blob: 4199906cf8601ea2a2c2bf16daf674ca30185abd [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/bitwriter.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encodemb.h"
#if CONFIG_LV_MAP
#include "av1/encoder/encodetxb.h"
#endif
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_PVQ
#include "av1/encoder/encint.h"
#include "av1/common/partition.h"
#include "av1/encoder/pvq_encoder.h"
#endif
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
// Check if one needs to use c version subtraction.
static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; }
static void subtract_block(const MACROBLOCKD *xd, int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint8_t *src8, ptrdiff_t src_stride,
const uint8_t *pred8, ptrdiff_t pred_stride) {
#if !CONFIG_HIGHBITDEPTH
(void)xd;
#endif
if (check_subtract_block_size(rows, cols)) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8,
src_stride, pred8, pred_stride, xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
return;
}
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
pred8, pred_stride, xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
}
void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
int blk_col, int blk_row, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const int diff_stride = block_size_wide[plane_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
uint8_t *src =
&p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
}
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const MACROBLOCKD *xd = &x->e_mbd;
subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
#if CONFIG_EC_ADAPT
{ 10, 7 }, { 8, 5 },
#else
{ 10, 6 }, { 8, 6 },
#endif
};
#define UPDATE_RD_COST() \
{ \
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \
}
static INLINE unsigned int get_token_bit_costs(
unsigned int token_costs[2][COEFF_CONTEXTS][ENTROPY_TOKENS], int skip_eob,
int ctx, int token) {
(void)skip_eob;
return token_costs[token == ZERO_TOKEN || token == EOB_TOKEN][ctx][token];
}
#define USE_GREEDY_OPTIMIZE_B 0
#if USE_GREEDY_OPTIMIZE_B
typedef struct av1_token_state_greedy {
int16_t token;
tran_low_t qc;
tran_low_t dqc;
} av1_token_state_greedy;
static int optimize_b_greedy(const AV1_COMMON *cm, MACROBLOCK *mb, int plane,
int block, TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
av1_token_state_greedy tokens[MAX_TX_SQUARE + 1][2];
uint8_t token_cache[MAX_TX_SQUARE];
const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE plane_type = pd->plane_type;
const int16_t *const dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const SCAN_ORDER *const scan_order =
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
const int16_t *const scan = scan_order->scan;
const int16_t *const nb = scan_order->neighbors;
int dqv;
const int shift = av1_get_tx_scale(tx_size);
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size];
#endif
#if CONFIG_NEW_QUANT
int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
#endif // CONFIG_NEW_QUANT
int sz = 0;
const int64_t rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int16_t t0, t1;
int i, final_eob;
const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref];
const int default_eob = tx_size_2d[tx_size];
assert(mb->qindex > 0);
assert((!plane_type && !plane) || (plane_type && plane));
assert(eob <= default_eob);
int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
int64_t rate0, rate1;
for (i = 0; i < eob; i++) {
const int rc = scan[i];
int x = qcoeff[rc];
t0 = av1_get_token(x);
tokens[i][0].qc = x;
tokens[i][0].token = t0;
tokens[i][0].dqc = dqcoeff[rc];
token_cache[rc] = av1_pt_energy_class[t0];
}
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][0].dqc = 0;
tokens[eob][1] = tokens[eob][0];
unsigned int(*token_costs_ptr)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
token_costs;
final_eob = 0;
int64_t eob_cost0, eob_cost1;
const int ctx0 = ctx;
/* Record the r-d cost */
int64_t accu_rate = 0;
int64_t accu_error = 0;
rate0 = get_token_bit_costs(*(token_costs_ptr + band_translate[0]), 0, ctx0,
EOB_TOKEN);
int64_t best_block_rd_cost = RDCOST(rdmult, rddiv, rate0, accu_error);
// int64_t best_block_rd_cost_all0 = best_block_rd_cost;
int x_prev = 1;
for (i = 0; i < eob; i++) {
const int rc = scan[i];
int x = qcoeff[rc];
sz = -(x < 0);
int band_cur = band_translate[i];
int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i);
int token_tree_sel_cur = (x_prev == 0);
if (x == 0) {
// no need to search when x == 0
rate0 =
get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur,
ctx_cur, tokens[i][0].token);
accu_rate += rate0;
x_prev = 0;
// accu_error does not change when x==0
} else {
/* Computing distortion
*/
// compute the distortion for the first candidate
// and the distortion for quantizing to 0.
int dx0 = (-coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx0 >>= xd->bd - 8;
}
#endif
int64_t d0 = (int64_t)dx0 * dx0;
int x_a = x - 2 * sz - 1;
int64_t d2, d2_a;
int dx;
#if CONFIG_AOM_QM
int iwt = iqmatrix[rc];
dqv = dequant_ptr[rc != 0];
dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
#else
dqv = dequant_ptr[rc != 0];
#endif
dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_HIGHBITDEPTH
d2 = (int64_t)dx * dx;
/* compute the distortion for the second candidate
* x_a = x - 2 * sz + 1;
*/
if (x_a != 0) {
#if CONFIG_NEW_QUANT
dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
(coeff[rc] << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_HIGHBITDEPTH
#else // CONFIG_NEW_QUANT
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dqv + sz) ^ sz;
}
#else
dx -= (dqv + sz) ^ sz;
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_NEW_QUANT
d2_a = (int64_t)dx * dx;
} else {
d2_a = d0;
}
/* Computing rates and r-d cost
*/
int best_x, best_eob_x;
int64_t base_bits, next_bits0, next_bits1;
int64_t next_eob_bits0, next_eob_bits1;
// rate cost of x
base_bits = av1_get_token_cost(x, &t0, cat6_bits);
rate0 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur),
token_tree_sel_cur, ctx_cur, t0);
base_bits = av1_get_token_cost(x_a, &t1, cat6_bits);
rate1 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur),
token_tree_sel_cur, ctx_cur, t1);
next_bits0 = 0;
next_bits1 = 0;
next_eob_bits0 = 0;
next_eob_bits1 = 0;
if (i < default_eob - 1) {
