blob: f9ab4670ee21abc7423cacf5312166cef65b4e88 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/blend.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#if CONFIG_WARPED_MOTION
#include "av1/common/warped_motion.h"
#endif // CONFIG_WARPED_MOTION
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/mcomp.h"
#if CONFIG_PALETTE
#include "av1/encoder/palette.h"
#endif // CONFIG_PALETTE
#include "av1/encoder/quantize.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_PVQ
#include "av1/encoder/pvq_encoder.h"
#endif
#if CONFIG_DUAL_FILTER
#define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS)
#if CONFIG_EXT_INTERP
static const int filter_sets[DUAL_FILTER_SET_SIZE][2] = {
{ 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 0 }, { 1, 1 },
{ 1, 2 }, { 1, 3 }, { 2, 0 }, { 2, 1 }, { 2, 2 }, { 2, 3 },
{ 3, 0 }, { 3, 1 }, { 3, 2 }, { 3, 3 },
};
#else // CONFIG_EXT_INTERP
static const int filter_sets[DUAL_FILTER_SET_SIZE][2] = {
{ 0, 0 }, { 0, 1 }, { 0, 2 }, { 1, 0 }, { 1, 1 },
{ 1, 2 }, { 2, 0 }, { 2, 1 }, { 2, 2 },
};
#endif // CONFIG_EXT_INTERP
#endif // CONFIG_DUAL_FILTER
#if CONFIG_EXT_REFS
#define LAST_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | \
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
#define LAST2_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST3_FRAME) | \
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
#define LAST3_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
#define GOLDEN_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
(1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
#define BWDREF_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME))
#define ALTREF_FRAME_MODE_MASK \
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME))
#else
#define LAST_FRAME_MODE_MASK \
((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
#define GOLDEN_FRAME_MODE_MASK \
((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
#define ALTREF_FRAME_MODE_MASK \
((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME))
#endif // CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | (1 << BWDREF_FRAME) | 0x01)
#else
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01)
#endif // CONFIG_EXT_REFS
#define MIN_EARLY_TERM_INDEX 3
#define NEW_MV_DISCOUNT_FACTOR 8
#if CONFIG_EXT_INTRA
#define ANGLE_SKIP_THRESH 10
#define FILTER_FAST_SEARCH 1
#endif // CONFIG_EXT_INTRA
const double ADST_FLIP_SVM[8] = { -6.6623, -2.8062, -3.2531, 3.1671, // vert
-7.7051, -3.2234, -3.6193, 3.4533 }; // horz
typedef struct {
PREDICTION_MODE mode;
MV_REFERENCE_FRAME ref_frame[2];
} MODE_DEFINITION;
typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION;
struct rdcost_block_args {
const AV1_COMP *cpi;
MACROBLOCK *x;
ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE];
RD_STATS rd_stats;
int64_t this_rd;
int64_t best_rd;
int exit_early;
int use_fast_coef_costing;
const SCAN_ORDER *scan_order;
};
#define LAST_NEW_MV_INDEX 6
static const MODE_DEFINITION av1_mode_order[MAX_MODES] = {
{ NEARESTMV, { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ NEARESTMV, { LAST2_FRAME, NONE } },
{ NEARESTMV, { LAST3_FRAME, NONE } },
{ NEARESTMV, { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ NEARESTMV, { ALTREF_FRAME, NONE } },
{ NEARESTMV, { GOLDEN_FRAME, NONE } },
{ DC_PRED, { INTRA_FRAME, NONE } },
{ NEWMV, { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ NEWMV, { LAST2_FRAME, NONE } },
{ NEWMV, { LAST3_FRAME, NONE } },
{ NEWMV, { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ NEWMV, { ALTREF_FRAME, NONE } },
{ NEWMV, { GOLDEN_FRAME, NONE } },
{ NEARMV, { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ NEARMV, { LAST2_FRAME, NONE } },
{ NEARMV, { LAST3_FRAME, NONE } },
{ NEARMV, { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ NEARMV, { ALTREF_FRAME, NONE } },
{ NEARMV, { GOLDEN_FRAME, NONE } },
#if CONFIG_EXT_INTER
{ NEWFROMNEARMV, { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ NEWFROMNEARMV, { LAST2_FRAME, NONE } },
{ NEWFROMNEARMV, { LAST3_FRAME, NONE } },
{ NEWFROMNEARMV, { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ NEWFROMNEARMV, { ALTREF_FRAME, NONE } },
{ NEWFROMNEARMV, { GOLDEN_FRAME, NONE } },
#endif // CONFIG_EXT_INTER
{ ZEROMV, { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ ZEROMV, { LAST2_FRAME, NONE } },
{ ZEROMV, { LAST3_FRAME, NONE } },
{ ZEROMV, { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ ZEROMV, { GOLDEN_FRAME, NONE } },
{ ZEROMV, { ALTREF_FRAME, NONE } },
// TODO(zoeliu): May need to reconsider the order on the modes to check
#if CONFIG_EXT_INTER
{ NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
#else // CONFIG_EXT_INTER
{ NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
#endif // CONFIG_EXT_INTER
{ TM_PRED, { INTRA_FRAME, NONE } },
#if CONFIG_ALT_INTRA
{ SMOOTH_PRED, { INTRA_FRAME, NONE } },
#endif // CONFIG_ALT_INTRA
#if CONFIG_EXT_INTER
{ NEAR_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEAREST_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
{ ZERO_ZEROMV, { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEAR_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEAREST_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
{ ZERO_ZEROMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEAR_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
{ NEAREST_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
{ NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
{ NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
{ NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
{ NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
{ NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
{ NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
{ ZERO_ZEROMV, { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ NEAR_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEAREST_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ ZERO_ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEAR_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEAREST_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
{ ZERO_ZEROMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEAR_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEAREST_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
{ ZERO_ZEROMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEAR_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEAREST_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
{ ZERO_ZEROMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEAR_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ NEAREST_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ ZERO_ZEROMV, { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
#else // CONFIG_EXT_INTER
{ NEARMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEWMV, { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
{ NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
{ NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ NEARMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEWMV, { LAST_FRAME, BWDREF_FRAME } },
{ NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
{ NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
{ NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
{ NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ ZEROMV, { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ ZEROMV, { LAST2_FRAME, ALTREF_FRAME } },
{ ZEROMV, { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ ZEROMV, { LAST_FRAME, BWDREF_FRAME } },
{ ZEROMV, { LAST2_FRAME, BWDREF_FRAME } },
{ ZEROMV, { LAST3_FRAME, BWDREF_FRAME } },
{ ZEROMV, { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
#endif // CONFIG_EXT_INTER
{ H_PRED, { INTRA_FRAME, NONE } },
{ V_PRED, { INTRA_FRAME, NONE } },
{ D135_PRED, { INTRA_FRAME, NONE } },
{ D207_PRED, { INTRA_FRAME, NONE } },
{ D153_PRED, { INTRA_FRAME, NONE } },
{ D63_PRED, { INTRA_FRAME, NONE } },
{ D117_PRED, { INTRA_FRAME, NONE } },
{ D45_PRED, { INTRA_FRAME, NONE } },
#if CONFIG_EXT_INTER
{ ZEROMV, { LAST_FRAME, INTRA_FRAME } },
{ NEARESTMV, { LAST_FRAME, INTRA_FRAME } },
{ NEARMV, { LAST_FRAME, INTRA_FRAME } },
{ NEWMV, { LAST_FRAME, INTRA_FRAME } },
#if CONFIG_EXT_REFS
{ ZEROMV, { LAST2_FRAME, INTRA_FRAME } },
{ NEARESTMV, { LAST2_FRAME, INTRA_FRAME } },
{ NEARMV, { LAST2_FRAME, INTRA_FRAME } },
{ NEWMV, { LAST2_FRAME, INTRA_FRAME } },
{ ZEROMV, { LAST3_FRAME, INTRA_FRAME } },
{ NEARESTMV, { LAST3_FRAME, INTRA_FRAME } },
{ NEARMV, { LAST3_FRAME, INTRA_FRAME } },
{ NEWMV, { LAST3_FRAME, INTRA_FRAME } },
#endif // CONFIG_EXT_REFS
{ ZEROMV, { GOLDEN_FRAME, INTRA_FRAME } },
{ NEARESTMV, { GOLDEN_FRAME, INTRA_FRAME } },
{ NEARMV, { GOLDEN_FRAME, INTRA_FRAME } },
{ NEWMV, { GOLDEN_FRAME, INTRA_FRAME } },
#if CONFIG_EXT_REFS
{ ZEROMV, { BWDREF_FRAME, INTRA_FRAME } },
{ NEARESTMV, { BWDREF_FRAME, INTRA_FRAME } },
{ NEARMV, { BWDREF_FRAME, INTRA_FRAME } },
{ NEWMV, { BWDREF_FRAME, INTRA_FRAME } },
#endif // CONFIG_EXT_REFS
{ ZEROMV, { ALTREF_FRAME, INTRA_FRAME } },
{ NEARESTMV, { ALTREF_FRAME, INTRA_FRAME } },
{ NEARMV, { ALTREF_FRAME, INTRA_FRAME } },
{ NEWMV, { ALTREF_FRAME, INTRA_FRAME } },
#endif // CONFIG_EXT_INTER
};
static const REF_DEFINITION av1_ref_order[MAX_REFS] = {
{ { LAST_FRAME, NONE } },
#if CONFIG_EXT_REFS
{ { LAST2_FRAME, NONE } }, { { LAST3_FRAME, NONE } },
{ { BWDREF_FRAME, NONE } },
#endif // CONFIG_EXT_REFS
{ { GOLDEN_FRAME, NONE } }, { { ALTREF_FRAME, NONE } },
{ { LAST_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ { LAST2_FRAME, ALTREF_FRAME } }, { { LAST3_FRAME, ALTREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ { GOLDEN_FRAME, ALTREF_FRAME } },
#if CONFIG_EXT_REFS
{ { LAST_FRAME, BWDREF_FRAME } }, { { LAST2_FRAME, BWDREF_FRAME } },
{ { LAST3_FRAME, BWDREF_FRAME } }, { { GOLDEN_FRAME, BWDREF_FRAME } },
#endif // CONFIG_EXT_REFS
{ { INTRA_FRAME, NONE } },
};
#if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
static INLINE int write_uniform_cost(int n, int v) {
int l = get_unsigned_bits(n), m = (1 << l) - n;
if (l == 0) return 0;
if (v < m)
return (l - 1) * av1_cost_bit(128, 0);
else
return l * av1_cost_bit(128, 0);
}
#endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
// constants for prune 1 and prune 2 decision boundaries
#define FAST_EXT_TX_CORR_MID 0.0
#define FAST_EXT_TX_EDST_MID 0.1
#define FAST_EXT_TX_CORR_MARGIN 0.5
#define FAST_EXT_TX_EDST_MARGIN 0.3
static const TX_TYPE_1D vtx_tab[TX_TYPES] = {
DCT_1D, ADST_1D, DCT_1D, ADST_1D,
#if CONFIG_EXT_TX
FLIPADST_1D, DCT_1D, FLIPADST_1D, ADST_1D, FLIPADST_1D, IDTX_1D,
DCT_1D, IDTX_1D, ADST_1D, IDTX_1D, FLIPADST_1D, IDTX_1D,
#endif // CONFIG_EXT_TX
};
static const TX_TYPE_1D htx_tab[TX_TYPES] = {
DCT_1D, DCT_1D, ADST_1D, ADST_1D,
#if CONFIG_EXT_TX
DCT_1D, FLIPADST_1D, FLIPADST_1D, FLIPADST_1D, ADST_1D, IDTX_1D,
IDTX_1D, DCT_1D, IDTX_1D, ADST_1D, IDTX_1D, FLIPADST_1D,
#endif // CONFIG_EXT_TX
};
static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize,
uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
double *hordist, double *verdist) {
int bw = block_size_wide[bsize];
int bh = block_size_high[bsize];
unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
unsigned int var[16];
double total = 0;
const int f_index = bsize - BLOCK_16X16;
if (f_index < 0) {
int i, j, index;
int w_shift = bw == 8 ? 1 : 2;
int h_shift = bh == 8 ? 1 : 2;
#if CONFIG_AOM_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
for (i = 0; i < bh; ++i)
for (j = 0; j < bw; ++j) {
index = (j >> w_shift) + ((i >> h_shift) << 2);
esq[index] +=
(src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
(src16[j + i * src_stride] - dst16[j + i * dst_stride]);
}
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
for (i = 0; i < bh; ++i)
for (j = 0; j < bw; ++j) {
index = (j >> w_shift) + ((i >> h_shift) << 2);
esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
(src[j + i * src_stride] - dst[j + i * dst_stride]);
}
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
} else {
var[0] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[0]);
var[1] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4,
dst_stride, &esq[1]);
var[2] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2,
dst_stride, &esq[2]);
var[3] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
dst + 3 * bw / 4, dst_stride, &esq[3]);
src += bh / 4 * src_stride;
dst += bh / 4 * dst_stride;
var[4] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[4]);
var[5] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4,
dst_stride, &esq[5]);
var[6] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2,
dst_stride, &esq[6]);
var[7] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
dst + 3 * bw / 4, dst_stride, &esq[7]);
src += bh / 4 * src_stride;
dst += bh / 4 * dst_stride;
var[8] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[8]);
var[9] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4,
dst_stride, &esq[9]);
var[10] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2,
dst_stride, &esq[10]);
var[11] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
dst + 3 * bw / 4, dst_stride, &esq[11]);
src += bh / 4 * src_stride;
dst += bh / 4 * dst_stride;
var[12] =
cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[12]);
var[13] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4,
dst_stride, &esq[13]);
var[14] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2,
dst_stride, &esq[14]);
var[15] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
dst + 3 * bw / 4, dst_stride, &esq[15]);
}
total = esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + esq[6] +
esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + esq[12] + esq[13] +
esq[14] + esq[15];
if (total > 0) {
const double e_recip = 1.0 / total;
hordist[0] =
((double)esq[0] + (double)esq[4] + (double)esq[8] + (double)esq[12]) *
e_recip;
hordist[1] =
((double)esq[1] + (double)esq[5] + (double)esq[9] + (double)esq[13]) *
e_recip;
hordist[2] =
((double)esq[2] + (double)esq[6] + (double)esq[10] + (double)esq[14]) *
e_recip;
verdist[0] =
((double)esq[0] + (double)esq[1] + (double)esq[2] + (double)esq[3]) *
e_recip;
verdist[1] =
((double)esq[4] + (double)esq[5] + (double)esq[6] + (double)esq[7]) *
e_recip;
verdist[2] =
((double)esq[8] + (double)esq[9] + (double)esq[10] + (double)esq[11]) *
e_recip;
} else {
hordist[0] = verdist[0] = 0.25;
hordist[1] = verdist[1] = 0.25;
hordist[2] = verdist[2] = 0.25;
}
(void)var[0];
(void)var[1];
(void)var[2];
(void)var[3];
(void)var[4];
(void)var[5];
(void)var[6];
(void)var[7];
(void)var[8];
(void)var[9];
(void)var[10];
(void)var[11];
(void)var[12];
(void)var[13];
(void)var[14];
(void)var[15];
}
static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize, uint8_t *src,
int src_stride, uint8_t *dst, int dst_stride,
double *hdist, double *vdist) {
int prune_bitmask = 0;
double svm_proj_h = 0, svm_proj_v = 0;
get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride,
hdist, vdist);
svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] +
vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3];
svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] +
hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7];
if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
prune_bitmask |= 1 << FLIPADST_1D;
else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
prune_bitmask |= 1 << ADST_1D;
if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
prune_bitmask |= 1 << (FLIPADST_1D + 8);
else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
prune_bitmask |= 1 << (ADST_1D + 8);
return prune_bitmask;
}
#if CONFIG_EXT_TX
static void get_horver_correlation(int16_t *diff, int stride, int w, int h,
double *hcorr, double *vcorr) {
// Returns hor/ver correlation coefficient
const int num = (h - 1) * (w - 1);
double num_r;
int i, j;
int64_t xy_sum = 0, xz_sum = 0;
int64_t x_sum = 0, y_sum = 0, z_sum = 0;
int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0;
double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n;
*hcorr = *vcorr = 1;
assert(num > 0);
num_r = 1.0 / num;
for (i = 1; i < h; ++i) {
for (j = 1; j < w; ++j) {
const int16_t x = diff[i * stride + j];
const int16_t y = diff[i * stride + j - 1];
const int16_t z = diff[(i - 1) * stride + j];
xy_sum += x * y;
xz_sum += x * z;
x_sum += x;
y_sum += y;
z_sum += z;
x2_sum += x * x;
y2_sum += y * y;
z2_sum += z * z;
}
}
x_var_n = x2_sum - (x_sum * x_sum) * num_r;
y_var_n = y2_sum - (y_sum * y_sum) * num_r;
z_var_n = z2_sum - (z_sum * z_sum) * num_r;
xy_var_n = xy_sum - (x_sum * y_sum) * num_r;
xz_var_n = xz_sum - (x_sum * z_sum) * num_r;
if (x_var_n > 0 && y_var_n > 0) {
*hcorr = xy_var_n / sqrt(x_var_n * y_var_n);
*hcorr = *hcorr < 0 ? 0 : *hcorr;
}
if (x_var_n > 0 && z_var_n > 0) {
*vcorr = xz_var_n / sqrt(x_var_n * z_var_n);
*vcorr = *vcorr < 0 ? 0 : *vcorr;
}
}
int dct_vs_idtx(int16_t *diff, int stride, int w, int h, double *hcorr,
double *vcorr) {
int prune_bitmask = 0;
get_horver_correlation(diff, stride, w, h, hcorr, vcorr);
if (*vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
prune_bitmask |= 1 << IDTX_1D;
else if (*vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
prune_bitmask |= 1 << DCT_1D;
if (*hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
prune_bitmask |= 1 << (IDTX_1D + 8);
else if (*hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
prune_bitmask |= 1 << (DCT_1D + 8);
return prune_bitmask;
}
// Performance drop: 0.5%, Speed improvement: 24%
static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd, int adst_flipadst,
int dct_idtx) {
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
const int bw = 4 << (b_width_log2_lookup[bs]);
const int bh = 4 << (b_height_log2_lookup[bs]);
double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 };
double hcorr, vcorr;
int prune = 0;
av1_subtract_plane(x, bsize, 0);
if (adst_flipadst)
prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, hdist, vdist);
if (dct_idtx) prune |= dct_vs_idtx(p->src_diff, bw, bw, bh, &hcorr, &vcorr);
return prune;
}
#endif // CONFIG_EXT_TX
// Performance drop: 0.3%, Speed improvement: 5%
static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd) {
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 };
av1_subtract_plane(x, bsize, 0);
return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, hdist, vdist);
}
static int prune_tx_types(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
MACROBLOCKD *xd, int tx_set) {
#if CONFIG_EXT_TX
const int *tx_set_1D = ext_tx_used_inter_1D[tx_set];
#else
const int tx_set_1D[TX_TYPES_1D] = { 0 };
#endif
switch (cpi->sf.tx_type_search.prune_mode) {
case NO_PRUNE: return 0; break;
case PRUNE_ONE:
if ((tx_set >= 0) && !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D]))
return 0;
return prune_one_for_sby(cpi, bsize, x, xd);
break;
#if CONFIG_EXT_TX
case PRUNE_TWO:
if ((tx_set >= 0) && !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) {
if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return 0;
return prune_two_for_sby(cpi, bsize, x, xd, 0, 1);
}
if ((tx_set >= 0) && !(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D]))
return prune_two_for_sby(cpi, bsize, x, xd, 1, 0);
return prune_two_for_sby(cpi, bsize, x, xd, 1, 1);
break;
#endif
}
assert(0);
return 0;
}
static int do_tx_type_search(TX_TYPE tx_type, int prune) {
// TODO(sarahparker) implement for non ext tx
#if CONFIG_EXT_TX
return !(((prune >> vtx_tab[tx_type]) & 1) |
((prune >> (htx_tab[tx_type] + 8)) & 1));
#else
// temporary to avoid compiler warnings
(void)vtx_tab;
(void)htx_tab;
(void)tx_type;
(void)prune;
return 1;
#endif
}
static void model_rd_from_sse(const AV1_COMP *const cpi,
const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
int plane, int64_t sse, int *rate,
int64_t *dist) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int dequant_shift =
#if CONFIG_AOM_HIGHBITDEPTH
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 :
#endif // CONFIG_AOM_HIGHBITDEPTH
3;
// Fast approximate the modelling function.
