilter data |
| loop_filter_data_reset(lf_data, frame, cm, xd); |
| |
| // Start loopfiltering |
| if (i == num_workers - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| // Wait till all rows are finished |
| for (i = 0; i < num_workers; ++i) { |
| winterface->sync(&workers[i]); |
| } |
| } |
| |
| void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int plane_start, int plane_end, |
| int partial_frame, AVxWorker *workers, |
| int num_workers, AV1LfSync *lf_sync) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| if (partial_frame && cm->mi_rows > 8) { |
| start_mi_row = cm->mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| av1_loop_filter_frame_init(cm, plane_start, plane_end); |
| |
| loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, |
| plane_end, workers, num_workers, lf_sync); |
| } |