int ctx_next, token_tree_sel_next;
int band_next = band_translate[i + 1];
token_cache[rc] = av1_pt_energy_class[t0];
ctx_next = get_coef_context(nb, token_cache, i + 1);
token_tree_sel_next = (x == 0);
next_bits0 = get_token_bit_costs(*(token_costs_ptr + band_next),
token_tree_sel_next, ctx_next,
tokens[i + 1][0].token);
next_eob_bits0 =
get_token_bit_costs(*(token_costs_ptr + band_next),
token_tree_sel_next, ctx_next, EOB_TOKEN);
token_cache[rc] = av1_pt_energy_class[t1];
ctx_next = get_coef_context(nb, token_cache, i + 1);
token_tree_sel_next = (x_a == 0);
next_bits1 = get_token_bit_costs(*(token_costs_ptr + band_next),
token_tree_sel_next, ctx_next,
tokens[i + 1][0].token);
if (x_a != 0) {
next_eob_bits1 =
get_token_bit_costs(*(token_costs_ptr + band_next),
token_tree_sel_next, ctx_next, EOB_TOKEN);
}
}
rd_cost0 = RDCOST(rdmult, rddiv, (rate0 + next_bits0), d2);
rd_cost1 = RDCOST(rdmult, rddiv, (rate1 + next_bits1), d2_a);
best_x = (rd_cost1 < rd_cost0);
eob_cost0 = RDCOST(rdmult, rddiv, (accu_rate + rate0 + next_eob_bits0),
(accu_error + d2 - d0));
eob_cost1 = eob_cost0;
if (x_a != 0) {
eob_cost1 = RDCOST(rdmult, rddiv, (accu_rate + rate1 + next_eob_bits1),
(accu_error + d2_a - d0));
best_eob_x = (eob_cost1 < eob_cost0);
} else {
best_eob_x = 0;
}
int dqc, dqc_a = 0;
dqc = dqcoeff[rc];
if (best_x + best_eob_x) {
if (x_a != 0) {
#if CONFIG_NEW_QUANT
dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv,
dequant_val[band_translate[i]]);
dqc_a = shift ? ROUND_POWER_OF_TWO(dqc_a, shift) : dqc_a;
if (sz) dqc_a = -dqc_a;
#else
if (x_a < 0)
dqc_a = -((-x_a * dqv) >> shift);
else
dqc_a = (x_a * dqv) >> shift;
#endif // CONFIG_NEW_QUANT
} else {
dqc_a = 0;
} // if (x_a != 0)
}
// record the better quantized value
if (best_x) {
qcoeff[rc] = x_a;
dqcoeff[rc] = dqc_a;
accu_rate += rate1;
accu_error += d2_a - d0;
assert(d2_a <= d0);
token_cache[rc] = av1_pt_energy_class[t1];
} else {
accu_rate += rate0;
accu_error += d2 - d0;
assert(d2 <= d0);
token_cache[rc] = av1_pt_energy_class[t0];
}
x_prev = qcoeff[rc];
// determine whether to move the eob position to i+1
int64_t best_eob_cost_i = eob_cost0;
tokens[i][1].token = t0;
tokens[i][1].qc = x;
tokens[i][1].dqc = dqc;
if ((x_a != 0) && (best_eob_x)) {
best_eob_cost_i = eob_cost1;
tokens[i][1].token = t1;
tokens[i][1].qc = x_a;
tokens[i][1].dqc = dqc_a;
}
if (best_eob_cost_i < best_block_rd_cost) {
best_block_rd_cost = best_eob_cost_i;
final_eob = i + 1;
}
} // if (x==0)
} // for (i)
assert(final_eob <= eob);
if (final_eob > 0) {
assert(tokens[final_eob - 1][1].qc != 0);
i = final_eob - 1;
int rc = scan[i];
qcoeff[rc] = tokens[i][1].qc;
dqcoeff[rc] = tokens[i][1].dqc;
}
for (i = final_eob; i < eob; i++) {
int rc = scan[i];
qcoeff[rc] = 0;
dqcoeff[rc] = 0;
}
mb->plane[plane].eobs[block] = final_eob;
return final_eob;
}
#else // USE_GREEDY_OPTIMIZE_B
typedef struct av1_token_state_org {
int64_t error;
int rate;
int16_t next;
int16_t token;
tran_low_t qc;
tran_low_t dqc;
uint8_t best_index;
} av1_token_state_org;
static int optimize_b_org(const AV1_COMMON *cm, MACROBLOCK *mb, int plane,
int block, TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
av1_token_state_org tokens[MAX_TX_SQUARE + 1][2];
uint8_t token_cache[MAX_TX_SQUARE];
const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE plane_type = pd->plane_type;
const int default_eob = tx_size_2d[tx_size];
const int16_t *const dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const SCAN_ORDER *const scan_order =
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
const int16_t *const scan = scan_order->scan;
const int16_t *const nb = scan_order->neighbors;
int dqv;
const int shift = av1_get_tx_scale(tx_size);
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size];
#endif
#if CONFIG_NEW_QUANT
int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
#endif // CONFIG_NEW_QUANT
int next = eob, sz = 0;
const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
const int64_t rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int rate0, rate1;
int64_t error0, error1;
int16_t t0, t1;
int best, band = (eob < default_eob) ? band_translate[eob]
: band_translate[eob - 1];
int pt, i, final_eob;
const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref];
const uint16_t *band_counts = &band_count_table[tx_size][band];
uint16_t band_left = eob - band_cum_count_table[tx_size][band] + 1;
int shortcut = 0;
int next_shortcut = 0;
#if CONFIG_EXT_DELTA_Q
const int qindex = cm->seg.enabled
? av1_get_qindex(&cm->seg, xd->mi[0]->mbmi.segment_id,
cm->base_qindex)
: cm->base_qindex;
assert(qindex > 0);
(void)qindex;
#else
assert(mb->qindex > 0);
#endif
token_costs += band;
assert((!plane_type && !plane) || (plane_type && plane));
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][1] = tokens[eob][0];
for (i = 0; i < eob; i++) {
const int rc = scan[i];
tokens[i][0].rate = av1_get_token_cost(qcoeff[rc], &t0, cat6_bits);
tokens[i][0].token = t0;
token_cache[rc] = av1_pt_energy_class[t0];
}
for (i = eob; i-- > 0;) {
int base_bits, dx;
int64_t d2;
const int rc = scan[i];
int x = qcoeff[rc];
#if CONFIG_AOM_QM
int iwt = iqmatrix[rc];
dqv = dequant_ptr[rc != 0];
dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
#else
dqv = dequant_ptr[rc != 0];
#endif
next_shortcut = shortcut;
/* Only add a trellis state for non-zero coefficients. */
if (UNLIKELY(x)) {
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if (next_shortcut) {
/* Consider both possible successor states. */
if (next < default_eob) {
pt = get_coef_context(nb, token_cache, i + 1);
rate0 +=
get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token);
rate1 +=
get_token_bit_costs(*token_costs, 0, pt, tokens[next][1].token);
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
} else {
if (next < default_eob) {
pt = get_coef_context(nb, token_cache, i + 1);
rate0 +=
get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token);
}
best = 0;
}
dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_HIGHBITDEPTH
d2 = (int64_t)dx * dx;
tokens[i][0].rate += (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].qc = x;
tokens[i][0].dqc = dqcoeff[rc];
tokens[i][0].best_index = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
// The threshold of 3 is empirically obtained.