if (cpi->sf.simple_model_rd_from_var) {
const int64_t square_error = sse;
int quantizer = (pd->dequant[1] >> dequant_shift);
if (quantizer < 120)
*rate = (int)((square_error * (280 - quantizer)) >>
(16 - AV1_PROB_COST_SHIFT));
else
*rate = 0;
*dist = (square_error * quantizer) >> 8;
} else {
av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[bsize],
pd->dequant[1] >> dequant_shift, rate, dist);
}
*dist <<= 4;
}
static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
int plane_to, int *out_rate_sum,
int64_t *out_dist_sum, int *skip_txfm_sb,
int64_t *skip_sse_sb) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
int plane;
const int ref = xd->mi[0]->mbmi.ref_frame[0];
int64_t rate_sum = 0;
int64_t dist_sum = 0;
int64_t total_sse = 0;
x->pred_sse[ref] = 0;
for (plane = plane_from; plane <= plane_to; ++plane) {
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
unsigned int sse;
int rate;
int64_t dist;
// TODO(geza): Write direct sse functions that do not compute
// variance as well.
cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
&sse);
if (plane == 0) x->pred_sse[ref] = sse;
total_sse += sse;
model_rd_from_sse(cpi, xd, bs, plane, sse, &rate, &dist);
rate_sum += rate;
dist_sum += dist;
}
*skip_txfm_sb = total_sse == 0;
*skip_sse_sb = total_sse << 4;
*out_rate_sum = (int)rate_sum;
*out_dist_sum = dist_sum;
}
#if CONFIG_PVQ
// Without PVQ, av1_block_error_c() return two kind of errors,
// 1) reconstruction (i.e. decoded) error and
// 2) Squared sum of transformed residue (i.e. 'coeff')
// However, if PVQ is enabled, coeff does not keep the transformed residue
// but instead a transformed original is kept.
// Hence, new parameter ref vector (i.e. transformed predicted signal)
// is required to derive the residue signal,
// i.e. coeff - ref = residue (all transformed).
// TODO(yushin) : Since 4x4 case does not need ssz, better to refactor into
// a separate function that does not do the extra computations for ssz.
int64_t av1_block_error2_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
const tran_low_t *ref, intptr_t block_size,
int64_t *ssz) {
int64_t error;
// Use the existing sse codes for calculating distortion of decoded signal:
// i.e. (orig - decoded)^2
error = av1_block_error_fp(coeff, dqcoeff, block_size);
// prediction residue^2 = (orig - ref)^2
*ssz = av1_block_error_fp(coeff, ref, block_size);
return error;
}
#endif
int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
int i;
int64_t error = 0, sqcoeff = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += coeff[i] * coeff[i];
}
*ssz = sqcoeff;
return error;
}
int64_t av1_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff,
int block_size) {
int i;
int64_t error = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
}
return error;
}
#if CONFIG_AOM_HIGHBITDEPTH
int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
const tran_low_t *dqcoeff, intptr_t block_size,
int64_t *ssz, int bd) {
int i;
int64_t error = 0, sqcoeff = 0;
int shift = 2 * (bd - 8);
int rounding = shift > 0 ? 1 << (shift - 1) : 0;
for (i = 0; i < block_size; i++) {
const int64_t diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
}
assert(error >= 0 && sqcoeff >= 0);
error = (error + rounding) >> shift;
sqcoeff = (sqcoeff + rounding) >> shift;
*ssz = sqcoeff;
return error;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#if !CONFIG_PVQ
/* The trailing '0' is a terminator which is used inside av1_cost_coeffs() to
* decide whether to include cost of a trailing EOB node or not (i.e. we
* can skip this if the last coefficient in this transform block, e.g. the
* 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block,
* were non-zero). */
int av1_cost_coeffs(const AV1_COMMON *const cm, MACROBLOCK *x, int plane,
int block, int coeff_ctx, TX_SIZE tx_size,
const int16_t *scan, const int16_t *nb,
int use_fast_coef_costing) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const struct macroblock_plane *p = &x->plane[plane];
const struct macroblockd_plane *pd = &xd->plane[plane];
const PLANE_TYPE type = pd->plane_type;
const uint16_t *band_count = &band_count_table[tx_size][1];
const int eob = p->eobs[block];
const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
const int tx_size_ctx = txsize_sqr_map[tx_size];
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
x->token_costs[tx_size_ctx][type][is_inter_block(mbmi)];
uint8_t token_cache[MAX_TX_SQUARE];
int pt = coeff_ctx;
int c, cost;
#if CONFIG_AOM_HIGHBITDEPTH
const int *cat6_high_cost = av1_get_high_cost_table(xd->bd);
#else
const int *cat6_high_cost = av1_get_high_cost_table(8);
#endif
#if !CONFIG_VAR_TX && !CONFIG_SUPERTX
// Check for consistency of tx_size with mode info
assert(type == PLANE_TYPE_Y ? mbmi->tx_size == tx_size
: get_uv_tx_size(mbmi, pd) == tx_size);
#endif // !CONFIG_VAR_TX && !CONFIG_SUPERTX
(void)cm;
if (eob == 0) {
// single eob token
cost = token_costs[0][0][pt][EOB_TOKEN];
} else {
if (use_fast_coef_costing) {
int band_left = *band_count++;
// dc token
int v = qcoeff[0];
int16_t prev_t;
cost = av1_get_token_cost(v, &prev_t, cat6_high_cost);
cost += (*token_costs)[0][pt][prev_t];
token_cache[0] = av1_pt_energy_class[prev_t];
++token_costs;
// ac tokens
for (c = 1; c < eob; c++) {
const int rc = scan[c];
int16_t t;
v = qcoeff[rc];
cost += av1_get_token_cost(v, &t, cat6_high_cost);
cost += (*token_costs)[!prev_t][!prev_t][t];
prev_t = t;
if (!--band_left) {
band_left = *band_count++;
++token_costs;
}
}
// eob token
if (band_left) cost += (*token_costs)[0][!prev_t][EOB_TOKEN];
} else { // !use_fast_coef_costing
int band_left = *band_count++;
// dc token
int v = qcoeff[0];
int16_t tok;
unsigned int(*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS];
cost = av1_get_token_cost(v, &tok, cat6_high_cost);
cost += (*token_costs)[0][pt][tok];
token_cache[0] = av1_pt_energy_class[tok];
++token_costs;
tok_cost_ptr = &((*token_costs)[!tok]);
// ac tokens
for (c = 1; c < eob; c++) {
const int rc = scan[c];
v = qcoeff[rc];
cost += av1_get_token_cost(v, &tok, cat6_high_cost);
pt = get_coef_context(nb, token_cache, c);
cost += (*tok_cost_ptr)[pt][tok];
token_cache[rc] = av1_pt_energy_class[tok];
if (!--band_left) {
band_left = *band_count++;
++token_costs;
}
tok_cost_ptr = &((*token_costs)[!tok]);
}
// eob token
if (band_left) {
pt = get_coef_context(nb, token_cache, c);
cost += (*token_costs)[0][pt][EOB_TOKEN];
}
}
}
return cost;
}
#endif
static void dist_block(const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col, TX_SIZE tx_size,
int64_t *out_dist, int64_t *out_sse) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (cpi->sf.use_transform_domain_distortion) {
// Transform domain distortion computation is more accurate as it does
// not involve an inverse transform, but it is less accurate.
const int buffer_length = tx_size_2d[tx_size];
int64_t this_sse;
int shift = (MAX_TX_SCALE - get_tx_scale(tx_size)) * 2;
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
#if CONFIG_PVQ
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
#endif
#if CONFIG_AOM_HIGHBITDEPTH
const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8;
*out_dist =
av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse, bd) >>
shift;
#elif CONFIG_PVQ
*out_dist = av1_block_error2_c(coeff, dqcoeff, ref_coeff, buffer_length,
&this_sse) >>
shift;
#else
*out_dist =
av1_block_error(coeff, dqcoeff, buffer_length, &this_sse) >> shift;
#endif // CONFIG_AOM_HIGHBITDEPTH
*out_sse = this_sse >> shift;
} else {
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
const int bsw = block_size_wide[tx_bsize];
const int bsh = block_size_high[tx_bsize];
const int src_stride = x->plane[plane].src.stride;
const int dst_stride = xd->plane[plane].dst.stride;
// Scale the transform block index to pixel unit.
const int src_idx = (blk_row * src_stride + blk_col)
<< tx_size_wide_log2[0];
const int dst_idx = (blk_row * dst_stride + blk_col)
<< tx_size_wide_log2[0];
const uint8_t *src = &x->plane[plane].src.buf[src_idx];
const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx];
const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const uint16_t eob = p->eobs[block];
unsigned int tmp;
assert(cpi != NULL);
assert(tx_size_wide_log2[0] == tx_size_high_log2[0]);
cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &tmp);
*out_sse = (int64_t)tmp * 16;
if (eob) {
const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]);
uint8_t *recon = (uint8_t *)recon16;
#else
DECLARE_ALIGNED(16, uint8_t, recon[MAX_TX_SQUARE]);
#endif // CONFIG_AOM_HIGHBITDEPTH
const PLANE_TYPE plane_type = plane == 0 ? PLANE_TYPE_Y : PLANE_TYPE_UV;
INV_TXFM_PARAM inv_txfm_param;
inv_txfm_param.tx_type = get_tx_type(plane_type, xd, block, tx_size);
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = eob;
inv_txfm_param.lossless = xd->lossless[mbmi->segment_id];
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
recon = CONVERT_TO_BYTEPTR(recon);
inv_txfm_param.bd = xd->bd;
aom_highbd_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0,
NULL, 0, bsw, bsh, xd->bd);
highbd_inv_txfm_add(dqcoeff, recon, MAX_TX_SIZE, &inv_txfm_param);
} else
#endif // CONFIG_AOM_HIGHBITDEPTH
{
#if !CONFIG_PVQ
aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0, NULL, 0,
bsw, bsh);
#else
int i, j;
for (j = 0; j < bsh; j++)
for (i = 0; i < bsw; i++) recon[j * MAX_TX_SIZE + i] = 0;
#endif
inv_txfm_add(dqcoeff, recon, MAX_TX_SIZE, &inv_txfm_param);
}
cpi->fn_ptr[tx_bsize].vf(src, src_stride, recon, MAX_TX_SIZE, &tmp);
}
*out_dist = (int64_t)tmp * 16;
}
}
#if !CONFIG_PVQ
static int rate_block(int plane, int block, int coeff_ctx, TX_SIZE tx_size,
struct rdcost_block_args *args) {
return av1_cost_coeffs(&args->cpi->common, args->x, plane, block, coeff_ctx,
tx_size, args->scan_order->scan,
args->scan_order->neighbors,
args->use_fast_coef_costing);
}
#endif
static uint64_t sum_squares_2d(const int16_t *diff, int diff_stride,
TX_SIZE tx_size) {
uint64_t sse;
switch (tx_size) {
#if CONFIG_CB4X4
case TX_2X2:
sse = aom_sum_squares_2d_i16_c(diff, diff_stride, tx_size_wide[tx_size]);
break;
#endif
case TX_4X8:
sse = aom_sum_squares_2d_i16(diff, diff_stride, 4) +
aom_sum_squares_2d_i16(diff + 4 * diff_stride, diff_stride, 4);
break;
case TX_8X4:
sse = aom_sum_squares_2d_i16(diff, diff_stride, 4) +
aom_sum_squares_2d_i16(diff + 4, diff_stride, 4);
break;
case TX_8X16:
sse = aom_sum_squares_2d_i16(diff, diff_stride, 8) +
aom_sum_squares_2d_i16(diff + 8 * diff_stride, diff_stride, 8);
break;
case TX_16X8:
sse = aom_sum_squares_2d_i16(diff, diff_stride, 8) +
aom_sum_squares_2d_i16(diff + 8, diff_stride, 8);
break;
case TX_16X32:
sse = aom_sum_squares_2d_i16(diff, diff_stride, 16) +
aom_sum_squares_2d_i16(diff + 16 * diff_stride, diff_stride, 16);
break;
case TX_32X16:
sse = aom_sum_squares_2d_i16(diff, diff_stride, 16) +
aom_sum_squares_2d_i16(diff + 16, diff_stride, 16);
break;
default:
assert(tx_size < TX_SIZES);
sse = aom_sum_squares_2d_i16(diff, diff_stride, tx_size_wide[tx_size]);
break;
}
return sse;
}
static void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct rdcost_block_args *args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const AV1_COMMON *cm = &args->cpi->common;
int64_t rd1, rd2, rd;
int coeff_ctx = combine_entropy_contexts(*(args->t_above + blk_col),
*(args->t_left + blk_row));
RD_STATS this_rd_stats;
av1_init_rd_stats(&this_rd_stats);
if (args->exit_early) return;
if (!is_inter_block(mbmi)) {
struct encode_b_args b_args = {
(AV1_COMMON *)cm, x, NULL, &mbmi->skip, args->t_above, args->t_left, 1
};
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
&b_args);
if (args->cpi->sf.use_transform_domain_distortion) {
dist_block(args->cpi, x, plane, block, blk_row, blk_col, tx_size,
&this_rd_stats.dist, &this_rd_stats.sse);
} else {
// Note that the encode block_intra call above already calls
// inv_txfm_add, so we can't just call dist_block here.