if (UNLIKELY(abs(x) > 3)) {
shortcut = 0;
} else {
#if CONFIG_NEW_QUANT
shortcut = ((av1_dequant_abscoeff_nuq(abs(x), dqv,
dequant_val[band_translate[i]]) >
(abs(coeff[rc]) << shift)) &&
(av1_dequant_abscoeff_nuq(abs(x) - 1, dqv,
dequant_val[band_translate[i]]) <
(abs(coeff[rc]) << shift)));
#else // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
if ((abs(x) * dequant_ptr[rc != 0] * iwt >
((abs(coeff[rc]) << shift) << AOM_QM_BITS)) &&
(abs(x) * dequant_ptr[rc != 0] * iwt <
(((abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])
<< AOM_QM_BITS)))
#else
if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) &&
(abs(x) * dequant_ptr[rc != 0] <
(abs(coeff[rc]) << shift) + dequant_ptr[rc != 0]))
#endif // CONFIG_AOM_QM
shortcut = 1;
else
shortcut = 0;
#endif // CONFIG_NEW_QUANT
}
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
} else {
tokens[i][1] = tokens[i][0];
next = i;
if (UNLIKELY(!(--band_left))) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
continue;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
base_bits = 0;
} else {
base_bits = av1_get_token_cost(x, &t0, cat6_bits);
t1 = t0;
}
if (next_shortcut) {
if (LIKELY(next < default_eob)) {
if (t0 != EOB_TOKEN) {
token_cache[rc] = av1_pt_energy_class[t0];
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += get_token_bit_costs(*token_costs, !x, pt,
tokens[next][0].token);
}
if (t1 != EOB_TOKEN) {
token_cache[rc] = av1_pt_energy_class[t1];
pt = get_coef_context(nb, token_cache, i + 1);
rate1 += get_token_bit_costs(*token_costs, !x, pt,
tokens[next][1].token);
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
} else {
// The two states in next stage are identical.
if (next < default_eob && t0 != EOB_TOKEN) {
token_cache[rc] = av1_pt_energy_class[t0];
pt = get_coef_context(nb, token_cache, i + 1);
rate0 +=
get_token_bit_costs(*token_costs, !x, pt, tokens[next][0].token);
}
best = 0;
}
#if CONFIG_NEW_QUANT
dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
(coeff[rc] << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_HIGHBITDEPTH
#else // CONFIG_NEW_QUANT
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dqv + sz) ^ sz;
}
#else
dx -= (dqv + sz) ^ sz;
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_NEW_QUANT
d2 = (int64_t)dx * dx;
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
if (x) {
#if CONFIG_NEW_QUANT
tokens[i][1].dqc = av1_dequant_abscoeff_nuq(
abs(x), dqv, dequant_val[band_translate[i]]);
tokens[i][1].dqc = shift ? ROUND_POWER_OF_TWO(tokens[i][1].dqc, shift)
: tokens[i][1].dqc;
if (sz) tokens[i][1].dqc = -tokens[i][1].dqc;
#else
if (x < 0)
tokens[i][1].dqc = -((-x * dqv) >> shift);
else
tokens[i][1].dqc = (x * dqv) >> shift;
#endif // CONFIG_NEW_QUANT
} else {
tokens[i][1].dqc = 0;
}
tokens[i][1].best_index = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
pt = get_coef_context(nb, token_cache, i + 1);
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate += get_token_bit_costs(*token_costs, 1, pt, t0);
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate += get_token_bit_costs(*token_costs, 1, pt, t1);
tokens[next][1].token = ZERO_TOKEN;
}
tokens[i][0].best_index = tokens[i][1].best_index = 0;
shortcut = (tokens[next][0].rate != tokens[next][1].rate);
/* Don't update next, because we didn't add a new node. */
}
if (UNLIKELY(!(--band_left))) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
}
/* Now pick the best path through the whole trellis. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += get_token_bit_costs(*token_costs, 0, ctx, t0);
rate1 += get_token_bit_costs(*token_costs, 0, ctx, t1);
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
for (i = next; i < eob; i = next) {
const int x = tokens[i][best].qc;
const int rc = scan[i];
if (x) final_eob = i;
qcoeff[rc] = x;
dqcoeff[rc] = tokens[i][best].dqc;
next = tokens[i][best].next;
best = tokens[i][best].best_index;
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
assert(final_eob <= default_eob);
return final_eob;
}
#endif // USE_GREEDY_OPTIMIZE_B
int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
const int eob = p->eobs[block];
assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
if (eob == 0) return eob;
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return eob;
#if CONFIG_PVQ
(void)cm;
(void)tx_size;
(void)ctx;
return eob;
#endif
#if USE_GREEDY_OPTIMIZE_B
return optimize_b_greedy(cm, mb, plane, block, tx_size, ctx);
#else // USE_GREEDY_OPTIMIZE_B
return optimize_b_org(cm, mb, plane, block, tx_size, ctx);
#endif // USE_GREEDY_OPTIMIZE_B
}
#if !CONFIG_PVQ
#if CONFIG_HIGHBITDEPTH
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_HIGHBD = 1,
QUANT_FUNC_TYPES = 2
} QUANT_FUNC;
static AV1_QUANT_FACADE
quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
#if !CONFIG_NEW_QUANT
{ av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
{ av1_quantize_b_facade, av1_highbd_quantize_b_facade },
{ av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
#else // !CONFIG_NEW_QUANT
{ av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade },
{ av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade },
{ av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade },
#endif // !CONFIG_NEW_QUANT
{ NULL, NULL }
};
#else
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_TYPES = 1
} QUANT_FUNC;
static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES]
[QUANT_FUNC_TYPES] = {
#if !CONFIG_NEW_QUANT
{ av1_quantize_fp_facade },
{ av1_quantize_b_facade },
{ av1_quantize_dc_facade },
#else // !CONFIG_NEW_QUANT
{ av1_quantize_fp_nuq_facade },
{ av1_quantize_b_nuq_facade },
{ av1_quantize_dc_nuq_facade },
#endif // !CONFIG_NEW_QUANT
{ NULL }
};
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_PVQ
void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int ctx,
AV1_XFORM_QUANT xform_quant_idx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if !(CONFIG_PVQ || CONFIG_DAALA_DIST)
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
#else
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
PLANE_TYPE plane_type = get_plane_type(plane);
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const int is_inter = is_inter_block(mbmi);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = block_size_wide[plane_bsize];
#if CONFIG_AOM_QM
int seg_id = mbmi->segment_id;
const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][!is_inter][tx_size];
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!is_inter][tx_size];
#endif
FWD_TXFM_PARAM fwd_txfm_param;
#if CONFIG_PVQ || CONFIG_DAALA_DIST
uint8_t *dst;
int16_t *pred;
const int dst_stride = pd->dst.stride;
int tx_blk_size;
int i, j;
#endif
#if !CONFIG_PVQ
const int tx2d_size = tx_size_2d[tx_size];
QUANT_PARAM qparam;
const int16_t *src_diff;
src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
qparam.log_scale = av1_get_tx_scale(tx_size);
#if CONFIG_NEW_QUANT
qparam.tx_size = tx_size;
qparam.dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type);
#endif // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
qparam.qmatrix = qmatrix;
qparam.iqmatrix = iqmatrix;