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
const aom_variance_fn_t variance = args->cpi->fn_ptr[tx_bsize].vf;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int diff_stride = block_size_wide[plane_bsize];
const uint8_t *src =
&p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
const uint8_t *dst =
&pd->dst
.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
const int16_t *diff = &p->src_diff[(blk_row * diff_stride + blk_col)
<< tx_size_wide_log2[0]];
unsigned int tmp;
this_rd_stats.sse = sum_squares_2d(diff, diff_stride, tx_size);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
this_rd_stats.sse =
ROUND_POWER_OF_TWO(this_rd_stats.sse, (xd->bd - 8) * 2);
#endif // CONFIG_AOM_HIGHBITDEPTH
this_rd_stats.sse = this_rd_stats.sse * 16;
variance(src, src_stride, dst, dst_stride, &tmp);
this_rd_stats.dist = (int64_t)tmp * 16;
}
} else {
// full forward transform and quantization
#if CONFIG_NEW_QUANT
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
coeff_ctx, AV1_XFORM_QUANT_FP_NUQ);
#else
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
coeff_ctx, AV1_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
#if !CONFIG_PVQ
if (x->plane[plane].eobs[block] && !xd->lossless[mbmi->segment_id]) {
args->t_above[blk_col] = args->t_left[blk_row] =
(av1_optimize_b(cm, x, plane, block, tx_size, coeff_ctx) > 0);
} else {
args->t_above[blk_col] = (x->plane[plane].eobs[block] > 0);
args->t_left[blk_row] = (x->plane[plane].eobs[block] > 0);
}
#endif
dist_block(args->cpi, x, plane, block, blk_row, blk_col, tx_size,
&this_rd_stats.dist, &this_rd_stats.sse);
}
rd = RDCOST(x->rdmult, x->rddiv, 0, this_rd_stats.dist);
if (args->this_rd + rd > args->best_rd) {
args->exit_early = 1;
return;
}
#if !CONFIG_PVQ
this_rd_stats.rate = rate_block(plane, block, coeff_ctx, tx_size, args);
#if CONFIG_RD_DEBUG
av1_update_txb_coeff_cost(&this_rd_stats, plane, tx_size, blk_row, blk_col,
this_rd_stats.rate);
#endif
#else
this_rd_stats.rate = x->rate;
args->t_above[blk_col] = !x->pvq_skip[plane];
args->t_left[blk_row] = !x->pvq_skip[plane];
#endif
rd1 = RDCOST(x->rdmult, x->rddiv, this_rd_stats.rate, this_rd_stats.dist);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, this_rd_stats.sse);
// TODO(jingning): temporarily enabled only for luma component
rd = AOMMIN(rd1, rd2);
#if !CONFIG_PVQ
this_rd_stats.skip &= !x->plane[plane].eobs[block];
#else
this_rd_stats.skip &= x->pvq_skip[plane];
#endif
av1_merge_rd_stats(&args->rd_stats, &this_rd_stats);
args->this_rd += rd;
if (args->this_rd > args->best_rd) {
args->exit_early = 1;
return;
}
}
static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi,
RD_STATS *rd_stats, int64_t ref_best_rd, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size,
int use_fast_coef_casting) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
TX_TYPE tx_type;
struct rdcost_block_args args;
av1_zero(args);
args.x = x;
args.cpi = cpi;
args.best_rd = ref_best_rd;
args.use_fast_coef_costing = use_fast_coef_casting;
av1_init_rd_stats(&args.rd_stats);
if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size;
av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
tx_type = get_tx_type(pd->plane_type, xd, 0, tx_size);
args.scan_order =
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm,
&args);
if (args.exit_early) {
av1_invalid_rd_stats(rd_stats);
} else {
*rd_stats = args.rd_stats;
}
}
#if CONFIG_SUPERTX
void av1_txfm_rd_in_plane_supertx(MACROBLOCK *x, const AV1_COMP *cpi, int *rate,
int64_t *distortion, int *skippable,
int64_t *sse, int64_t ref_best_rd, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size,
int use_fast_coef_casting) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
struct rdcost_block_args args;
TX_TYPE tx_type;
av1_zero(args);
args.cpi = cpi;
args.x = x;
args.best_rd = ref_best_rd;
args.use_fast_coef_costing = use_fast_coef_casting;
#if CONFIG_EXT_TX
assert(tx_size < TX_SIZES);
#endif // CONFIG_EXT_TX
if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size;
av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
tx_type = get_tx_type(pd->plane_type, xd, 0, tx_size);
args.scan_order =
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
block_rd_txfm(plane, 0, 0, 0, get_plane_block_size(bsize, pd), tx_size,
&args);
if (args.exit_early) {
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
} else {
*distortion = args.rd_stats.dist;
*rate = args.rd_stats.rate;
*sse = args.rd_stats.sse;
*skippable = !x->plane[plane].eobs[0];
}
}
#endif // CONFIG_SUPERTX
static int64_t txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats, int64_t ref_best_rd, BLOCK_SIZE bs,
TX_TYPE tx_type, int tx_size) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd = INT64_MAX;
aom_prob skip_prob = av1_get_skip_prob(cm, xd);
int s0, s1;
const int is_inter = is_inter_block(mbmi);
const int tx_size_cat =
is_inter ? inter_tx_size_cat_lookup[bs] : intra_tx_size_cat_lookup[bs];
const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size];
const int depth = tx_size_to_depth(coded_tx_size);
const int tx_select =
cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8;
const int tx_size_ctx = tx_select ? get_tx_size_context(xd) : 0;
const int r_tx_size =
tx_select ? cpi->tx_size_cost[tx_size_cat][tx_size_ctx][depth] : 0;
assert(skip_prob > 0);
#if CONFIG_EXT_TX && CONFIG_RECT_TX
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs)));
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
s0 = av1_cost_bit(skip_prob, 0);
s1 = av1_cost_bit(skip_prob, 1);
mbmi->tx_type = tx_type;
mbmi->tx_size = tx_size;
txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, tx_size,
cpi->sf.use_fast_coef_costing);
if (rd_stats->rate == INT_MAX) return INT64_MAX;
#if CONFIG_EXT_TX
if (get_ext_tx_types(tx_size, bs, is_inter) > 1 &&
!xd->lossless[xd->mi[0]->mbmi.segment_id]) {
const int ext_tx_set = get_ext_tx_set(tx_size, bs, is_inter);
if (is_inter) {
if (ext_tx_set > 0)
rd_stats->rate +=
cpi->inter_tx_type_costs[ext_tx_set][txsize_sqr_map[mbmi->tx_size]]
[mbmi->tx_type];
} else {
if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX)
rd_stats->rate += cpi->intra_tx_type_costs[ext_tx_set][mbmi->tx_size]
[mbmi->mode][mbmi->tx_type];
}
}
#else
if (tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
!FIXED_TX_TYPE) {
if (is_inter) {
rd_stats->rate += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
} else {
rd_stats->rate +=
cpi->intra_tx_type_costs[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]]
[mbmi->tx_type];
}
}
#endif // CONFIG_EXT_TX
if (rd_stats->skip) {
if (is_inter) {
rd = RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse);
} else {
rd = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size * tx_select,
rd_stats->sse);
}
} else {
rd = RDCOST(x->rdmult, x->rddiv,
rd_stats->rate + s0 + r_tx_size * tx_select, rd_stats->dist);
}
if (tx_select) rd_stats->rate += r_tx_size;
if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
!(rd_stats->skip))
rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse));
return rd;
}
static int64_t choose_tx_size_fix_type(const AV1_COMP *const cpi, BLOCK_SIZE bs,
MACROBLOCK *x, RD_STATS *rd_stats,
int64_t ref_best_rd, TX_TYPE tx_type,
#if CONFIG_PVQ
od_rollback_buffer buf,
#endif
int prune) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd = INT64_MAX;
int n;
int start_tx, end_tx;
int64_t best_rd = INT64_MAX, last_rd = INT64_MAX;
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
TX_SIZE best_tx_size = max_tx_size;
const int tx_select = cm->tx_mode == TX_MODE_SELECT;
const int is_inter = is_inter_block(mbmi);
#if CONFIG_EXT_TX
#if CONFIG_RECT_TX
int evaluate_rect_tx = 0;
#endif // CONFIG_RECT_TX
int ext_tx_set;
#endif // CONFIG_EXT_TX
if (tx_select) {
#if CONFIG_EXT_TX && CONFIG_RECT_TX
evaluate_rect_tx = is_rect_tx_allowed(xd, mbmi);
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
start_tx = max_tx_size;
end_tx = (max_tx_size >= TX_32X32) ? TX_8X8 : TX_4X4;
} else {
const TX_SIZE chosen_tx_size =
tx_size_from_tx_mode(bs, cm->tx_mode, is_inter);
#if CONFIG_EXT_TX && CONFIG_RECT_TX
evaluate_rect_tx = is_rect_tx(chosen_tx_size);
assert(IMPLIES(evaluate_rect_tx, is_rect_tx_allowed(xd, mbmi)));
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
start_tx = chosen_tx_size;
end_tx = chosen_tx_size;
}
av1_invalid_rd_stats(rd_stats);
mbmi->tx_type = tx_type;
#if CONFIG_EXT_TX && CONFIG_RECT_TX
if (evaluate_rect_tx) {
const TX_SIZE rect_tx_size = max_txsize_rect_lookup[bs];
RD_STATS this_rd_stats;
ext_tx_set = get_ext_tx_set(rect_tx_size, bs, 1);
if (ext_tx_used_inter[ext_tx_set][tx_type]) {
rd = txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, tx_type,
rect_tx_size);
best_tx_size = rect_tx_size;
best_rd = rd;
*rd_stats = this_rd_stats;
}
}
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
last_rd = INT64_MAX;
for (n = start_tx; n >= end_tx; --n) {
RD_STATS this_rd_stats;
#if CONFIG_EXT_TX && CONFIG_RECT_TX
if (is_rect_tx(n)) break;
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
if (FIXED_TX_TYPE && tx_type != get_default_tx_type(0, xd, 0, n)) continue;
if (!is_inter && x->use_default_intra_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, n))
continue;
if (is_inter && x->use_default_inter_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, n))
continue;
if (max_tx_size >= TX_32X32 && n == TX_4X4) continue;
#if CONFIG_EXT_TX
ext_tx_set = get_ext_tx_set(n, bs, is_inter);
if (is_inter) {
if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue;
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) {
if (!do_tx_type_search(tx_type, prune)) continue;
}
} else {
if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) {
if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue;
}
if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue;
}
#else // CONFIG_EXT_TX
if (n >= TX_32X32 && tx_type != DCT_DCT) continue;
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE &&
!do_tx_type_search(tx_type, prune))
continue;
#endif // CONFIG_EXT_TX
rd = txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, tx_type, n);
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &buf);
#endif
// Early termination in transform size search.
if (cpi->sf.tx_size_search_breakout &&
(rd == INT64_MAX ||
(this_rd_stats.skip == 1 && tx_type != DCT_DCT && n < start_tx) ||
(n < (int)max_tx_size && rd > last_rd)))
break;
last_rd = rd;
if (rd < best_rd) {
best_tx_size = n;
best_rd = rd;
*rd_stats = this_rd_stats;
}
}
mbmi->tx_size = best_tx_size;
return best_rd;
}
#if CONFIG_EXT_INTER
static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs,
MACROBLOCK *x, int *r, int64_t *d, int *s,
int64_t *sse, int64_t ref_best_rd) {
RD_STATS rd_stats;
int64_t rd = txfm_yrd(cpi, x, &rd_stats, ref_best_rd, bs, DCT_DCT,
max_txsize_lookup[bs]);
*r = rd_stats.rate;
*d = rd_stats.dist;
*s = rd_stats.skip;
*sse = rd_stats.sse;
return rd;
}
#endif // CONFIG_EXT_INTER
static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats, int64_t ref_best_rd,
BLOCK_SIZE bs) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
TX_TYPE tx_type, best_tx_type = DCT_DCT;
int64_t this_rd, best_rd = INT64_MAX;
aom_prob skip_prob = av1_get_skip_prob(cm, xd);
int s0 = av1_cost_bit(skip_prob, 0);
int s1 = av1_cost_bit(skip_prob, 1);
const int is_inter = is_inter_block(mbmi);
int prune = 0;
#if CONFIG_EXT_TX
int ext_tx_set;
#endif // CONFIG_EXT_TX
av1_invalid_rd_stats(rd_stats);
mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode, is_inter);
#if CONFIG_VAR_TX
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
#endif
#if CONFIG_EXT_TX
ext_tx_set = get_ext_tx_set(mbmi->tx_size, bs, is_inter);
#endif // CONFIG_EXT_TX
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE)
#if CONFIG_EXT_TX
prune = prune_tx_types(cpi, bs, x, xd, ext_tx_set);
#else
prune = prune_tx_types(cpi, bs, x, xd, 0);
#endif
#if CONFIG_EXT_TX
if (get_ext_tx_types(mbmi->tx_size, bs, is_inter) > 1 &&
!xd->lossless[mbmi->segment_id]) {
#if CONFIG_PVQ
od_rollback_buffer pre_buf, post_buf;
od_encode_checkpoint(&x->daala_enc, &pre_buf);
od_encode_checkpoint(&x->daala_enc, &post_buf);
#endif
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
RD_STATS this_rd_stats;
if (is_inter) {
if (x->use_default_inter_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
continue;
if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue;
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) {
if (!do_tx_type_search(tx_type, prune)) continue;
}
} else {
if (x->use_default_intra_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
continue;
if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) {
if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue;
}
if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue;
}
mbmi->tx_type = tx_type;
txfm_rd_in_plane(x, cpi, &this_rd_stats, ref_best_rd, 0, bs,
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &pre_buf);
#endif
if (this_rd_stats.rate == INT_MAX) continue;
if (get_ext_tx_types(mbmi->tx_size, bs, is_inter) > 1) {
if (is_inter) {
if (ext_tx_set > 0)
this_rd_stats.rate +=
cpi->inter_tx_type_costs[ext_tx_set][mbmi->tx_size]
[mbmi->tx_type];
} else {
if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX)
this_rd_stats.rate +=
cpi->intra_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->mode]
[mbmi->tx_type];
}
}
if (this_rd_stats.skip)
this_rd = RDCOST(x->rdmult, x->rddiv, s1, this_rd_stats.sse);
else
this_rd = RDCOST(x->rdmult, x->rddiv, this_rd_stats.rate + s0,
this_rd_stats.dist);
if (is_inter_block(mbmi) && !xd->lossless[mbmi->segment_id] &&
!this_rd_stats.skip)
this_rd =
AOMMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, this_rd_stats.sse));
if (this_rd < best_rd) {
best_rd = this_rd;
best_tx_type = mbmi->tx_type;
*rd_stats = this_rd_stats;
#if CONFIG_PVQ
od_encode_checkpoint(&x->daala_enc, &post_buf);
#endif
}
}
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &post_buf);
#endif
} else {
mbmi->tx_type = DCT_DCT;
txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size,
cpi->sf.use_fast_coef_costing);
}
#else // CONFIG_EXT_TX
if (mbmi->tx_size < TX_32X32 && !xd->lossless[mbmi->segment_id]) {
for (tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
RD_STATS this_rd_stats;
if (!is_inter && x->use_default_intra_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
continue;
if (is_inter && x->use_default_inter_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
continue;
mbmi->tx_type = tx_type;
txfm_rd_in_plane(x, cpi, &this_rd_stats, ref_best_rd, 0, bs,
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
if (this_rd_stats.rate == INT_MAX) continue;
if (is_inter) {
this_rd_stats.rate +=
cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE &&
!do_tx_type_search(tx_type, prune))
continue;
} else {
this_rd_stats.rate +=
cpi->intra_tx_type_costs[mbmi->tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]]
[mbmi->tx_type];
}
if (this_rd_stats.skip)
this_rd = RDCOST(x->rdmult, x->rddiv, s1, this_rd_stats.sse);
else
this_rd = RDCOST(x->rdmult, x->rddiv, this_rd_stats.rate + s0,
this_rd_stats.dist);
if (is_inter && !xd->lossless[mbmi->segment_id] && !this_rd_stats.skip)
this_rd =
AOMMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, this_rd_stats.sse));
if (this_rd < best_rd) {
best_rd = this_rd;
best_tx_type = mbmi->tx_type;
*rd_stats = this_rd_stats;
}
}
} else {
mbmi->tx_type = DCT_DCT;
txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size,
cpi->sf.use_fast_coef_costing);
}
#endif // CONFIG_EXT_TX
mbmi->tx_type = best_tx_type;
}
static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats, int64_t ref_best_rd,
BLOCK_SIZE bs) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
mbmi->tx_size = TX_4X4;
mbmi->tx_type = DCT_DCT;
#if CONFIG_VAR_TX
mbmi->min_tx_size = get_min_tx_size(TX_4X4);
#endif
txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size,
cpi->sf.use_fast_coef_costing);
}
static void choose_tx_size_type_from_rd(const AV1_COMP *const cpi,
MACROBLOCK *x, RD_STATS *rd_stats,
int64_t ref_best_rd, BLOCK_SIZE bs) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd = INT64_MAX;
int64_t best_rd = INT64_MAX;
TX_SIZE best_tx = max_txsize_lookup[bs];
const int is_inter = is_inter_block(mbmi);
TX_TYPE tx_type, best_tx_type = DCT_DCT;
int prune = 0;
#if CONFIG_PVQ
od_rollback_buffer buf;
#endif
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE)
// passing -1 in for tx_type indicates that all 1D
// transforms should be considered for pruning
prune = prune_tx_types(cpi, bs, x, xd, -1);
av1_invalid_rd_stats(rd_stats);
#if CONFIG_PVQ
od_encode_checkpoint(&x->daala_enc, &buf);
#endif
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
RD_STATS this_rd_stats;
#if CONFIG_REF_MV
if (mbmi->ref_mv_idx > 0 && tx_type != DCT_DCT) continue;
#endif
rd = choose_tx_size_fix_type(cpi, bs, x, &this_rd_stats, ref_best_rd,
tx_type,
#if CONFIG_PVQ
buf,
#endif
prune);
if (rd < best_rd) {
best_rd = rd;
*rd_stats = this_rd_stats;
best_tx_type = tx_type;
best_tx = mbmi->tx_size;
}
}
mbmi->tx_size = best_tx;
mbmi->tx_type = best_tx_type;
#if CONFIG_VAR_TX
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
#endif
#if !CONFIG_EXT_TX
if (mbmi->tx_size >= TX_32X32) assert(mbmi->tx_type == DCT_DCT);
#endif
#if CONFIG_PVQ
if (best_rd != INT64_MAX) {
txfm_yrd(cpi, x, rd_stats, ref_best_rd, bs, best_tx_type, best_tx);
}
#endif
}
static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bs,
int64_t ref_best_rd) {
MACROBLOCKD *xd = &x->e_mbd;
av1_init_rd_stats(rd_stats);
assert(bs == xd->mi[0]->mbmi.sb_type);
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
} else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
} else {
choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs);
}
}
static int conditional_skipintra(PREDICTION_MODE mode,
PREDICTION_MODE best_intra_mode) {
if (mode == D117_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D135_PRED)
return 1;
if (mode == D63_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D207_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D153_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D135_PRED)
return 1;
return 0;
}
#if CONFIG_PALETTE
static int rd_pick_palette_intra_sby(
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int palette_ctx,
int dc_mode_cost, PALETTE_MODE_INFO *palette_mode_info,
uint8_t *best_palette_color_map, TX_SIZE *best_tx, TX_TYPE *best_tx_type,
PREDICTION_MODE *mode_selected, int64_t *best_rd) {
int rate_overhead = 0;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mi[0];
const int rows = block_size_high[bsize];
const int cols = block_size_wide[bsize];
int this_rate, colors, n;
RD_STATS tokenonly_rd_stats;
int64_t this_rd;
const int src_stride = x->plane[0].src.stride;
const uint8_t *const src = x->plane[0].src.buf;
assert(cpi->common.allow_screen_content_tools);
#if CONFIG_AOM_HIGHBITDEPTH
if (cpi->common.use_highbitdepth)
colors = av1_count_colors_highbd(src, src_stride, rows, cols,
cpi->common.bit_depth);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
colors = av1_count_colors(src, src_stride, rows, cols);
palette_mode_info->palette_size[0] = 0;
#if CONFIG_FILTER_INTRA
mic->mbmi.filter_intra_mode_info.use_filter_intra_mode[0] = 0;
#endif // CONFIG_FILTER_INTRA
if (colors > 1 && colors <= 64) {
int r, c, i, j, k;
const int max_itr = 50;
uint8_t color_order[PALETTE_MAX_SIZE];
float *const data = x->palette_buffer->kmeans_data_buf;
float centroids[PALETTE_MAX_SIZE];
uint8_t *const color_map = xd->plane[0].color_index_map;
float lb, ub, val;
MB_MODE_INFO *const mbmi = &mic->mbmi;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
#if CONFIG_AOM_HIGHBITDEPTH
uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
if (cpi->common.use_highbitdepth)
lb = ub = src16[0];
else
#endif // CONFIG_AOM_HIGHBITDEPTH
lb = ub = src[0];
#if CONFIG_AOM_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
val = src16[r * src_stride + c];
data[r * cols + c] = val;
if (val < lb)
lb = val;
else if (val > ub)
ub = val;
}
}
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
val = src[r * src_stride + c];
data[r * cols + c] = val;
if (val < lb)
lb = val;
else if (val > ub)
ub = val;
}
}
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
mbmi->mode = DC_PRED;
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
#endif // CONFIG_FILTER_INTRA
if (rows * cols > PALETTE_MAX_BLOCK_SIZE) return 0;
for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2;
--n) {
for (i = 0; i < n; ++i)
centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2;
av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr);
k = av1_remove_duplicates(centroids, n);
#if CONFIG_AOM_HIGHBITDEPTH
if (cpi->common.use_highbitdepth)
for (i = 0; i < k; ++i)
pmi->palette_colors[i] =
clip_pixel_highbd((int)centroids[i], cpi->common.bit_depth);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
for (i = 0; i < k; ++i)
pmi->palette_colors[i] = clip_pixel((int)centroids[i]);
pmi->palette_size[0] = k;
av1_calc_indices(data, centroids, color_map, rows * cols, k, 1);
super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
if (tokenonly_rd_stats.rate == INT_MAX) continue;
this_rate =
tokenonly_rd_stats.rate + dc_mode_cost +
cpi->common.bit_depth * k * av1_cost_bit(128, 0) +
cpi->palette_y_size_cost[bsize - BLOCK_8X8][k - 2] +
write_uniform_cost(k, color_map[0]) +
av1_cost_bit(
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx],
1);
for (i = 0; i < rows; ++i) {
for (j = (i == 0 ? 1 : 0); j < cols; ++j) {
int color_idx;
const int color_ctx = av1_get_palette_color_context(
color_map, cols, i, j, k, color_order, &color_idx);
assert(color_idx >= 0 && color_idx < k);
this_rate += cpi->palette_y_color_cost[k - 2][color_ctx][color_idx];
}
}
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*palette_mode_info = *pmi;
memcpy(best_palette_color_map, color_map,
rows * cols * sizeof(color_map[0]));
*mode_selected = DC_PRED;
*best_tx = mbmi->tx_size;
*best_tx_type = mbmi->tx_type;
rate_overhead = this_rate - tokenonly_rd_stats.rate;
}
}
}
return rate_overhead;
}
#endif // CONFIG_PALETTE
static int64_t rd_pick_intra4x4block(
const AV1_COMP *const cpi, MACROBLOCK *x, int row, int col,
PREDICTION_MODE *best_mode, const int *bmode_costs, ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int64_t *bestdistortion,
BLOCK_SIZE bsize, int *y_skip, int64_t rd_thresh) {
const AV1_COMMON *const cm = &cpi->common;
PREDICTION_MODE mode;
MACROBLOCKD *const xd = &x->e_mbd;
int64_t best_rd = rd_thresh;
struct macroblock_plane *p = &x->plane[0];
struct macroblockd_plane *pd = &xd->plane[0];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4];
uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4];
#if CONFIG_CB4X4
// TODO(jingning): This is a temporal change. The whole function should be
// out when cb4x4 is enabled.
ENTROPY_CONTEXT ta[4], tempa[4];
ENTROPY_CONTEXT tl[4], templ[4];
#else
ENTROPY_CONTEXT ta[2], tempa[2];
ENTROPY_CONTEXT tl[2], templ[2];
#endif
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
int best_can_skip = 0;
uint8_t best_dst[8 * 8];
#if CONFIG_AOM_HIGHBITDEPTH
uint16_t best_dst16[8 * 8];
#endif
#if CONFIG_PVQ
od_rollback_buffer pre_buf, post_buf;
od_encode_checkpoint(&x->daala_enc, &pre_buf);
od_encode_checkpoint(&x->daala_enc, &post_buf);
#endif
memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0]));
memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0]));
xd->mi[0]->mbmi.tx_size = TX_4X4;
#if CONFIG_PALETTE
xd->mi[0]->mbmi.palette_mode_info.palette_size[0] = 0;
#endif // CONFIG_PALETTE
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
int64_t distortion = 0;
int rate = bmode_costs[mode];
int can_skip = 1;
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
// Only do the oblique modes if the best so far is
// one of the neighboring directional modes
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mode, *best_mode)) continue;
}
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
const int block = (row + idy) * 2 + (col + idx);
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
int16_t *const src_diff =
av1_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
xd->mi[0]->bmi[block].as_mode = mode;
av1_predict_intra_block(xd, pd->width, pd->height, TX_4X4, mode, dst,
dst_stride, dst, dst_stride, col + idx,
row + idy, 0);
aom_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, dst,
dst_stride, xd->bd);
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
const SCAN_ORDER *scan_order = get_scan(cm, TX_4X4, tx_type, 0);
const int coeff_ctx =
combine_entropy_contexts(*(tempa + idx), *(templ + idy));
#if CONFIG_NEW_QUANT
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, coeff_ctx, AV1_XFORM_QUANT_FP_NUQ);
#else
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, coeff_ctx, AV1_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
ratey += av1_cost_coeffs(cm, x, 0, block, coeff_ctx, TX_4X4,
scan_order->scan, scan_order->neighbors,
cpi->sf.use_fast_coef_costing);
*(tempa + idx) = !(p->eobs[block] == 0);
*(templ + idy) = !(p->eobs[block] == 0);
can_skip &= (p->eobs[block] == 0);
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next_highbd;
av1_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
dst_stride, p->eobs[block], xd->bd,
DCT_DCT, 1);
} else {
int64_t dist;
unsigned int tmp;
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
const SCAN_ORDER *scan_order = get_scan(cm, TX_4X4, tx_type, 0);
const int coeff_ctx =
combine_entropy_contexts(*(tempa + idx), *(templ + idy));
#if CONFIG_NEW_QUANT
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, coeff_ctx, AV1_XFORM_QUANT_FP_NUQ);
#else
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, coeff_ctx, AV1_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
av1_optimize_b(cm, x, 0, block, TX_4X4, coeff_ctx);
ratey += av1_cost_coeffs(cm, x, 0, block, coeff_ctx, TX_4X4,
scan_order->scan, scan_order->neighbors,
cpi->sf.use_fast_coef_costing);
*(tempa + idx) = !(p->eobs[block] == 0);
*(templ + idy) = !(p->eobs[block] == 0);
can_skip &= (p->eobs[block] == 0);
av1_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
dst_stride, p->eobs[block], xd->bd,
tx_type, 0);
cpi->fn_ptr[BLOCK_4X4].vf(src, src_stride, dst, dst_stride, &tmp);
dist = (int64_t)tmp << 4;
distortion += dist;
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next_highbd;
}
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
best_can_skip = can_skip;
*best_mode = mode;
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
memcpy(best_dst16 + idy * 8,
CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
num_4x4_blocks_wide * 4 * sizeof(uint16_t));
}
}
next_highbd : {}
}
if (best_rd >= rd_thresh) return best_rd;
if (y_skip) *y_skip &= best_can_skip;
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
best_dst16 + idy * 8, num_4x4_blocks_wide * 4 * sizeof(uint16_t));
}
return best_rd;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#if CONFIG_PVQ
od_encode_checkpoint(&x->daala_enc, &pre_buf);
#endif
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
int64_t distortion = 0;
int rate = bmode_costs[mode];
int can_skip = 1;
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
// Only do the oblique modes if the best so far is
// one of the neighboring directional modes
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mode, *best_mode)) continue;
}
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
int block = (row + idy) * 2 + (col + idx);
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
#if !CONFIG_PVQ
int16_t *const src_diff =
av1_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
#else
int i, j, tx_blk_size;
int skip;
tx_blk_size = 4;
#endif
xd->mi[0]->bmi[block].as_mode = mode;
av1_predict_intra_block(xd, pd->width, pd->height, TX_4X4, mode, dst,
dst_stride, dst, dst_stride,
#if CONFIG_CB4X4
2 * (col + idx), 2 * (row + idy),
#else
col + idx, row + idy,
#endif
0);
#if !CONFIG_PVQ
aom_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride);
#endif
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
const SCAN_ORDER *scan_order = get_scan(cm, TX_4X4, tx_type, 0);
const int coeff_ctx =
combine_entropy_contexts(*(tempa + idx), *(templ + idy));
#if CONFIG_CB4X4
block = 4 * block;
#endif
#if !CONFIG_PVQ
#if CONFIG_NEW_QUANT
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, coeff_ctx, AV1_XFORM_QUANT_B_NUQ);
#else
av1_xform_quant(cm, x, 0, block,
#if CONFIG_CB4X4
2 * (row + idy), 2 * (col + idx),
#else
row + idy, col + idx,
#endif
BLOCK_8X8, TX_4X4, coeff_ctx, AV1_XFORM_QUANT_B);
#endif // CONFIG_NEW_QUANT
ratey += av1_cost_coeffs(cm, x, 0, block, coeff_ctx, TX_4X4,
scan_order->scan, scan_order->neighbors,
cpi->sf.use_fast_coef_costing);
*(tempa + idx) = !(p->eobs[block] == 0);
*(templ + idy) = !(p->eobs[block] == 0);
can_skip &= (p->eobs[block] == 0);
#else
(void)scan_order;
av1_xform_quant(cm, x, 0, block,
#if CONFIG_CB4X4
2 * (row + idy), 2 * (col + idx),
#else
row + idy, col + idx,
#endif
BLOCK_8X8, TX_4X4, coeff_ctx, AV1_XFORM_QUANT_B);
ratey += x->rate;
skip = x->pvq_skip[0];
*(tempa + idx) = !skip;
*(templ + idy) = !skip;
can_skip &= skip;
#endif
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next;
#if CONFIG_PVQ
if (!skip) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * dst_stride + i] = 0;
#endif
av1_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
dst_stride, p->eobs[block], DCT_DCT, 1);
#if CONFIG_PVQ
}
#endif
} else {
int64_t dist;
unsigned int tmp;
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
const SCAN_ORDER *scan_order = get_scan(cm, TX_4X4, tx_type, 0);
const int coeff_ctx =
combine_entropy_contexts(*(tempa + idx), *(templ + idy));
#if CONFIG_CB4X4
block = 4 * block;
#endif
#if !CONFIG_PVQ
#if CONFIG_NEW_QUANT
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
TX_4X4, coeff_ctx, AV1_XFORM_QUANT_FP_NUQ);
#else
av1_xform_quant(cm, x, 0, block,
#if CONFIG_CB4X4
2 * (row + idy), 2 * (col + idx),
#else
row + idy, col + idx,
#endif
BLOCK_8X8, TX_4X4, coeff_ctx, AV1_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
av1_optimize_b(cm, x, 0, block, TX_4X4, coeff_ctx);
ratey += av1_cost_coeffs(cm, x, 0, block, coeff_ctx, TX_4X4,
scan_order->scan, scan_order->neighbors,
cpi->sf.use_fast_coef_costing);
*(tempa + idx) = !(p->eobs[block] == 0);
*(templ + idy) = !(p->eobs[block] == 0);
can_skip &= (p->eobs[block] == 0);
#else
(void)scan_order;
av1_xform_quant(cm, x, 0, block,
#if CONFIG_CB4X4
2 * (row + idy), 2 * (col + idx),
#else
row + idy, col + idx,
#endif
BLOCK_8X8, TX_4X4, coeff_ctx, AV1_XFORM_QUANT_FP);
ratey += x->rate;
skip = x->pvq_skip[0];
*(tempa + idx) = !skip;
*(templ + idy) = !skip;
can_skip &= skip;
#endif
#if CONFIG_PVQ
if (!skip) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * dst_stride + i] = 0;
#endif
av1_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
dst_stride, p->eobs[block], tx_type, 0);
#if CONFIG_PVQ
}
#endif
// No need for av1_block_error2_c because the ssz is unused
cpi->fn_ptr[BLOCK_4X4].vf(src, src_stride, dst, dst_stride, &tmp);
dist = (int64_t)tmp << 4;
distortion += dist;
// To use the pixel domain distortion, the step below needs to be
// put behind the inv txfm. Compared to calculating the distortion
// in the frequency domain, the overhead of encoding effort is low.