#endif // CONFIG_AOM_QM
#else
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
int skip = 1;
PVQ_INFO *pvq_info = NULL;
uint8_t *src;
int16_t *src_int16;
const int src_stride = p->src.stride;
(void)ctx;
(void)scan_order;
(void)qcoeff;
if (x->pvq_coded) {
assert(block < MAX_PVQ_BLOCKS_IN_SB);
pvq_info = &x->pvq[block][plane];
}
src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
src_int16 =
&p->src_int16[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
src_int16[diff_stride * j + i] =
CONVERT_TO_SHORTPTR(src)[src_stride * j + i];
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
src_int16[diff_stride * j + i] = src[src_stride * j + i];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
#endif
#if CONFIG_PVQ || CONFIG_DAALA_DIST
dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
pred = &pd->pred[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
// copy uint8 orig and predicted block to int16 buffer
// in order to use existing VP10 transform functions
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
pred[diff_stride * j + i] =
CONVERT_TO_SHORTPTR(dst)[dst_stride * j + i];
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
pred[diff_stride * j + i] = dst[dst_stride * j + i];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
#endif
(void)ctx;
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.lossless = xd->lossless[mbmi->segment_id];
#if !CONFIG_PVQ
#if CONFIG_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
if (LIKELY(!x->skip_block)) {
quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD](
coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam);
} else {
av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
}
}
#if CONFIG_LV_MAP
p->txb_entropy_ctx[block] =
(uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
#endif // CONFIG_LV_MAP
return;
}
#endif // CONFIG_HIGHBITDEPTH
av1_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
if (LIKELY(!x->skip_block)) {
quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD](
coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam);
} else {
av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
}
}
#if CONFIG_LV_MAP
p->txb_entropy_ctx[block] =
(uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
#endif // CONFIG_LV_MAP
#else // #if !CONFIG_PVQ
(void)xform_quant_idx;
#if CONFIG_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
av1_highbd_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
av1_highbd_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
} else {
#endif
av1_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
av1_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
#if CONFIG_HIGHBITDEPTH
}
#endif
// PVQ for inter mode block
if (!x->skip_block) {
PVQ_SKIP_TYPE ac_dc_coded =
av1_pvq_encode_helper(x,
coeff, // target original vector
ref_coeff, // reference vector
dqcoeff, // de-quantized vector
eob, // End of Block marker
pd->dequant, // aom's quantizers
plane, // image plane
tx_size, // block size in log_2 - 2
tx_type,
&x->rate, // rate measured
x->pvq_speed,
pvq_info); // PVQ info for a block
skip = ac_dc_coded == PVQ_SKIP;
}
x->pvq_skip[plane] = skip;
if (!skip) mbmi->skip = 0;
#endif // #if !CONFIG_PVQ
}
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
int ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
#if !CONFIG_PVQ
ENTROPY_CONTEXT *a, *l;
#endif
#if CONFIG_VAR_TX
int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
#endif
dst = &pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
#if !CONFIG_PVQ
a = &args->ta[blk_col];
l = &args->tl[blk_row];
#if CONFIG_VAR_TX
ctx = get_entropy_context(tx_size, a, l);
#else
ctx = combine_entropy_contexts(*a, *l);
#endif
#else
ctx = 0;
#endif // CONFIG_PVQ
#if CONFIG_VAR_TX
// Assert not magic number (uninitialized).
assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234);
if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) {
#else
{
#endif
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_FP);
}
#if CONFIG_VAR_TX
else {
p->eobs[block] = 0;
}
#endif
#if !CONFIG_PVQ
av1_optimize_b(cm, x, plane, block, tx_size, ctx);
av1_set_txb_context(x, plane, block, tx_size, a, l);
if (p->eobs[block]) *(args->skip) = 0;
if (p->eobs[block] == 0) return;
#else
(void)ctx;
if (!x->pvq_skip[plane]) *(args->skip) = 0;
if (x->pvq_skip[plane]) return;
#endif
TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block, tx_size);
av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst,
pd->dst.stride, p->eobs[block]);
}
#if CONFIG_VAR_TX
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE plane_tx_size;
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
plane_tx_size =
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
: mbmi->inter_tx_size[tx_row][tx_col];
if (tx_size == plane_tx_size) {
encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg);
} else {
assert(tx_size < TX_SIZES_ALL);
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
assert(sub_txs < tx_size);
// This is the square transform block partition entry point.
int bsl = tx_size_wide_unit[sub_txs];
int i;
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + ((i >> 1) * bsl);
const int offsetc = blk_col + ((i & 0x01) * bsl);
int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
arg);
block += step;
}
}
}
#endif
typedef struct encode_block_pass1_args {
AV1_COMMON *cm;
MACROBLOCK *x;
} encode_block_pass1_args;
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
int ctx = 0;
dst = &pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_B);
#if !CONFIG_PVQ
if (p->eobs[block] > 0) {
#else
if (!x->pvq_skip[plane]) {
{
int tx_blk_size;
int i, j;
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
CONVERT_TO_SHORTPTR(dst)[j * pd->dst.stride + i] = 0;
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
}
#endif // !CONFIG_PVQ
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
} else {
av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
}
return;
}
#endif // CONFIG_HIGHBITDEPTH
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
} else {
av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
}
}
void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
encode_block_pass1_args args = { cm, x };
av1_subtract_plane(x, bsize, 0);
av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, &args);
}
void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2
const int subsampling_x = xd->plane[plane].subsampling_x;
const int subsampling_y = xd->plane[plane].subsampling_y;
if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x,
subsampling_y))
continue;
bsize = scale_chroma_bsize(bsize, subsampling_x, subsampling_y);
#else
(void)mi_row;
(void)mi_col;
#endif
#if CONFIG_VAR_TX
// TODO(jingning): Clean this up.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0];
const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize);
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0];
const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0];
int idx, idy;
int block = 0;
int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