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next;
}
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
best_can_skip = can_skip;
*best_mode = mode;
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
#if CONFIG_PVQ
od_encode_checkpoint(&x->daala_enc, &post_buf);
#endif
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
memcpy(best_dst + idy * 8, dst_init + idy * dst_stride,
num_4x4_blocks_wide * 4);
}
next : {}
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &pre_buf);
#endif
} // mode decision loop
if (best_rd >= rd_thresh) return best_rd;
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &post_buf);
#endif
if (y_skip) *y_skip &= best_can_skip;
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
memcpy(dst_init + idy * dst_stride, best_dst + idy * 8,
num_4x4_blocks_wide * 4);
return best_rd;
}
static int64_t rd_pick_intra_sub_8x8_y_mode(const AV1_COMP *const cpi,
MACROBLOCK *mb, int *rate,
int *rate_y, int64_t *distortion,
int *y_skip, int64_t best_rd) {
int i, j;
const MACROBLOCKD *const xd = &mb->e_mbd;
MODE_INFO *const mic = xd->mi[0];
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
int cost = 0;
int64_t total_distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
const int *bmode_costs = cpi->mbmode_cost[0];
#if CONFIG_EXT_INTRA
#if CONFIG_INTRA_INTERP
mic->mbmi.intra_filter = INTRA_FILTER_LINEAR;
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
mic->mbmi.filter_intra_mode_info.use_filter_intra_mode[0] = 0;
#endif // CONFIG_FILTER_INTRA
// TODO(any): Add search of the tx_type to improve rd performance at the
// expense of speed.
mic->mbmi.tx_type = DCT_DCT;
mic->mbmi.tx_size = TX_4X4;
if (y_skip) *y_skip = 1;
// Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block.
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
PREDICTION_MODE best_mode = DC_PRED;
int r = INT_MAX, ry = INT_MAX;
int64_t d = INT64_MAX, this_rd = INT64_MAX;
i = idy * 2 + idx;
if (cpi->common.frame_type == KEY_FRAME) {
const PREDICTION_MODE A = av1_above_block_mode(mic, above_mi, i);
const PREDICTION_MODE L = av1_left_block_mode(mic, left_mi, i);
bmode_costs = cpi->y_mode_costs[A][L];
}
this_rd = rd_pick_intra4x4block(
cpi, mb, idy, idx, &best_mode, bmode_costs,
xd->plane[0].above_context + idx, xd->plane[0].left_context + idy, &r,
&ry, &d, bsize, y_skip, best_rd - total_rd);
if (this_rd >= best_rd - total_rd) return INT64_MAX;
total_rd += this_rd;
cost += r;
total_distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode = best_mode;
for (j = 1; j < num_4x4_blocks_high; ++j)
mic->bmi[i + j * 2].as_mode = best_mode;
for (j = 1; j < num_4x4_blocks_wide; ++j)
mic->bmi[i + j].as_mode = best_mode;
if (total_rd >= best_rd) return INT64_MAX;
}
}
mic->mbmi.mode = mic->bmi[3].as_mode;
// Add in the cost of the transform type
if (!xd->lossless[mic->mbmi.segment_id]) {
int rate_tx_type = 0;
#if CONFIG_EXT_TX
if (get_ext_tx_types(TX_4X4, bsize, 0) > 1) {
const int eset = get_ext_tx_set(TX_4X4, bsize, 0);
rate_tx_type = cpi->intra_tx_type_costs[eset][TX_4X4][mic->mbmi.mode]
[mic->mbmi.tx_type];
}
#else
rate_tx_type =
cpi->intra_tx_type_costs[TX_4X4]
[intra_mode_to_tx_type_context[mic->mbmi.mode]]
[mic->mbmi.tx_type];
#endif
assert(mic->mbmi.tx_size == TX_4X4);
cost += rate_tx_type;
tot_rate_y += rate_tx_type;
}
*rate = cost;
*rate_y = tot_rate_y;
*distortion = total_distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion);
}
#if CONFIG_FILTER_INTRA
// Return 1 if an filter intra mode is selected; return 0 otherwise.
static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int mode_cost,
int64_t *best_rd, uint16_t skip_mask) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mi[0];
MB_MODE_INFO *mbmi = &mic->mbmi;
int this_rate;
RD_STATS tokenonly_rd_stats;
int filter_intra_selected_flag = 0;
int64_t this_rd;
FILTER_INTRA_MODE mode;
TX_SIZE best_tx_size = TX_4X4;
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
TX_TYPE best_tx_type;
av1_zero(filter_intra_mode_info);
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 1;
mbmi->mode = DC_PRED;
#if CONFIG_PALETTE
mbmi->palette_mode_info.palette_size[0] = 0;
#endif // CONFIG_PALETTE
for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
if (skip_mask & (1 << mode)) continue;
mbmi->filter_intra_mode_info.filter_intra_mode[0] = mode;
super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
if (tokenonly_rd_stats.rate == INT_MAX) continue;
this_rate = tokenonly_rd_stats.rate +
av1_cost_bit(cpi->common.fc->filter_intra_probs[0], 1) +
write_uniform_cost(FILTER_INTRA_MODES, mode) + mode_cost;
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
*best_rd = this_rd;
best_tx_size = mic->mbmi.tx_size;
filter_intra_mode_info = mbmi->filter_intra_mode_info;
best_tx_type = mic->mbmi.tx_type;
*rate = this_rate;
*rate_tokenonly = tokenonly_rd_stats.rate;
*distortion = tokenonly_rd_stats.dist;
*skippable = tokenonly_rd_stats.skip;
filter_intra_selected_flag = 1;
}
}
if (filter_intra_selected_flag) {
mbmi->mode = DC_PRED;
mbmi->tx_size = best_tx_size;
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] =
filter_intra_mode_info.use_filter_intra_mode[0];
mbmi->filter_intra_mode_info.filter_intra_mode[0] =
filter_intra_mode_info.filter_intra_mode[0];
mbmi->tx_type = best_tx_type;
return 1;
} else {
return 0;
}
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
// Run RD calculation with given luma intra prediction angle., and return
// the RD cost. Update the best mode info. if the RD cost is the best so far.
static int64_t calc_rd_given_intra_angle(
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mode_cost,
int64_t best_rd_in, int8_t angle_delta, int max_angle_delta, int *rate,
RD_STATS *rd_stats, int *best_angle_delta, TX_SIZE *best_tx_size,
TX_TYPE *best_tx_type,
#if CONFIG_INTRA_INTERP
INTRA_FILTER *best_filter,
#endif // CONFIG_INTRA_INTERP
int64_t *best_rd) {
int this_rate;
RD_STATS tokenonly_rd_stats;
int64_t this_rd;
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
mbmi->angle_delta[0] = angle_delta;
super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in);
if (tokenonly_rd_stats.rate == INT_MAX) return INT64_MAX;
this_rate = tokenonly_rd_stats.rate + mode_cost +
write_uniform_cost(2 * max_angle_delta + 1,
mbmi->angle_delta[0] + max_angle_delta);
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*best_angle_delta = mbmi->angle_delta[0];
*best_tx_size = mbmi->tx_size;
#if CONFIG_INTRA_INTERP
*best_filter = mbmi->intra_filter;
#endif // CONFIG_INTRA_INTERP
*best_tx_type = mbmi->tx_type;
*rate = this_rate;
rd_stats->rate = tokenonly_rd_stats.rate;
rd_stats->dist = tokenonly_rd_stats.dist;
rd_stats->skip = tokenonly_rd_stats.skip;
}
return this_rd;
}
// With given luma directional intra prediction mode, pick the best angle delta
// Return the RD cost corresponding to the best angle delta.
static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, RD_STATS *rd_stats,
BLOCK_SIZE bsize, int mode_cost,
int64_t best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mi[0];
MB_MODE_INFO *mbmi = &mic->mbmi;
int i, angle_delta, best_angle_delta = 0;
const int max_angle_delta = av1_get_max_angle_delta(bsize, 0);
int first_try = 1;
#if CONFIG_INTRA_INTERP
int p_angle;
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
INTRA_FILTER filter, best_filter = INTRA_FILTER_LINEAR;
#endif // CONFIG_INTRA_INTERP
int64_t this_rd, best_rd_in, rd_cost[16];
TX_SIZE best_tx_size = mic->mbmi.tx_size;
TX_TYPE best_tx_type = mbmi->tx_type;
for (i = 0; i < 2 * (max_angle_delta + 2); ++i) rd_cost[i] = INT64_MAX;
for (angle_delta = 0; angle_delta <= max_angle_delta; angle_delta += 2) {
#if CONFIG_INTRA_INTERP
for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) {
if (FILTER_FAST_SEARCH && filter != INTRA_FILTER_LINEAR) continue;
mic->mbmi.intra_filter = filter;
#endif // CONFIG_INTRA_INTERP
for (i = 0; i < 2; ++i) {
best_rd_in = (best_rd == INT64_MAX)
? INT64_MAX
: (best_rd + (best_rd >> (first_try ? 3 : 5)));
this_rd = calc_rd_given_intra_angle(
cpi, x, bsize,
#if CONFIG_INTRA_INTERP
mode_cost + cpi->intra_filter_cost[intra_filter_ctx][filter],
#else
mode_cost,
#endif // CONFIG_INTRA_INTERP
best_rd_in, (1 - 2 * i) * angle_delta, max_angle_delta, rate,
rd_stats, &best_angle_delta, &best_tx_size, &best_tx_type,
#if CONFIG_INTRA_INTERP
&best_filter,
#endif // CONFIG_INTRA_INTERP
&best_rd);
rd_cost[2 * angle_delta + i] = this_rd;
if (first_try && this_rd == INT64_MAX) return best_rd;
first_try = 0;
if (angle_delta == 0) {
rd_cost[1] = this_rd;
break;
}
}
#if CONFIG_INTRA_INTERP
}
#endif // CONFIG_INTRA_INTERP
}
assert(best_rd != INT64_MAX);
for (angle_delta = 1; angle_delta <= max_angle_delta; angle_delta += 2) {
int64_t rd_thresh;
#if CONFIG_INTRA_INTERP
for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) {
if (FILTER_FAST_SEARCH && filter != INTRA_FILTER_LINEAR) continue;
mic->mbmi.intra_filter = filter;
#endif // CONFIG_INTRA_INTERP
for (i = 0; i < 2; ++i) {
int skip_search = 0;
rd_thresh = best_rd + (best_rd >> 5);
if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
skip_search = 1;
if (!skip_search) {
this_rd = calc_rd_given_intra_angle(
cpi, x, bsize,
#if CONFIG_INTRA_INTERP
mode_cost + cpi->intra_filter_cost[intra_filter_ctx][filter],
#else
mode_cost,
#endif // CONFIG_INTRA_INTERP
best_rd, (1 - 2 * i) * angle_delta, max_angle_delta, rate,
rd_stats, &best_angle_delta, &best_tx_size, &best_tx_type,
#if CONFIG_INTRA_INTERP
&best_filter,
#endif // CONFIG_INTRA_INTERP
&best_rd);
}
}
#if CONFIG_INTRA_INTERP
}
#endif // CONFIG_INTRA_INTERP
}
#if CONFIG_INTRA_INTERP
if (FILTER_FAST_SEARCH && rd_stats->rate < INT_MAX) {
p_angle = mode_to_angle_map[mbmi->mode] +
best_angle_delta * av1_get_angle_step(bsize, 0);
if (av1_is_intra_filter_switchable(p_angle)) {
for (filter = INTRA_FILTER_LINEAR + 1; filter < INTRA_FILTERS; ++filter) {
mic->mbmi.intra_filter = filter;
this_rd = calc_rd_given_intra_angle(
cpi, x, bsize,
mode_cost + cpi->intra_filter_cost[intra_filter_ctx][filter],
best_rd, best_angle_delta, max_angle_delta, rate, rd_stats,
&best_angle_delta, &best_tx_size, &best_tx_type, &best_filter,
&best_rd);
}
}
}
#endif // CONFIG_INTRA_INTERP
mbmi->tx_size = best_tx_size;
mbmi->angle_delta[0] = best_angle_delta;
#if CONFIG_INTRA_INTERP
mic->mbmi.intra_filter = best_filter;
#endif // CONFIG_INTRA_INTERP
mbmi->tx_type = best_tx_type;
return best_rd;
}
// Indices are sign, integer, and fractional part of the gradient value
static const uint8_t gradient_to_angle_bin[2][7][16] = {
{
{ 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
{ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
},
{
{ 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 },
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 },
{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
{ 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
{ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
},
};
static const uint8_t mode_to_angle_bin[INTRA_MODES] = {
0, 2, 6, 0, 4, 3, 5, 7, 1, 0,
};
static void angle_estimation(const uint8_t *src, int src_stride, int rows,
int cols, uint8_t *directional_mode_skip_mask) {
int i, r, c, index, dx, dy, temp, sn, remd, quot;
uint64_t hist[DIRECTIONAL_MODES];
uint64_t hist_sum = 0;
memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
src += src_stride;
for (r = 1; r < rows; ++r) {
for (c = 1; c < cols; ++c) {
dx = src[c] - src[c - 1];
dy = src[c] - src[c - src_stride];
temp = dx * dx + dy * dy;
if (dy == 0) {
index = 2;
} else {
sn = (dx > 0) ^ (dy > 0);
dx = abs(dx);
dy = abs(dy);
remd = dx % dy;
quot = dx / dy;
remd = remd * 16 / dy;
index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
}
hist[index] += temp;
}
src += src_stride;
}
for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
for (i = 0; i < INTRA_MODES; ++i) {
if (i != DC_PRED && i != TM_PRED) {
const uint8_t angle_bin = mode_to_angle_bin[i];
uint64_t score = 2 * hist[angle_bin];
int weight = 2;
if (angle_bin > 0) {
score += hist[angle_bin - 1];
++weight;
}
if (angle_bin < DIRECTIONAL_MODES - 1) {
score += hist[angle_bin + 1];
++weight;
}
if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
directional_mode_skip_mask[i] = 1;
}
}
}
#if CONFIG_AOM_HIGHBITDEPTH
static void highbd_angle_estimation(const uint8_t *src8, int src_stride,
int rows, int cols,
uint8_t *directional_mode_skip_mask) {
int i, r, c, index, dx, dy, temp, sn, remd, quot;
uint64_t hist[DIRECTIONAL_MODES];
uint64_t hist_sum = 0;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
src += src_stride;
for (r = 1; r < rows; ++r) {
for (c = 1; c < cols; ++c) {
dx = src[c] - src[c - 1];
dy = src[c] - src[c - src_stride];
temp = dx * dx + dy * dy;
if (dy == 0) {
index = 2;
} else {
sn = (dx > 0) ^ (dy > 0);
dx = abs(dx);
dy = abs(dy);
remd = dx % dy;
quot = dx / dy;
remd = remd * 16 / dy;
index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
}
hist[index] += temp;
}
src += src_stride;
}
for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
for (i = 0; i < INTRA_MODES; ++i) {
if (i != DC_PRED && i != TM_PRED) {
const uint8_t angle_bin = mode_to_angle_bin[i];
uint64_t score = 2 * hist[angle_bin];
int weight = 2;
if (angle_bin > 0) {
score += hist[angle_bin - 1];
++weight;
}
if (angle_bin < DIRECTIONAL_MODES - 1) {
score += hist[angle_bin + 1];
++weight;
}
if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
directional_mode_skip_mask[i] = 1;
}
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // CONFIG_EXT_INTRA
// This function is used only for intra_only frames
static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int64_t best_rd) {
uint8_t mode_idx;
PREDICTION_MODE mode_selected = DC_PRED;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mi[0];
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
TX_SIZE best_tx = TX_4X4;
#if CONFIG_EXT_INTRA || CONFIG_PALETTE
const int rows = block_size_high[bsize];
const int cols = block_size_wide[bsize];
#endif // CONFIG_EXT_INTRA || CONFIG_PALETTE
#if CONFIG_EXT_INTRA
#if CONFIG_INTRA_INTERP
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
INTRA_FILTER best_filter = INTRA_FILTER_LINEAR;
#endif // CONFIG_INTRA_INTERP
int is_directional_mode, best_angle_delta = 0;
uint8_t directional_mode_skip_mask[INTRA_MODES];
const int src_stride = x->plane[0].src.stride;
const uint8_t *src = x->plane[0].src.buf;
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
int beat_best_rd = 0;
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
uint16_t filter_intra_mode_skip_mask = (1 << FILTER_INTRA_MODES) - 1;
#endif // CONFIG_FILTER_INTRA
TX_TYPE best_tx_type = DCT_DCT;
const int *bmode_costs;
#if CONFIG_PALETTE
PALETTE_MODE_INFO palette_mode_info;
PALETTE_MODE_INFO *const pmi = &mic->mbmi.palette_mode_info;
uint8_t *best_palette_color_map =
cpi->common.allow_screen_content_tools
? x->palette_buffer->best_palette_color_map
: NULL;
int palette_ctx = 0;
#endif // CONFIG_PALETTE
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const PREDICTION_MODE A = av1_above_block_mode(mic, above_mi, 0);
const PREDICTION_MODE L = av1_left_block_mode(mic, left_mi, 0);
const PREDICTION_MODE FINAL_MODE_SEARCH = TM_PRED + 1;
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
#if CONFIG_PVQ
od_rollback_buffer pre_buf, post_buf;
od_encode_checkpoint(&x->daala_enc, &pre_buf);
od_encode_checkpoint(&x->daala_enc, &post_buf);
#endif
bmode_costs = cpi->y_mode_costs[A][L];
#if CONFIG_EXT_INTRA
mic->mbmi.angle_delta[0] = 0;
memset(directional_mode_skip_mask, 0,
sizeof(directional_mode_skip_mask[0]) * INTRA_MODES);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
highbd_angle_estimation(src, src_stride, rows, cols,
directional_mode_skip_mask);
else
#endif
angle_estimation(src, src_stride, rows, cols, directional_mode_skip_mask);
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mic->mbmi.filter_intra_mode_info.use_filter_intra_mode[0] = 0;
#endif // CONFIG_FILTER_INTRA
#if CONFIG_PALETTE
palette_mode_info.palette_size[0] = 0;
pmi->palette_size[0] = 0;
if (above_mi)
palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
if (left_mi)
palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
#endif // CONFIG_PALETTE
if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
x->use_default_intra_tx_type = 1;
else
x->use_default_intra_tx_type = 0;
/* Y Search for intra prediction mode */
for (mode_idx = DC_PRED; mode_idx <= FINAL_MODE_SEARCH; ++mode_idx) {
RD_STATS this_rd_stats;
if (mode_idx == FINAL_MODE_SEARCH) {
if (x->use_default_intra_tx_type == 0) break;
mic->mbmi.mode = mode_selected;
x->use_default_intra_tx_type = 0;
} else {
mic->mbmi.mode = mode_idx;
}
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &pre_buf);
#endif
#if CONFIG_EXT_INTRA
is_directional_mode = av1_is_directional_mode(mic->mbmi.mode, bsize);
if (is_directional_mode && directional_mode_skip_mask[mic->mbmi.mode])
continue;
if (is_directional_mode) {
this_rd_stats.rate = INT_MAX;
this_rd =
rd_pick_intra_angle_sby(cpi, x, &this_rate, &this_rd_stats, bsize,
bmode_costs[mic->mbmi.mode], best_rd);
} else {
mic->mbmi.angle_delta[0] = 0;
super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd);
}
#else
super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd);
#endif // CONFIG_EXT_INTRA
this_rate_tokenonly = this_rd_stats.rate;
this_distortion = this_rd_stats.dist;
s = this_rd_stats.skip;
if (this_rate_tokenonly == INT_MAX) continue;
this_rate = this_rate_tokenonly + bmode_costs[mic->mbmi.mode];
if (!xd->lossless[xd->mi[0]->mbmi.segment_id] &&
mic->mbmi.sb_type >= BLOCK_8X8) {
// super_block_yrd above includes the cost of the tx_size in the
// tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
this_rate_tokenonly -=
cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)]
[tx_size_to_depth(mic->mbmi.tx_size)];
}
#if CONFIG_PALETTE
if (cpi->common.allow_screen_content_tools && mic->mbmi.mode == DC_PRED)
this_rate += av1_cost_bit(
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0);
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
if (mic->mbmi.mode == DC_PRED)
this_rate += av1_cost_bit(cpi->common.fc->filter_intra_probs[0], 0);
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
if (is_directional_mode) {
const int max_angle_delta = av1_get_max_angle_delta(bsize, 0);
#if CONFIG_INTRA_INTERP
const int p_angle =
mode_to_angle_map[mic->mbmi.mode] +
mic->mbmi.angle_delta[0] * av1_get_angle_step(bsize, 0);
if (av1_is_intra_filter_switchable(p_angle))
this_rate +=
cpi->intra_filter_cost[intra_filter_ctx][mic->mbmi.intra_filter];
#endif // CONFIG_INTRA_INTERP
this_rate += write_uniform_cost(
2 * max_angle_delta + 1, max_angle_delta + mic->mbmi.angle_delta[0]);
}
#endif // CONFIG_EXT_INTRA
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
#if CONFIG_FILTER_INTRA
if (best_rd == INT64_MAX || this_rd - best_rd < (best_rd >> 4)) {
filter_intra_mode_skip_mask ^= (1 << mic->mbmi.mode);
}
#endif // CONFIG_FILTER_INTRA
if (this_rd < best_rd) {
mode_selected = mic->mbmi.mode;
best_rd = this_rd;
best_tx = mic->mbmi.tx_size;
#if CONFIG_EXT_INTRA
best_angle_delta = mic->mbmi.angle_delta[0];
#if CONFIG_INTRA_INTERP
best_filter = mic->mbmi.intra_filter;
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
beat_best_rd = 1;
#endif // CONFIG_FILTER_INTRA
best_tx_type = mic->mbmi.tx_type;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
#if CONFIG_PVQ
od_encode_checkpoint(&x->daala_enc, &post_buf);
#endif
}
}
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &post_buf);
#endif
#if CONFIG_PALETTE
if (cpi->common.allow_screen_content_tools)
rd_pick_palette_intra_sby(cpi, x, bsize, palette_ctx, bmode_costs[DC_PRED],
&palette_mode_info, best_palette_color_map,
&best_tx, &best_tx_type, &mode_selected,
&best_rd);
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
if (beat_best_rd) {
if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion,
skippable, bsize, bmode_costs[DC_PRED],
&best_rd, filter_intra_mode_skip_mask)) {
mode_selected = mic->mbmi.mode;
best_tx = mic->mbmi.tx_size;
filter_intra_mode_info = mic->mbmi.filter_intra_mode_info;
best_tx_type = mic->mbmi.tx_type;
}
}
mic->mbmi.filter_intra_mode_info.use_filter_intra_mode[0] =
filter_intra_mode_info.use_filter_intra_mode[0];
if (filter_intra_mode_info.use_filter_intra_mode[0]) {
mic->mbmi.filter_intra_mode_info.filter_intra_mode[0] =
filter_intra_mode_info.filter_intra_mode[0];
#if CONFIG_PALETTE
palette_mode_info.palette_size[0] = 0;
#endif // CONFIG_PALETTE
}
#endif // CONFIG_FILTER_INTRA
mic->mbmi.mode = mode_selected;
mic->mbmi.tx_size = best_tx;
#if CONFIG_EXT_INTRA
mic->mbmi.angle_delta[0] = best_angle_delta;
#if CONFIG_INTRA_INTERP
mic->mbmi.intra_filter = best_filter;
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
mic->mbmi.tx_type = best_tx_type;
#if CONFIG_PALETTE
pmi->palette_size[0] = palette_mode_info.palette_size[0];
if (palette_mode_info.palette_size[0] > 0) {
memcpy(pmi->palette_colors, palette_mode_info.palette_colors,
PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0]));
memcpy(xd->plane[0].color_index_map, best_palette_color_map,
rows * cols * sizeof(best_palette_color_map[0]));
}
#endif // CONFIG_PALETTE
return best_rd;
}
// Return value 0: early termination triggered, no valid rd cost available;
// 1: rd cost values are valid.
static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const TX_SIZE uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]);
int plane;
int is_cost_valid = 1;
av1_init_rd_stats(rd_stats);
if (ref_best_rd < 0) is_cost_valid = 0;
#if !CONFIG_PVQ
if (is_inter_block(mbmi) && is_cost_valid) {
for (plane = 1; plane < MAX_MB_PLANE; ++plane)
av1_subtract_plane(x, bsize, plane);
}
#endif
if (is_cost_valid) {
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
RD_STATS pn_rd_stats;
txfm_rd_in_plane(x, cpi, &pn_rd_stats, ref_best_rd, plane, bsize,
uv_tx_size, cpi->sf.use_fast_coef_costing);
if (pn_rd_stats.rate == INT_MAX) {
is_cost_valid = 0;
break;
}
av1_merge_rd_stats(rd_stats, &pn_rd_stats);
if (RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist) >
ref_best_rd &&
RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse) > ref_best_rd) {
is_cost_valid = 0;
break;
}
}
}
if (!is_cost_valid) {
// reset cost value
av1_invalid_rd_stats(rd_stats);
}
return is_cost_valid;
}
#if CONFIG_VAR_TX
void av1_tx_block_rd_b(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size,
int blk_row, int blk_col, int plane, int block,
int plane_bsize, int coeff_ctx, RD_STATS *rd_stats) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int64_t tmp;
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const SCAN_ORDER *const scan_order =
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
BLOCK_SIZE txm_bsize = txsize_to_bsize[tx_size];
int bh = block_size_high[txm_bsize];
int bw = block_size_wide[txm_bsize];
int txb_h = tx_size_high_unit[tx_size];
int txb_w = tx_size_wide_unit[tx_size];
int src_stride = p->src.stride;
uint8_t *src =
&p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
uint8_t *dst =
&pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, rec_buffer16[MAX_TX_SQUARE]);
uint8_t *rec_buffer;
#else
DECLARE_ALIGNED(16, uint8_t, rec_buffer[MAX_TX_SQUARE]);
#endif // CONFIG_AOM_HIGHBITDEPTH
int max_blocks_high = block_size_high[plane_bsize];
int max_blocks_wide = block_size_wide[plane_bsize];
const int diff_stride = max_blocks_wide;
const int16_t *diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
int txb_coeff_cost;
assert(tx_size < TX_SIZES_ALL);
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
max_blocks_high >>= tx_size_wide_log2[0];
max_blocks_wide >>= tx_size_wide_log2[0];
#if CONFIG_NEW_QUANT
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
coeff_ctx, AV1_XFORM_QUANT_FP_NUQ);
#else
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
coeff_ctx, AV1_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
// TODO(yushin) : If PVQ is enabled, this should not be called.
av1_optimize_b(cm, x, plane, block, tx_size, coeff_ctx);
// TODO(any): Use dist_block to compute distortion
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
rec_buffer = CONVERT_TO_BYTEPTR(rec_buffer16);
aom_highbd_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL,
0, NULL, 0, bw, bh, xd->bd);
} else {
rec_buffer = (uint8_t *)rec_buffer16;
aom_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, 0,
NULL, 0, bw, bh);
}
#else
aom_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, 0, NULL,
0, bw, bh);
#endif // CONFIG_AOM_HIGHBITDEPTH
if (blk_row + txb_h > max_blocks_high || blk_col + txb_w > max_blocks_wide) {
int idx, idy;
int blocks_height = AOMMIN(txb_h, max_blocks_high - blk_row);
int blocks_width = AOMMIN(txb_w, max_blocks_wide - blk_col);
tmp = 0;
for (idy = 0; idy < blocks_height; ++idy) {
for (idx = 0; idx < blocks_width; ++idx) {
const int16_t *d =
diff + ((idy * diff_stride + idx) << tx_size_wide_log2[0]);
tmp += aom_sum_squares_2d_i16(d, diff_stride, 4);
}
}
} else {
tmp = sum_squares_2d(diff, diff_stride, tx_size);
}
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
tmp = ROUND_POWER_OF_TWO(tmp, (xd->bd - 8) * 2);
#endif // CONFIG_AOM_HIGHBITDEPTH
rd_stats->sse += tmp * 16;
if (p->eobs[block] > 0) {
INV_TXFM_PARAM inv_txfm_param;
inv_txfm_param.tx_type = tx_type;
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = p->eobs[block];
inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
// TODO(yushin) : If PVQ is enabled, rec_buffer needs be set as zeros.
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
inv_txfm_param.bd = xd->bd;
highbd_inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param);
} else {
inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param);
}
#else // CONFIG_AOM_HIGHBITDEPTH
inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param);
#endif // CONFIG_AOM_HIGHBITDEPTH
if (txb_w + blk_col > max_blocks_wide ||
txb_h + blk_row > max_blocks_high) {
int idx, idy;
unsigned int this_dist;
int blocks_height = AOMMIN(txb_h, max_blocks_high - blk_row);
int blocks_width = AOMMIN(txb_w, max_blocks_wide - blk_col);
tmp = 0;
for (idy = 0; idy < blocks_height; ++idy) {
for (idx = 0; idx < blocks_width; ++idx) {
uint8_t *const s =
src + ((idy * src_stride + idx) << tx_size_wide_log2[0]);
uint8_t *const r =
rec_buffer + ((idy * MAX_TX_SIZE + idx) << tx_size_wide_log2[0]);
cpi->fn_ptr[BLOCK_4X4].vf(s, src_stride, r, MAX_TX_SIZE, &this_dist);
tmp += this_dist;
}
}
} else {
uint32_t this_dist;
cpi->fn_ptr[txm_bsize].vf(src, src_stride, rec_buffer, MAX_TX_SIZE,
&this_dist);
tmp = this_dist;
}
}
rd_stats->dist += tmp * 16;
txb_coeff_cost = av1_cost_coeffs(cm, x, plane, block, coeff_ctx, tx_size,
scan_order->scan, scan_order->neighbors, 0);
rd_stats->rate += txb_coeff_cost;
rd_stats->skip &= (p->eobs[block] == 0);
#if CONFIG_RD_DEBUG
av1_update_txb_coeff_cost(rd_stats, plane, tx_size, blk_row, blk_col,
txb_coeff_cost);
#endif
}
static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
int blk_col, int plane, int block, int block32,
TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize,
ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl,
TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
RD_STATS *rd_stats, int64_t ref_best_rd,
int *is_cost_valid, RD_STATS *rd_stats_stack) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE(*const inter_tx_size)
[MAX_MIB_SIZE] =
(TX_SIZE(*)[MAX_MIB_SIZE]) & mbmi->inter_tx_size[tx_row][tx_col];
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
int64_t this_rd = INT64_MAX;
ENTROPY_CONTEXT *pta = ta + blk_col;
ENTROPY_CONTEXT *ptl = tl + blk_row;
int coeff_ctx, i;
int ctx =
txfm_partition_context(tx_above + (blk_col >> 1),
tx_left + (blk_row >> 1), mbmi->sb_type, tx_size);
int64_t sum_rd = INT64_MAX;
int tmp_eob = 0;
int zero_blk_rate;
RD_STATS sum_rd_stats;
const int tx_size_ctx = txsize_sqr_map[tx_size];
av1_init_rd_stats(&sum_rd_stats);
assert(tx_size < TX_SIZES_ALL);
if (ref_best_rd < 0) {
*is_cost_valid = 0;
return;
}
coeff_ctx = get_entropy_context(tx_size, pta, ptl);
av1_init_rd_stats(rd_stats);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
zero_blk_rate = x->token_costs[tx_size_ctx][pd->plane_type][1][0][0]
[coeff_ctx][EOB_TOKEN];
if (cpi->common.tx_mode == TX_MODE_SELECT || tx_size == TX_4X4) {
inter_tx_size[0][0] = tx_size;
if (tx_size == TX_32X32 && mbmi->tx_type != DCT_DCT &&
rd_stats_stack[block32].rate != INT_MAX) {
*rd_stats = rd_stats_stack[block32];
p->eobs[block] = !rd_stats->skip;
x->blk_skip[plane][blk_row * bw + blk_col] = rd_stats->skip;
} else {
av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block,
plane_bsize, coeff_ctx, rd_stats);
if (tx_size == TX_32X32) {
rd_stats_stack[block32] = *rd_stats;
}
}
if ((RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist) >=
RDCOST(x->rdmult, x->rddiv, zero_blk_rate, rd_stats->sse) ||
rd_stats->skip == 1) &&
!xd->lossless[mbmi->segment_id]) {
rd_stats->rate = zero_blk_rate;
rd_stats->dist = rd_stats->sse;
rd_stats->skip = 1;
x->blk_skip[plane][blk_row * bw + blk_col] = 1;
p->eobs[block] = 0;
} else {
x->blk_skip[plane][blk_row * bw + blk_col] = 0;
rd_stats->skip = 0;
}
if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
rd_stats->rate +=
av1_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 0);
this_rd = RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist);
tmp_eob = p->eobs[block];
}
if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
int sub_step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
RD_STATS this_rd_stats;
int this_cost_valid = 1;
int64_t tmp_rd = 0;
sum_rd_stats.rate =
av1_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 1);
assert(tx_size < TX_SIZES_ALL);
for (i = 0; i < 4 && this_cost_valid; ++i) {
int offsetr = blk_row + (i >> 1) * bsl;
int offsetc = blk_col + (i & 0x01) * bsl;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
select_tx_block(cpi, x, offsetr, offsetc, plane, block, block32, sub_txs,
depth + 1, plane_bsize, ta, tl, tx_above, tx_left,
&this_rd_stats, ref_best_rd - tmp_rd, &this_cost_valid,
rd_stats_stack);
av1_merge_rd_stats(&sum_rd_stats, &this_rd_stats);
tmp_rd =
RDCOST(x->rdmult, x->rddiv, sum_rd_stats.rate, sum_rd_stats.dist);
if (this_rd < tmp_rd) break;
block += sub_step;
}
if (this_cost_valid) sum_rd = tmp_rd;
}
if (this_rd < sum_rd) {
int idx, idy;
for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) pta[i] = !(tmp_eob == 0);
for (i = 0; i < tx_size_high_unit[tx_size]; ++i) ptl[i] = !(tmp_eob == 0);
txfm_partition_update(tx_above + (blk_col >> 1), tx_left + (blk_row >> 1),
tx_size, tx_size);
inter_tx_size[0][0] = tx_size;
for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy)
for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx)
inter_tx_size[idy][idx] = tx_size;
mbmi->tx_size = tx_size;
if (this_rd == INT64_MAX) *is_cost_valid = 0;
x->blk_skip[plane][blk_row * bw + blk_col] = rd_stats->skip;
} else {
*rd_stats = sum_rd_stats;
if (sum_rd == INT64_MAX) *is_cost_valid = 0;
}
}