av1_get_entropy_contexts(bsize, 0, pd, ctx.ta[plane], ctx.tl[plane]);
#else
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = get_tx_size(plane, xd);
av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
#endif
#if !CONFIG_PVQ
av1_subtract_plane(x, bsize, plane);
#endif
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
#if CONFIG_VAR_TX
for (idy = 0; idy < mi_height; idy += bh) {
for (idx = 0; idx < mi_width; idx += bw) {
encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size,
&arg);
block += step;
}
}
#else
av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
#endif
}
}
#if CONFIG_SUPERTX
void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_VAR_TX
const TX_SIZE tx_size = TX_4X4;
#else
const TX_SIZE tx_size = get_tx_size(plane, xd);
#endif
av1_subtract_plane(x, bsize, plane);
av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
}
}
#endif // CONFIG_SUPERTX
#if !CONFIG_PVQ
void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
(void)tx_size;
struct macroblock_plane *p = &x->plane[plane];
#if !CONFIG_LV_MAP
*a = *l = p->eobs[block] > 0;
#else // !CONFIG_LV_MAP
*a = *l = p->txb_entropy_ctx[block];
#endif // !CONFIG_LV_MAP
#if CONFIG_VAR_TX || CONFIG_LV_MAP
int i;
for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0];
for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0];
#endif
}
#endif
static void encode_block_intra_and_set_context(int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
arg);
#if !CONFIG_PVQ
struct encode_b_args *const args = arg;
MACROBLOCK *x = args->x;
ENTROPY_CONTEXT *a = &args->ta[blk_col];
ENTROPY_CONTEXT *l = &args->tl[blk_row];
av1_set_txb_context(x, plane, block, tx_size, a, l);
#endif
}
#if CONFIG_DPCM_INTRA
static int get_eob(const tran_low_t *qcoeff, intptr_t n_coeffs,
const int16_t *scan) {
int eob = -1;
for (int i = (int)n_coeffs - 1; i >= 0; i--) {
const int rc = scan[i];
if (qcoeff[rc]) {
eob = i;
break;
}
}
return eob + 1;
}
static void quantize_scaler(int coeff, int16_t zbin, int16_t round_value,
int16_t quant, int16_t quant_shift, int16_t dequant,
int log_scale, tran_low_t *const qcoeff,
tran_low_t *const dqcoeff) {
zbin = ROUND_POWER_OF_TWO(zbin, log_scale);
round_value = ROUND_POWER_OF_TWO(round_value, log_scale);
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
if (abs_coeff >= zbin) {
int tmp = clamp(abs_coeff + round_value, INT16_MIN, INT16_MAX);
tmp = ((((tmp * quant) >> 16) + tmp) * quant_shift) >> (16 - log_scale);
*qcoeff = (tmp ^ coeff_sign) - coeff_sign;
*dqcoeff = (*qcoeff * dequant) / (1 << log_scale);
}
}
typedef void (*dpcm_fwd_tx_func)(const int16_t *input, int stride,
TX_TYPE_1D tx_type, tran_low_t *output);
static dpcm_fwd_tx_func get_dpcm_fwd_tx_func(int tx_length) {
switch (tx_length) {
case 4: return av1_dpcm_ft4_c;
case 8: return av1_dpcm_ft8_c;
case 16: return av1_dpcm_ft16_c;
case 32:
return av1_dpcm_ft32_c;
// TODO(huisu): add support for TX_64X64.
default: assert(0); return NULL;
}
}
static void process_block_dpcm_vert(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d,
struct macroblockd_plane *const pd,
struct macroblock_plane *const p,
uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int16_t *src_diff,
int diff_stride, tran_low_t *coeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff) {
const int tx1d_width = tx_size_wide[tx_size];
dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_width);
dpcm_inv_txfm_add_func inverse_tx =
av1_get_dpcm_inv_txfm_add_func(tx1d_width);
const int tx1d_height = tx_size_high[tx_size];
const int log_scale = av1_get_tx_scale(tx_size);
int q_idx = 0;
for (int r = 0; r < tx1d_height; ++r) {
// Update prediction.
if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0]));
// Subtraction.
for (int c = 0; c < tx1d_width; ++c) src_diff[c] = src[c] - dst[c];
// Forward transform.
forward_tx(src_diff, 1, tx_type_1d, coeff);
// Quantization.
for (int c = 0; c < tx1d_width; ++c) {
quantize_scaler(coeff[c], p->zbin[q_idx], p->round[q_idx],
p->quant[q_idx], p->quant_shift[q_idx],
pd->dequant[q_idx], log_scale, &qcoeff[c], &dqcoeff[c]);
q_idx = 1;
}
// Inverse transform.
inverse_tx(dqcoeff, 1, tx_type_1d, dst);
// Move to the next row.
coeff += tx1d_width;
qcoeff += tx1d_width;
dqcoeff += tx1d_width;
src_diff += diff_stride;
dst += dst_stride;
src += src_stride;
}
}
static void process_block_dpcm_horz(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d,
struct macroblockd_plane *const pd,
struct macroblock_plane *const p,
uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int16_t *src_diff,
int diff_stride, tran_low_t *coeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff) {
const int tx1d_height = tx_size_high[tx_size];
dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_height);
dpcm_inv_txfm_add_func inverse_tx =
av1_get_dpcm_inv_txfm_add_func(tx1d_height);
const int tx1d_width = tx_size_wide[tx_size];
const int log_scale = av1_get_tx_scale(tx_size);
int q_idx = 0;
for (int c = 0; c < tx1d_width; ++c) {
for (int r = 0; r < tx1d_height; ++r) {
// Update prediction.
if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1];
// Subtraction.
src_diff[r * diff_stride] = src[r * src_stride] - dst[r * dst_stride];
}
// Forward transform.
tran_low_t tx_buff[64];
forward_tx(src_diff, diff_stride, tx_type_1d, tx_buff);
for (int r = 0; r < tx1d_height; ++r) coeff[r * tx1d_width] = tx_buff[r];
// Quantization.
for (int r = 0; r < tx1d_height; ++r) {
quantize_scaler(coeff[r * tx1d_width], p->zbin[q_idx], p->round[q_idx],
p->quant[q_idx], p->quant_shift[q_idx],
pd->dequant[q_idx], log_scale, &qcoeff[r * tx1d_width],
&dqcoeff[r * tx1d_width]);
q_idx = 1;
}
// Inverse transform.
for (int r = 0; r < tx1d_height; ++r) tx_buff[r] = dqcoeff[r * tx1d_width];
inverse_tx(tx_buff, dst_stride, tx_type_1d, dst);
// Move to the next column.
++coeff, ++qcoeff, ++dqcoeff, ++src_diff, ++dst, ++src;
}
}
#if CONFIG_HIGHBITDEPTH
static void hbd_process_block_dpcm_vert(
TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, int bd,
struct macroblockd_plane *const pd, struct macroblock_plane *const p,
uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride,
int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff,
tran_low_t *dqcoeff) {
const int tx1d_width = tx_size_wide[tx_size];
dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_width);
hbd_dpcm_inv_txfm_add_func inverse_tx =
av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_width);
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
const int tx1d_height = tx_size_high[tx_size];
const int log_scale = av1_get_tx_scale(tx_size);
int q_idx = 0;
for (int r = 0; r < tx1d_height; ++r) {
// Update prediction.
if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0]));
// Subtraction.
for (int c = 0; c < tx1d_width; ++c) src_diff[c] = src[c] - dst[c];
// Forward transform.
forward_tx(src_diff, 1, tx_type_1d, coeff);
// Quantization.
for (int c = 0; c < tx1d_width; ++c) {
quantize_scaler(coeff[c], p->zbin[q_idx], p->round[q_idx],
p->quant[q_idx], p->quant_shift[q_idx],
pd->dequant[q_idx], log_scale, &qcoeff[c], &dqcoeff[c]);
q_idx = 1;
}
// Inverse transform.