static void inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t ref_best_rd, RD_STATS *rd_stats_stack) {
MACROBLOCKD *const xd = &x->e_mbd;
int is_cost_valid = 1;
int64_t this_rd = 0;
if (ref_best_rd < 0) is_cost_valid = 0;
av1_init_rd_stats(rd_stats);
if (is_cost_valid) {
const struct macroblockd_plane *const pd = &xd->plane[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0];
const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int idx, idy;
int block = 0;
int block32 = 0;
int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE];
TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
RD_STATS pn_rd_stats;
av1_init_rd_stats(&pn_rd_stats);
av1_get_entropy_contexts(bsize, 0, pd, ctxa, ctxl);
memcpy(tx_above, xd->above_txfm_context,
sizeof(TXFM_CONTEXT) * (mi_width >> 1));
memcpy(tx_left, xd->left_txfm_context,
sizeof(TXFM_CONTEXT) * (mi_height >> 1));
for (idy = 0; idy < mi_height; idy += bh) {
for (idx = 0; idx < mi_width; idx += bw) {
select_tx_block(cpi, x, idy, idx, 0, block, block32, max_tx_size,
mi_height != mi_width, plane_bsize, ctxa, ctxl,
tx_above, tx_left, &pn_rd_stats, ref_best_rd - this_rd,
&is_cost_valid, rd_stats_stack);
av1_merge_rd_stats(rd_stats, &pn_rd_stats);
this_rd += AOMMIN(
RDCOST(x->rdmult, x->rddiv, pn_rd_stats.rate, pn_rd_stats.dist),
RDCOST(x->rdmult, x->rddiv, 0, pn_rd_stats.sse));
block += step;
++block32;
}
}
}
this_rd = AOMMIN(RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist),
RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse));
if (this_rd > ref_best_rd) is_cost_valid = 0;
if (!is_cost_valid) {
// reset cost value
av1_invalid_rd_stats(rd_stats);
}
}
static int64_t select_tx_size_fix_type(const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t ref_best_rd, TX_TYPE tx_type,
RD_STATS *rd_stats_stack) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int is_inter = is_inter_block(mbmi);
aom_prob skip_prob = av1_get_skip_prob(cm, xd);
int s0 = av1_cost_bit(skip_prob, 0);
int s1 = av1_cost_bit(skip_prob, 1);
int64_t rd;
int row, col;
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
mbmi->tx_type = tx_type;
mbmi->min_tx_size = TX_SIZES_ALL;
inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, rd_stats_stack);
if (rd_stats->rate == INT_MAX) return INT64_MAX;
for (row = 0; row < max_blocks_high / 2; ++row)
for (col = 0; col < max_blocks_wide / 2; ++col)
mbmi->min_tx_size = AOMMIN(
mbmi->min_tx_size, get_min_tx_size(mbmi->inter_tx_size[row][col]));
#if CONFIG_EXT_TX
if (get_ext_tx_types(mbmi->min_tx_size, bsize, is_inter) > 1 &&
!xd->lossless[xd->mi[0]->mbmi.segment_id]) {
int ext_tx_set = get_ext_tx_set(mbmi->min_tx_size, bsize, is_inter);
if (is_inter) {
if (ext_tx_set > 0)
rd_stats->rate +=
cpi->inter_tx_type_costs[ext_tx_set]
[txsize_sqr_map[mbmi->min_tx_size]]
[mbmi->tx_type];
} else {
if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX)
rd_stats->rate +=
cpi->intra_tx_type_costs[ext_tx_set][mbmi->min_tx_size][mbmi->mode]
[mbmi->tx_type];
}
}
#else // CONFIG_EXT_TX
if (mbmi->min_tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id])
rd_stats->rate +=
cpi->inter_tx_type_costs[mbmi->min_tx_size][mbmi->tx_type];
#endif // CONFIG_EXT_TX
if (rd_stats->skip)
rd = RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse);
else
rd = RDCOST(x->rdmult, x->rddiv, rd_stats->rate + s0, rd_stats->dist);
if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
!(rd_stats->skip))
rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse));
return rd;
}
static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd = INT64_MAX;
int64_t best_rd = INT64_MAX;
TX_TYPE tx_type, best_tx_type = DCT_DCT;
const int is_inter = is_inter_block(mbmi);
TX_SIZE best_tx_size[MAX_MIB_SIZE][MAX_MIB_SIZE];
TX_SIZE best_tx = max_txsize_lookup[bsize];
TX_SIZE best_min_tx_size = TX_SIZES_ALL;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE * 8];
const int n4 = 1 << (num_pels_log2_lookup[bsize] - 2 * tx_size_wide_log2[0]);
int idx, idy;
int prune = 0;
const int count32 = 1 << (2 * (cpi->common.mib_size_log2 -
mi_width_log2_lookup[BLOCK_32X32]));
#if CONFIG_EXT_PARTITION
RD_STATS rd_stats_stack[16];
#else
RD_STATS rd_stats_stack[4];
#endif
#if CONFIG_EXT_TX
int ext_tx_set = get_ext_tx_set(max_tx_size, bsize, is_inter);
#endif // CONFIG_EXT_TX
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE)
#if CONFIG_EXT_TX
prune = prune_tx_types(cpi, bsize, x, xd, ext_tx_set);
#else
prune = prune_tx_types(cpi, bsize, x, xd, 0);
#endif
av1_invalid_rd_stats(rd_stats);
for (idx = 0; idx < count32; ++idx)
av1_invalid_rd_stats(&rd_stats_stack[idx]);
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
RD_STATS this_rd_stats;
av1_init_rd_stats(&this_rd_stats);
#if CONFIG_EXT_TX
if (is_inter) {
if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue;
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) {
if (!do_tx_type_search(tx_type, prune)) continue;
}
} else {
if (!ALLOW_INTRA_EXT_TX && bsize >= BLOCK_8X8) {
if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue;
}
if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue;
}
#else // CONFIG_EXT_TX
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE &&
!do_tx_type_search(tx_type, prune))
continue;
#endif // CONFIG_EXT_TX
if (is_inter && x->use_default_inter_tx_type &&
tx_type != get_default_tx_type(0, xd, 0, max_tx_size))
continue;
if (xd->lossless[mbmi->segment_id])
if (tx_type != DCT_DCT) continue;
rd = select_tx_size_fix_type(cpi, x, &this_rd_stats, bsize, ref_best_rd,
tx_type, rd_stats_stack);
if (rd < best_rd) {
best_rd = rd;
*rd_stats = this_rd_stats;
best_tx_type = mbmi->tx_type;
best_tx = mbmi->tx_size;
best_min_tx_size = mbmi->min_tx_size;
memcpy(best_blk_skip, x->blk_skip[0], sizeof(best_blk_skip[0]) * n4);
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
best_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx];
}
}
mbmi->tx_type = best_tx_type;
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
mbmi->inter_tx_size[idy][idx] = best_tx_size[idy][idx];
mbmi->tx_size = best_tx;
mbmi->min_tx_size = best_min_tx_size;
memcpy(x->blk_skip[0], best_blk_skip, sizeof(best_blk_skip[0]) * n4);
}
static void tx_block_rd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
int blk_col, int plane, int block, TX_SIZE tx_size,
BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *above_ctx,
ENTROPY_CONTEXT *left_ctx, RD_STATS *rd_stats) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE plane_tx_size;
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
assert(tx_size < TX_SIZES_ALL);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
plane_tx_size =
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
: mbmi->inter_tx_size[tx_row][tx_col];
if (tx_size == plane_tx_size) {
int coeff_ctx, i;
ENTROPY_CONTEXT *ta = above_ctx + blk_col;
ENTROPY_CONTEXT *tl = left_ctx + blk_row;
coeff_ctx = get_entropy_context(tx_size, ta, tl);
av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block,
plane_bsize, coeff_ctx, rd_stats);
for (i = 0; i < tx_size_wide_unit[tx_size]; ++i)
ta[i] = !(p->eobs[block] == 0);
for (i = 0; i < tx_size_high_unit[tx_size]; ++i)
tl[i] = !(p->eobs[block] == 0);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
int i;
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
int offsetr = blk_row + (i >> 1) * bsl;
int offsetc = blk_col + (i & 0x01) * bsl;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
tx_block_rd(cpi, x, offsetr, offsetc, plane, block, sub_txs, plane_bsize,
above_ctx, left_ctx, rd_stats);
block += step;
}
}
}
// Return value 0: early termination triggered, no valid rd cost available;
// 1: rd cost values are valid.
static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int plane;
int is_cost_valid = 1;
int64_t this_rd;
if (ref_best_rd < 0) is_cost_valid = 0;
av1_init_rd_stats(rd_stats);
#if CONFIG_EXT_TX && CONFIG_RECT_TX
if (is_rect_tx(mbmi->tx_size)) {
return super_block_uvrd(cpi, x, rd_stats, bsize, ref_best_rd);
}
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
if (is_inter_block(mbmi) && is_cost_valid) {
for (plane = 1; plane < MAX_MB_PLANE; ++plane)
av1_subtract_plane(x, bsize, plane);
}
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0];
const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int idx, idy;
int block = 0;
const int step = bh * bw;
ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE];
RD_STATS pn_rd_stats;
av1_init_rd_stats(&pn_rd_stats);
av1_get_entropy_contexts(bsize, 0, pd, ta, tl);
for (idy = 0; idy < mi_height; idy += bh) {
for (idx = 0; idx < mi_width; idx += bw) {
tx_block_rd(cpi, x, idy, idx, plane, block, max_tx_size, plane_bsize,
ta, tl, &pn_rd_stats);
block += step;
}
}
if (pn_rd_stats.rate == INT_MAX) {
is_cost_valid = 0;
break;
}
av1_merge_rd_stats(rd_stats, &pn_rd_stats);
this_rd =
AOMMIN(RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist),
RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse));
if (this_rd > ref_best_rd) {
is_cost_valid = 0;
break;
}
}
if (!is_cost_valid) {
// reset cost value
av1_invalid_rd_stats(rd_stats);
}
return is_cost_valid;
}
#endif // CONFIG_VAR_TX
#if CONFIG_PALETTE
static void rd_pick_palette_intra_sbuv(
const AV1_COMP *const cpi, MACROBLOCK *x, int dc_mode_cost,
PALETTE_MODE_INFO *palette_mode_info, uint8_t *best_palette_color_map,
PREDICTION_MODE *mode_selected, int64_t *best_rd, int *rate,
int *rate_tokenonly, int64_t *distortion, int *skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int rows = block_size_high[bsize] >> (xd->plane[1].subsampling_y);
const int cols = block_size_wide[bsize] >> (xd->plane[1].subsampling_x);
int this_rate;
int64_t this_rd;
int colors_u, colors_v, colors;
const int src_stride = x->plane[1].src.stride;
const uint8_t *const src_u = x->plane[1].src.buf;
const uint8_t *const src_v = x->plane[2].src.buf;
RD_STATS tokenonly_rd_stats;
if (rows * cols > PALETTE_MAX_BLOCK_SIZE) return;
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
#endif // CONFIG_FILTER_INTRA
#if CONFIG_AOM_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols,
cpi->common.bit_depth);
colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols,
cpi->common.bit_depth);
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
colors_u = av1_count_colors(src_u, src_stride, rows, cols);
colors_v = av1_count_colors(src_v, src_stride, rows, cols);
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
colors = colors_u > colors_v ? colors_u : colors_v;
if (colors > 1 && colors <= 64) {
int r, c, n, i, j;
const int max_itr = 50;
uint8_t color_order[PALETTE_MAX_SIZE];
float lb_u, ub_u, val_u;
float lb_v, ub_v, val_v;
float *const data = x->palette_buffer->kmeans_data_buf;
float centroids[2 * PALETTE_MAX_SIZE];
uint8_t *const color_map = xd->plane[1].color_index_map;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
#if CONFIG_AOM_HIGHBITDEPTH
uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u);
uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v);
if (cpi->common.use_highbitdepth) {
lb_u = src_u16[0];
ub_u = src_u16[0];
lb_v = src_v16[0];
ub_v = src_v16[0];
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
lb_u = src_u[0];
ub_u = src_u[0];
lb_v = src_v[0];
ub_v = src_v[0];
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
mbmi->uv_mode = DC_PRED;
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
#endif // CONFIG_FILTER_INTRA
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
#if CONFIG_AOM_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
val_u = src_u16[r * src_stride + c];
val_v = src_v16[r * src_stride + c];
data[(r * cols + c) * 2] = val_u;
data[(r * cols + c) * 2 + 1] = val_v;
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
val_u = src_u[r * src_stride + c];
val_v = src_v[r * src_stride + c];
data[(r * cols + c) * 2] = val_u;
data[(r * cols + c) * 2 + 1] = val_v;
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
if (val_u < lb_u)
lb_u = val_u;
else if (val_u > ub_u)
ub_u = val_u;
if (val_v < lb_v)
lb_v = val_v;
else if (val_v > ub_v)
ub_v = val_v;
}
}
for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2;
--n) {
for (i = 0; i < n; ++i) {
centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2;
centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2;
}
av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr);
pmi->palette_size[1] = n;
for (i = 1; i < 3; ++i) {
for (j = 0; j < n; ++j) {
#if CONFIG_AOM_HIGHBITDEPTH
if (cpi->common.use_highbitdepth)
pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd(
(int)centroids[j * 2 + i - 1], cpi->common.bit_depth);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
pmi->palette_colors[i * PALETTE_MAX_SIZE + j] =
clip_pixel((int)centroids[j * 2 + i - 1]);
}
}
super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
if (tokenonly_rd_stats.rate == INT_MAX) continue;
this_rate =
tokenonly_rd_stats.rate + dc_mode_cost +
2 * cpi->common.bit_depth * n * av1_cost_bit(128, 0) +
cpi->palette_uv_size_cost[bsize - BLOCK_8X8][n - 2] +
write_uniform_cost(n, color_map[0]) +
av1_cost_bit(
av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0], 1);
for (i = 0; i < rows; ++i) {
for (j = (i == 0 ? 1 : 0); j < cols; ++j) {
int color_idx;
const int color_ctx = av1_get_palette_color_context(
color_map, cols, i, j, n, color_order, &color_idx);
assert(color_idx >= 0 && color_idx < n);
this_rate += cpi->palette_uv_color_cost[n - 2][color_ctx][color_idx];
}
}
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*palette_mode_info = *pmi;
memcpy(best_palette_color_map, color_map,
rows * cols * sizeof(best_palette_color_map[0]));
*mode_selected = DC_PRED;
*rate = this_rate;
*distortion = tokenonly_rd_stats.dist;
*rate_tokenonly = tokenonly_rd_stats.rate;
*skippable = tokenonly_rd_stats.skip;
}
}
}
}
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
// Return 1 if an filter intra mode is selected; return 0 otherwise.
static int rd_pick_filter_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int64_t *best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int filter_intra_selected_flag = 0;
int this_rate;
int64_t this_rd;
FILTER_INTRA_MODE mode;
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
RD_STATS tokenonly_rd_stats;
av1_zero(filter_intra_mode_info);
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 1;
mbmi->uv_mode = DC_PRED;
#if CONFIG_PALETTE
mbmi->palette_mode_info.palette_size[1] = 0;
#endif // CONFIG_PALETTE
for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
mbmi->filter_intra_mode_info.filter_intra_mode[1] = mode;
if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd))
continue;
this_rate = tokenonly_rd_stats.rate +
av1_cost_bit(cpi->common.fc->filter_intra_probs[1], 1) +
cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode] +
write_uniform_cost(FILTER_INTRA_MODES, mode);
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = tokenonly_rd_stats.rate;
*distortion = tokenonly_rd_stats.dist;
*skippable = tokenonly_rd_stats.skip;
filter_intra_mode_info = mbmi->filter_intra_mode_info;
filter_intra_selected_flag = 1;
}
}
if (filter_intra_selected_flag) {
mbmi->uv_mode = DC_PRED;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
filter_intra_mode_info.use_filter_intra_mode[1];
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
filter_intra_mode_info.filter_intra_mode[1];
return 1;
} else {
return 0;
}
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
// Run RD calculation with given chroma intra prediction angle., and return
// the RD cost. Update the best mode info. if the RD cost is the best so far.