inverse_tx(dqcoeff, 1, tx_type_1d, bd, dst);
// Move to the next row.
coeff += tx1d_width;
qcoeff += tx1d_width;
dqcoeff += tx1d_width;
src_diff += diff_stride;
dst += dst_stride;
src += src_stride;
}
}
static void hbd_process_block_dpcm_horz(
TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, int bd,
struct macroblockd_plane *const pd, struct macroblock_plane *const p,
uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride,
int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff,
tran_low_t *dqcoeff) {
const int tx1d_height = tx_size_high[tx_size];
dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_height);
hbd_dpcm_inv_txfm_add_func inverse_tx =
av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_height);
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
const int tx1d_width = tx_size_wide[tx_size];
const int log_scale = av1_get_tx_scale(tx_size);
int q_idx = 0;
for (int c = 0; c < tx1d_width; ++c) {
for (int r = 0; r < tx1d_height; ++r) {
// Update prediction.
if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1];
// Subtraction.
src_diff[r * diff_stride] = src[r * src_stride] - dst[r * dst_stride];
}
// Forward transform.
tran_low_t tx_buff[64];
forward_tx(src_diff, diff_stride, tx_type_1d, tx_buff);
for (int r = 0; r < tx1d_height; ++r) coeff[r * tx1d_width] = tx_buff[r];
// Quantization.
for (int r = 0; r < tx1d_height; ++r) {
quantize_scaler(coeff[r * tx1d_width], p->zbin[q_idx], p->round[q_idx],
p->quant[q_idx], p->quant_shift[q_idx],
pd->dequant[q_idx], log_scale, &qcoeff[r * tx1d_width],
&dqcoeff[r * tx1d_width]);
q_idx = 1;
}
// Inverse transform.
for (int r = 0; r < tx1d_height; ++r) tx_buff[r] = dqcoeff[r * tx1d_width];
inverse_tx(tx_buff, dst_stride, tx_type_1d, bd, dst);
// Move to the next column.
++coeff, ++qcoeff, ++dqcoeff, ++src_diff, ++dst, ++src;
}
}
#endif // CONFIG_HIGHBITDEPTH
void av1_encode_block_intra_dpcm(const AV1_COMMON *cm, MACROBLOCK *x,
PREDICTION_MODE mode, int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
TX_TYPE tx_type, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl, int8_t *skip) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int diff_stride = block_size_wide[plane_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, 0);
tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
uint8_t *src =
&p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
uint16_t *eob = &p->eobs[block];
*eob = 0;
memset(qcoeff, 0, tx1d_height * tx1d_width * sizeof(*qcoeff));
memset(dqcoeff, 0, tx1d_height * tx1d_width * sizeof(*dqcoeff));
if (LIKELY(!x->skip_block)) {
TX_TYPE_1D tx_type_1d = DCT_1D;
switch (tx_type) {
case IDTX: tx_type_1d = IDTX_1D; break;
case V_DCT:
assert(mode == H_PRED);
tx_type_1d = DCT_1D;
break;
case H_DCT:
assert(mode == V_PRED);
tx_type_1d = DCT_1D;
break;
default: assert(0);
}
switch (mode) {
case V_PRED:
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
hbd_process_block_dpcm_vert(tx_size, tx_type_1d, xd->bd, pd, p, src,
src_stride, dst, dst_stride, src_diff,
diff_stride, coeff, qcoeff, dqcoeff);
} else {
#endif // CONFIG_HIGHBITDEPTH
process_block_dpcm_vert(tx_size, tx_type_1d, pd, p, src, src_stride,
dst, dst_stride, src_diff, diff_stride, coeff,
qcoeff, dqcoeff);
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
break;
case H_PRED:
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
hbd_process_block_dpcm_horz(tx_size, tx_type_1d, xd->bd, pd, p, src,
src_stride, dst, dst_stride, src_diff,
diff_stride, coeff, qcoeff, dqcoeff);
} else {
#endif // CONFIG_HIGHBITDEPTH
process_block_dpcm_horz(tx_size, tx_type_1d, pd, p, src, src_stride,
dst, dst_stride, src_diff, diff_stride, coeff,
qcoeff, dqcoeff);
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
break;
default: assert(0);
}
*eob = get_eob(qcoeff, tx1d_height * tx1d_width, scan_order->scan);
}
ta[blk_col] = tl[blk_row] = *eob > 0;
if (*eob) *skip = 0;
}
#endif // CONFIG_DPCM_INTRA
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = get_plane_type(plane);
const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
uint16_t *eob = &p->eobs[block];
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
#if CONFIG_CFL
#if CONFIG_EC_ADAPT
FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
#else
FRAME_CONTEXT *const ec_ctx = cm->fc;
#endif // CONFIG_EC_ADAPT
av1_predict_intra_block_encoder_facade(x, ec_ctx, plane, block, blk_col,
blk_row, tx_size, plane_bsize);
#else
av1_predict_intra_block_facade(xd, plane, block, blk_col, blk_row, tx_size);
#endif
#if CONFIG_DPCM_INTRA
const int block_raster_idx = av1_block_index_to_raster_order(tx_size, block);
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const PREDICTION_MODE mode =
(plane == 0) ? get_y_mode(xd->mi[0], block_raster_idx) : mbmi->uv_mode;
if (av1_use_dpcm_intra(plane, mode, tx_type, mbmi)) {
av1_encode_block_intra_dpcm(cm, x, mode, plane, block, blk_row, blk_col,
plane_bsize, tx_size, tx_type, args->ta,
args->tl, args->skip);
return;
}
#endif // CONFIG_DPCM_INTRA
av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
const ENTROPY_CONTEXT *a = &args->ta[blk_col];
const ENTROPY_CONTEXT *l = &args->tl[blk_row];
int ctx = combine_entropy_contexts(*a, *l);
if (args->enable_optimize_b) {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_FP);
av1_optimize_b(cm, x, plane, block, tx_size, ctx);
} else {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_B);
}
#if CONFIG_PVQ
// *(args->skip) == mbmi->skip
if (!x->pvq_skip[plane]) *(args->skip) = 0;
if (x->pvq_skip[plane]) return;
#endif // CONFIG_PVQ
av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, dst_stride,
*eob);
#if !CONFIG_PVQ
if (*eob) *(args->skip) = 0;
#else
// Note : *(args->skip) == mbmi->skip
#endif
#if CONFIG_CFL
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
if (plane == AOM_PLANE_Y && x->cfl_store_y) {
cfl_store(xd->cfl, dst, dst_stride, blk_row, blk_col, tx_size);
}
if (mbmi->uv_mode == DC_PRED) {
// TODO(ltrudeau) find a cleaner way to detect last transform block
if (plane == AOM_PLANE_U) {
xd->cfl->num_tx_blk[CFL_PRED_U] =
(blk_row == 0 && blk_col == 0) ? 1
: xd->cfl->num_tx_blk[CFL_PRED_U] + 1;
}
if (plane == AOM_PLANE_V) {
xd->cfl->num_tx_blk[CFL_PRED_V] =
(blk_row == 0 && blk_col == 0) ? 1
: xd->cfl->num_tx_blk[CFL_PRED_V] + 1;
if (mbmi->skip &&
xd->cfl->num_tx_blk[CFL_PRED_U] == xd->cfl->num_tx_blk[CFL_PRED_V]) {
assert(plane_bsize != BLOCK_INVALID);
const int block_width = block_size_wide[plane_bsize];
const int block_height = block_size_high[plane_bsize];
// if SKIP is chosen at the block level, and ind != 0, we must change
// the prediction
if (mbmi->cfl_alpha_idx != 0) {
const struct macroblockd_plane *const pd_cb = &xd->plane[AOM_PLANE_U];
uint8_t *const dst_cb = pd_cb->dst.buf;
const int dst_stride_cb = pd_cb->dst.stride;
uint8_t *const dst_cr = pd->dst.buf;
const int dst_stride_cr = pd->dst.stride;
for (int j = 0; j < block_height; j++) {
for (int i = 0; i < block_width; i++) {
dst_cb[dst_stride_cb * j + i] =
(uint8_t)(xd->cfl->dc_pred[CFL_PRED_U] + 0.5);
dst_cr[dst_stride_cr * j + i] =
(uint8_t)(xd->cfl->dc_pred[CFL_PRED_V] + 0.5);
}
}
mbmi->cfl_alpha_idx = 0;
mbmi->cfl_alpha_signs[CFL_PRED_U] = CFL_SIGN_POS;
mbmi->cfl_alpha_signs[CFL_PRED_V] = CFL_SIGN_POS;
}
}
}
}
#endif
}
#if CONFIG_CFL
static int cfl_alpha_dist(const uint8_t *y_pix, int y_stride, double y_avg,
const uint8_t *src, int src_stride, int blk_width,
int blk_height, double dc_pred, double alpha,
int *dist_neg_out) {
const double dc_pred_bias = dc_pred + 0.5;
int dist = 0;
int diff;
if (alpha == 0.0) {
const int dc_pred_i = (int)dc_pred_bias;
for (int j = 0; j < blk_height; j++) {
for (int i = 0; i < blk_width; i++) {
diff = src[i] - dc_pred_i;
dist += diff * diff;
}
src += src_stride;
}
if (dist_neg_out) *dist_neg_out = dist;
return dist;
}
int dist_neg = 0;
for (int j = 0; j < blk_height; j++) {
for (int i = 0; i < blk_width; i++) {
const double scaled_luma = alpha * (y_pix[i] - y_avg);
const int uv = src[i];
diff = uv - (int)(scaled_luma + dc_pred_bias);
dist += diff * diff;
diff = uv + (int)(scaled_luma - dc_pred_bias);
dist_neg += diff * diff;
}
y_pix += y_stride;
src += src_stride;
}
if (dist_neg_out) *dist_neg_out = dist_neg;
return dist;
}
static int cfl_compute_alpha_ind(MACROBLOCK *const x, const CFL_CTX *const cfl,
BLOCK_SIZE bsize,
CFL_SIGN_TYPE signs_out[CFL_SIGNS]) {
const struct macroblock_plane *const p_u = &x->plane[AOM_PLANE_U];
const struct macroblock_plane *const p_v = &x->plane[AOM_PLANE_V];
const uint8_t *const src_u = p_u->src.buf;
const uint8_t *const src_v = p_v->src.buf;
const int src_stride_u = p_u->src.stride;
const int src_stride_v = p_v->src.stride;
const int block_width = block_size_wide[bsize];
const int block_height = block_size_high[bsize];
const double dc_pred_u = cfl->dc_pred[CFL_PRED_U];
const double dc_pred_v = cfl->dc_pred[CFL_PRED_V];
// Temporary pixel buffer used to store the CfL prediction when we compute the
// alpha index.
uint8_t tmp_pix[MAX_SB_SQUARE];
// Load CfL Prediction over the entire block
const double y_avg =
cfl_load(cfl, tmp_pix, MAX_SB_SIZE, 0, 0, block_width, block_height);
int sse[CFL_PRED_PLANES][CFL_MAGS_SIZE];
sse[CFL_PRED_U][0] =
cfl_alpha_dist(tmp_pix, MAX_SB_SIZE, y_avg, src_u, src_stride_u,
block_width, block_height, dc_pred_u, 0, NULL);
sse[CFL_PRED_V][0] =
cfl_alpha_dist(tmp_pix, MAX_SB_SIZE, y_avg, src_v, src_stride_v,
block_width, block_height, dc_pred_v, 0, NULL);
for (int m = 1; m < CFL_MAGS_SIZE; m += 2) {
assert(cfl_alpha_mags[m + 1] == -cfl_alpha_mags[m]);
sse[CFL_PRED_U][m] = cfl_alpha_dist(
tmp_pix, MAX_SB_SIZE, y_avg, src_u, src_stride_u, block_width,
block_height, dc_pred_u, cfl_alpha_mags[m], &sse[CFL_PRED_U][m + 1]);
sse[CFL_PRED_V][m] = cfl_alpha_dist(
tmp_pix, MAX_SB_SIZE, y_avg, src_v, src_stride_v, block_width,
block_height, dc_pred_v, cfl_alpha_mags[m], &sse[CFL_PRED_V][m + 1]);
}
int dist;
int64_t cost;
int64_t best_cost;
// Compute least squares parameter of the entire block
// IMPORTANT: We assume that the first code is 0,0
int ind = 0;
signs_out[CFL_PRED_U] = CFL_SIGN_POS;
signs_out[CFL_PRED_V] = CFL_SIGN_POS;
dist = sse[CFL_PRED_U][0] + sse[CFL_PRED_V][0];
dist *= 16;
best_cost = RDCOST(x->rdmult, x->rddiv, cfl->costs[0], dist);
for (int c = 1; c < CFL_ALPHABET_SIZE; c++) {
const int idx_u = cfl_alpha_codes[c][CFL_PRED_U];
const int idx_v = cfl_alpha_codes[c][CFL_PRED_V];
for (CFL_SIGN_TYPE sign_u = idx_u == 0; sign_u < CFL_SIGNS; sign_u++) {
for (CFL_SIGN_TYPE sign_v = idx_v == 0; sign_v < CFL_SIGNS; sign_v++) {
dist = sse[CFL_PRED_U][idx_u + (sign_u == CFL_SIGN_NEG)] +
sse[CFL_PRED_V][idx_v + (sign_v == CFL_SIGN_NEG)];
dist *= 16;
cost = RDCOST(x->rdmult, x->rddiv, cfl->costs[c], dist);
if (cost < best_cost) {
best_cost = cost;
ind = c;
signs_out[CFL_PRED_U] = sign_u;
signs_out[CFL_PRED_V] = sign_v;
}
}
}
}
return ind;
}
static inline void cfl_update_costs(CFL_CTX *cfl, FRAME_CONTEXT *ec_ctx) {
assert(ec_ctx->cfl_alpha_cdf[CFL_ALPHABET_SIZE - 1] ==
AOM_ICDF(CDF_PROB_TOP));
const int prob_den = CDF_PROB_TOP;
int prob_num = AOM_ICDF(ec_ctx->cfl_alpha_cdf[0]);
cfl->costs[0] = av1_cost_zero(get_prob(prob_num, prob_den));
for (int c = 1; c < CFL_ALPHABET_SIZE; c++) {
int sign_bit_cost = (cfl_alpha_codes[c][CFL_PRED_U] != 0) +
(cfl_alpha_codes[c][CFL_PRED_V] != 0);
prob_num = AOM_ICDF(ec_ctx->cfl_alpha_cdf[c]) -
AOM_ICDF(ec_ctx->cfl_alpha_cdf[c - 1]);
cfl->costs[c] = av1_cost_zero(get_prob(prob_num, prob_den)) +
av1_cost_literal(sign_bit_cost);
}
}
void av1_predict_intra_block_encoder_facade(MACROBLOCK *x,
FRAME_CONTEXT *ec_ctx, int plane,
int block_idx, int blk_col,
int blk_row, TX_SIZE tx_size,
BLOCK_SIZE plane_bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
if (plane != AOM_PLANE_Y && mbmi->uv_mode == DC_PRED) {
if (blk_col == 0 && blk_row == 0 && plane == AOM_PLANE_U) {
CFL_CTX *const cfl = xd->cfl;
cfl_update_costs(cfl, ec_ctx);
cfl_dc_pred(xd, plane_bsize, tx_size);
mbmi->cfl_alpha_idx =
cfl_compute_alpha_ind(x, cfl, plane_bsize, mbmi->cfl_alpha_signs);
}
}
av1_predict_intra_block_facade(xd, plane, block_idx, blk_col, blk_row,
tx_size);
}
#endif
void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane,
int enable_optimize_b, int mi_row,
int mi_col) {
const MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 };
ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 };
struct encode_b_args arg = {
cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b
};
#if CONFIG_CB4X4
if (!is_chroma_reference(mi_row, mi_col, bsize,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y))
return;
#else
(void)mi_row;
(void)mi_col;
#endif
if (enable_optimize_b) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = get_tx_size(plane, xd);
av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl);
}
av1_foreach_transformed_block_in_plane(
xd, bsize, plane, encode_block_intra_and_set_context, &arg);
}
#if CONFIG_PVQ
PVQ_SKIP_TYPE av1_pvq_encode_helper(MACROBLOCK *x, tran_low_t *const coeff,
tran_low_t *ref_coeff,
tran_low_t *const dqcoeff, uint16_t *eob,
const int16_t *quant, int plane,
int tx_size, TX_TYPE tx_type, int *rate,
int speed, PVQ_INFO *pvq_info) {
const int tx_blk_size = tx_size_wide[tx_size];
daala_enc_ctx *daala_enc = &x->daala_enc;
PVQ_SKIP_TYPE ac_dc_coded;
int coeff_shift = 3 - av1_get_tx_scale(tx_size);
int hbd_downshift = 0;
int rounding_mask;
int pvq_dc_quant;
int use_activity_masking = daala_enc->use_activity_masking;
int tell;
int has_dc_skip = 1;
int i;
int off = od_qm_offset(tx_size, plane ? 1 : 0);
DECLARE_ALIGNED(16, tran_low_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
hbd_downshift = x->e_mbd.bd - 8;
assert(OD_COEFF_SHIFT >= 4);
// DC quantizer for PVQ
if (use_activity_masking)
pvq_dc_quant =
OD_MAXI(1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) *
daala_enc->state
.pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >>
4);
else
pvq_dc_quant =
OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift);
*eob = 0;
#if !CONFIG_ANS
tell = od_ec_enc_tell_frac(&daala_enc->w.ec);
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
// Change coefficient ordering for pvq encoding.
od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff,
tx_blk_size);
od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff,
tx_blk_size);
// copy int16 inputs to int32
for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
ref_int32[i] =
AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
hbd_downshift;
in_int32[i] = AOM_SIGNED_SHL(coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
hbd_downshift;
}
if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */
out_int32[0] = 0;
} else {
out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant);
}
ac_dc_coded =
od_pvq_encode(daala_enc, ref_int32, in_int32, out_int32,
OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >>
hbd_downshift), // scale/quantizer
OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >>
hbd_downshift), // scale/quantizer
plane,
tx_size, OD_PVQ_BETA[use_activity_masking][plane][tx_size],
0, // is_keyframe,
daala_enc->state.qm + off, daala_enc->state.qm_inv + off,
speed, // speed
pvq_info);
// Encode residue of DC coeff, if required.
if (!has_dc_skip || out_int32[0]) {
generic_encode(&daala_enc->w, &daala_enc->state.adapt->model_dc[plane],
abs(out_int32[0]) - has_dc_skip,
&daala_enc->state.adapt->ex_dc[plane][tx_size][0], 2);
}
if (out_int32[0]) {
aom_write_bit(&daala_enc->w, out_int32[0] < 0);
}
// need to save quantized residue of DC coeff
// so that final pvq bitstream writing can know whether DC is coded.
if (pvq_info) pvq_info->dq_dc_residue = out_int32[0];
out_int32[0] = out_int32[0] * pvq_dc_quant;
out_int32[0] += ref_int32[0];
// copy int32 result back to int16
assert(OD_COEFF_SHIFT > coeff_shift);
rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1;
for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift);
dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >>
(OD_COEFF_SHIFT - coeff_shift);
}
// Back to original coefficient order
od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq,
tx_blk_size);
*eob = tx_blk_size * tx_blk_size;
#if !CONFIG_ANS
*rate = (od_ec_enc_tell_frac(&daala_enc->w.ec) - tell)
<< (AV1_PROB_COST_SHIFT - OD_BITRES);
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
assert(*rate >= 0);
return ac_dc_coded;
}
void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta, int *k,
od_coeff *y, int nb_bands, const int *off,
int *size, int skip_rest, int skip_dir,
int bs) { // block size in log_2 -2
int i;
const int tx_blk_size = tx_size_wide[bs];
for (i = 0; i < nb_bands; i++) {
pvq_info->qg[i] = qg[i];
pvq_info->theta[i] = theta[i];
pvq_info->k[i] = k[i];
pvq_info->off[i] = off[i];
pvq_info->size[i] = size[i];
}
memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff));
pvq_info->nb_bands = nb_bands;
pvq_info->skip_rest = skip_rest;
pvq_info->skip_dir = skip_dir;
pvq_info->bs = bs;
}
#endif