static int64_t pick_intra_angle_routine_sbuv(
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats,
int *best_angle_delta, int64_t *best_rd) {
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
int this_rate;
int64_t this_rd;
RD_STATS tokenonly_rd_stats;
if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in))
return INT64_MAX;
this_rate = tokenonly_rd_stats.rate + rate_overhead;
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*best_angle_delta = mbmi->angle_delta[1];
*rate = this_rate;
rd_stats->rate = tokenonly_rd_stats.rate;
rd_stats->dist = tokenonly_rd_stats.dist;
rd_stats->skip = tokenonly_rd_stats.skip;
}
return this_rd;
}
// With given chroma directional intra prediction mode, pick the best angle
// delta. Return true if a RD cost that is smaller than the input one is found.
static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int rate_overhead,
int64_t best_rd, int *rate,
RD_STATS *rd_stats) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int i, angle_delta, best_angle_delta = 0;
int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA_UV + 2)];
rd_stats->rate = INT_MAX;
rd_stats->skip = 0;
rd_stats->dist = INT64_MAX;
for (i = 0; i < 2 * (MAX_ANGLE_DELTA_UV + 2); ++i) rd_cost[i] = INT64_MAX;
for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA_UV; angle_delta += 2) {
for (i = 0; i < 2; ++i) {
best_rd_in = (best_rd == INT64_MAX)
? INT64_MAX
: (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5)));
mbmi->angle_delta[1] = (1 - 2 * i) * angle_delta;
this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead,
best_rd_in, rate, rd_stats,
&best_angle_delta, &best_rd);
rd_cost[2 * angle_delta + i] = this_rd;
if (angle_delta == 0) {
if (this_rd == INT64_MAX) return 0;
rd_cost[1] = this_rd;
break;
}
}
}
assert(best_rd != INT64_MAX);
for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA_UV; angle_delta += 2) {
int64_t rd_thresh;
for (i = 0; i < 2; ++i) {
int skip_search = 0;
rd_thresh = best_rd + (best_rd >> 5);
if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
skip_search = 1;
if (!skip_search) {
mbmi->angle_delta[1] = (1 - 2 * i) * angle_delta;
this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead,
best_rd, rate, rd_stats,
&best_angle_delta, &best_rd);
}
}
}
mbmi->angle_delta[1] = best_angle_delta;
return rd_stats->rate != INT_MAX;
}
#endif // CONFIG_EXT_INTRA
static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
PREDICTION_MODE mode;
PREDICTION_MODE mode_selected = DC_PRED;
int64_t best_rd = INT64_MAX, this_rd;
int this_rate;
RD_STATS tokenonly_rd_stats;
#if CONFIG_PVQ
od_rollback_buffer buf;
od_encode_checkpoint(&x->daala_enc, &buf);
#endif
#if CONFIG_PALETTE
const int rows = block_size_high[bsize] >> (xd->plane[1].subsampling_y);
const int cols = block_size_wide[bsize] >> (xd->plane[1].subsampling_x);
PALETTE_MODE_INFO palette_mode_info;
PALETTE_MODE_INFO *const pmi = &xd->mi[0]->mbmi.palette_mode_info;
uint8_t *best_palette_color_map = NULL;
#endif // CONFIG_PALETTE
#if CONFIG_EXT_INTRA
int is_directional_mode, rate_overhead, best_angle_delta = 0;
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
filter_intra_mode_info.use_filter_intra_mode[1] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
#endif // CONFIG_FILTER_INTRA
#if CONFIG_PALETTE
palette_mode_info.palette_size[1] = 0;
pmi->palette_size[1] = 0;
#endif // CONFIG_PALETTE
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) continue;
mbmi->uv_mode = mode;
#if CONFIG_EXT_INTRA
is_directional_mode = av1_is_directional_mode(mode, mbmi->sb_type);
rate_overhead = cpi->intra_uv_mode_cost[mbmi->mode][mode] +
write_uniform_cost(2 * MAX_ANGLE_DELTA_UV + 1, 0);
mbmi->angle_delta[1] = 0;
if (is_directional_mode) {
if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd,
&this_rate, &tokenonly_rd_stats))
continue;
} else {
if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) {
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &buf);
#endif
continue;
}
}
this_rate =
tokenonly_rd_stats.rate + cpi->intra_uv_mode_cost[mbmi->mode][mode];
if (is_directional_mode) {
this_rate +=
write_uniform_cost(2 * MAX_ANGLE_DELTA_UV + 1,
MAX_ANGLE_DELTA_UV + mbmi->angle_delta[1]);
}
#else // CONFIG_EXT_INTRA
if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) {
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &buf);
#endif
continue;
}
this_rate =
tokenonly_rd_stats.rate + cpi->intra_uv_mode_cost[mbmi->mode][mode];
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
if (mbmi->sb_type >= BLOCK_8X8 && mode == DC_PRED)
this_rate += av1_cost_bit(cpi->common.fc->filter_intra_probs[1], 0);
#endif // CONFIG_FILTER_INTRA
#if CONFIG_PALETTE
if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8 &&
mode == DC_PRED)
this_rate += av1_cost_bit(
av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0], 0);
#endif // CONFIG_PALETTE
#if CONFIG_PVQ
// For chroma channels, multiply lambda by 0.5 when doing intra prediction
// NOTE: Chroma intra prediction itself has a separate RDO,
// though final chroma intra mode's D and R is simply added to
// those of luma then global RDO is performed to decide the modes of SB.
// Also, for chroma, the RDO cannot decide tx_size (follow luma's decision)
// or tx_type (DCT only), then only the intra prediction is
// chroma's own mode decision based on separate RDO.
// TODO(yushin) : Seek for more reasonable solution than this.
this_rd = RDCOST(x->rdmult >> (1 * PVQ_CHROMA_RD), x->rddiv, this_rate,
tokenonly_rd_stats.dist);
od_encode_rollback(&x->daala_enc, &buf);
#else
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, tokenonly_rd_stats.dist);
#endif
if (this_rd < best_rd) {
mode_selected = mode;
#if CONFIG_EXT_INTRA
best_angle_delta = mbmi->angle_delta[1];
#endif // CONFIG_EXT_INTRA
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = tokenonly_rd_stats.rate;
*distortion = tokenonly_rd_stats.dist;
*skippable = tokenonly_rd_stats.skip;
}
}
#if CONFIG_PALETTE
if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8) {
best_palette_color_map = x->palette_buffer->best_palette_color_map;
rd_pick_palette_intra_sbuv(
cpi, x, cpi->intra_uv_mode_cost[mbmi->mode][DC_PRED],
&palette_mode_info, best_palette_color_map, &mode_selected, &best_rd,
rate, rate_tokenonly, distortion, skippable);
}
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
if (mbmi->sb_type >= BLOCK_8X8) {
if (rd_pick_filter_intra_sbuv(cpi, x, rate, rate_tokenonly, distortion,
skippable, bsize, &best_rd)) {
mode_selected = mbmi->uv_mode;
filter_intra_mode_info = mbmi->filter_intra_mode_info;
}
}
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
filter_intra_mode_info.use_filter_intra_mode[1];
if (filter_intra_mode_info.use_filter_intra_mode[1]) {
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
filter_intra_mode_info.filter_intra_mode[1];
#if CONFIG_PALETTE
palette_mode_info.palette_size[1] = 0;
#endif // CONFIG_PALETTE
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
mbmi->angle_delta[1] = best_angle_delta;
#endif // CONFIG_EXT_INTRA
mbmi->uv_mode = mode_selected;
#if CONFIG_PALETTE
pmi->palette_size[1] = palette_mode_info.palette_size[1];
if (palette_mode_info.palette_size[1] > 0) {
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
palette_mode_info.palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0]));
memcpy(xd->plane[1].color_index_map, best_palette_color_map,
rows * cols * sizeof(best_palette_color_map[0]));
}
#endif // CONFIG_PALETTE
return best_rd;
}
static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x,
PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize,
TX_SIZE max_tx_size, int *rate_uv,
int *rate_uv_tokenonly, int64_t *dist_uv,
int *skip_uv, PREDICTION_MODE *mode_uv) {
// Use an estimated rd for uv_intra based on DC_PRED if the
// appropriate speed flag is set.
(void)ctx;
#if CONFIG_CB4X4
rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
bsize, max_tx_size);
#else
rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size);
#endif
*mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode;
}
static int cost_mv_ref(const AV1_COMP *const cpi, PREDICTION_MODE mode,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
int is_compound,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
int16_t mode_context) {
#if CONFIG_REF_MV
int mode_cost = 0;
#if CONFIG_EXT_INTER
int16_t mode_ctx =
is_compound ? mode_context : (mode_context & NEWMV_CTX_MASK);
#else
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
#endif // CONFIG_EXT_INTER
int16_t is_all_zero_mv = mode_context & (1 << ALL_ZERO_FLAG_OFFSET);
assert(is_inter_mode(mode));
#if CONFIG_EXT_INTER
if (is_compound) {
return cpi->inter_compound_mode_cost[mode_context]
[INTER_COMPOUND_OFFSET(mode)];
} else {
if (mode == NEWMV || mode == NEWFROMNEARMV) {
#else
if (mode == NEWMV) {
#endif // CONFIG_EXT_INTER
mode_cost = cpi->newmv_mode_cost[mode_ctx][0];
#if CONFIG_EXT_INTER
if (!is_compound)
mode_cost += cpi->new2mv_mode_cost[mode == NEWFROMNEARMV];
#endif // CONFIG_EXT_INTER
return mode_cost;
} else {
mode_cost = cpi->newmv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
if (is_all_zero_mv) return mode_cost;
if (mode == ZEROMV) {
mode_cost += cpi->zeromv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost += cpi->zeromv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
mode_cost += cpi->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
return mode_cost;
}
}
#if CONFIG_EXT_INTER
}
#endif // CONFIG_EXT_INTER
#else
assert(is_inter_mode(mode));
#if CONFIG_EXT_INTER
if (is_inter_compound_mode(mode)) {
return cpi->inter_compound_mode_cost[mode_context]
[INTER_COMPOUND_OFFSET(mode)];
} else {
#endif // CONFIG_EXT_INTER
return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)];
#if CONFIG_EXT_INTER
}
#endif // CONFIG_EXT_INTER
#endif
}
#if CONFIG_EXT_INTER
static int get_interinter_compound_type_bits(BLOCK_SIZE bsize,
COMPOUND_TYPE comp_type) {
switch (comp_type) {
case COMPOUND_AVERAGE: return 0;
case COMPOUND_WEDGE: return get_interinter_wedge_bits(bsize);
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG: return 1;
#endif // CONFIG_COMPOUND_SEGMENT
default: assert(0); return 0;
}
}
#endif // CONFIG_EXT_INTER
#if CONFIG_GLOBAL_MOTION
static int GLOBAL_MOTION_RATE(const AV1_COMP *const cpi, int ref) {
static const int gm_amortization_blks[TRANS_TYPES] = { 4, 6, 8, 10, 12 };
static const int gm_params_cost[TRANS_TYPES] = {
GM_IDENTITY_BITS, GM_TRANSLATION_BITS, GM_ROTZOOM_BITS,
GM_AFFINE_BITS, GM_HOMOGRAPHY_BITS,
};
const WarpedMotionParams *gm = &cpi->common.global_motion[(ref)];
assert(gm->wmtype < GLOBAL_TRANS_TYPES);
if (cpi->global_motion_used[ref][0] >= gm_amortization_blks[gm->wmtype]) {
return 0;
} else {
const int cost = (gm_params_cost[gm->wmtype] << AV1_PROB_COST_SHIFT) +
cpi->gmtype_cost[gm->wmtype];
return cost / gm_amortization_blks[gm->wmtype];
}
}
#endif // CONFIG_GLOBAL_MOTION
static int set_and_cost_bmi_mvs(const AV1_COMP *const cpi, MACROBLOCK *x,
MACROBLOCKD *xd, int i, PREDICTION_MODE mode,
int_mv this_mv[2],
int_mv frame_mv[MB_MODE_COUNT]
[TOTAL_REFS_PER_FRAME],
int_mv seg_mvs[TOTAL_REFS_PER_FRAME],
#if CONFIG_EXT_INTER
int_mv compound_seg_newmvs[2],
#endif // CONFIG_EXT_INTER
int_mv *best_ref_mv[2], const int *mvjcost,
int *mvcost[2]) {
MODE_INFO *const mic = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mic->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
int thismvcost = 0;
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
const int is_compound = has_second_ref(mbmi);
int mode_ctx;
switch (mode) {
case NEWMV:
#if CONFIG_EXT_INTER
case NEWFROMNEARMV:
#endif // CONFIG_EXT_INTER
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
#if CONFIG_EXT_INTER
if (!cpi->common.allow_high_precision_mv)
lower_mv_precision(&this_mv[0].as_mv, 0);
#endif // CONFIG_EXT_INTER
#if CONFIG_REF_MV
for (idx = 0; idx < 1 + is_compound; ++idx) {
this_mv[idx] = seg_mvs[mbmi->ref_frame[idx]];
av1_set_mvcost(x, mbmi->ref_frame[idx], idx, mbmi->ref_mv_idx);
thismvcost +=
av1_mv_bit_cost(&this_mv[idx].as_mv, &best_ref_mv[idx]->as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT_SUB);
}
(void)mvjcost;
(void)mvcost;
#else
thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
#if !CONFIG_EXT_INTER
if (is_compound) {
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
}
#endif // !CONFIG_EXT_INTER
#endif
break;
case NEARMV:
case NEARESTMV:
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
if (is_compound)
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
break;
case ZEROMV:
#if CONFIG_GLOBAL_MOTION
this_mv[0].as_int =
gm_get_motion_vector(&cpi->common.global_motion[mbmi->ref_frame[0]],
cpi->common.allow_high_precision_mv)
.as_int;
thismvcost += GLOBAL_MOTION_RATE(cpi, mbmi->ref_frame[0]);
if (is_compound) {
this_mv[1].as_int =
gm_get_motion_vector(&cpi->common.global_motion[mbmi->ref_frame[1]],
cpi->common.allow_high_precision_mv)
.as_int;
thismvcost += GLOBAL_MOTION_RATE(cpi, mbmi->ref_frame[1]);
}
#else // CONFIG_GLOBAL_MOTION
this_mv[0].as_int = 0;
if (is_compound) this_mv[1].as_int = 0;
#endif // CONFIG_GLOBAL_MOTION
break;
#if CONFIG_EXT_INTER
case NEW_NEWMV:
if (compound_seg_newmvs[0].as_int == INVALID_MV ||
compound_seg_newmvs[1].as_int == INVALID_MV) {
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
} else {
this_mv[0].as_int = compound_seg_newmvs[0].as_int;
this_mv[1].as_int = compound_seg_newmvs[1].as_int;
}
if (!cpi->common.allow_high_precision_mv)
lower_mv_precision(&this_mv[0].as_mv, 0);
if (!cpi->common.allow_high_precision_mv)
lower_mv_precision(&this_mv[1].as_mv, 0);
thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
break;
case NEW_NEARMV:
case NEW_NEARESTMV:
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
if (!cpi->common.allow_high_precision_mv)
lower_mv_precision(&this_mv[0].as_mv, 0);
thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
break;
case NEAR_NEWMV:
case NEAREST_NEWMV:
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
if (!cpi->common.allow_high_precision_mv)
lower_mv_precision(&this_mv[1].as_mv, 0);
thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
break;
case NEAREST_NEARMV:
case NEAR_NEARESTMV:
case NEAREST_NEARESTMV:
case NEAR_NEARMV:
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
break;
case ZERO_ZEROMV:
this_mv[0].as_int = 0;
this_mv[1].as_int = 0;
break;
#endif // CONFIG_EXT_INTER
default: break;
}
mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int;
if (is_compound) mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int;
mic->bmi[i].as_mode = mode;
#if CONFIG_REF_MV
if (mode == NEWMV) {
mic->bmi[i].pred_mv[0].as_int =
mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_int;
if (is_compound)
mic->bmi[i].pred_mv[1].as_int =
mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_int;
} else {
mic->bmi[i].pred_mv[0].as_int = this_mv[0].as_int;
if (is_compound) mic->bmi[i].pred_mv[1].as_int = this_mv[1].as_int;
}
#endif
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
memmove(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i]));
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (is_compound)
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
else
#endif // CONFIG_EXT_INTER
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, mbmi->sb_type, i);
#else // CONFIG_REF_MV
mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
#endif // CONFIG_REF_MV
#if CONFIG_REF_MV && CONFIG_EXT_INTER
return cost_mv_ref(cpi, mode, is_compound, mode_ctx) + thismvcost;
#else
return cost_mv_ref(cpi, mode, mode_ctx) + thismvcost;
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
}
static int64_t encode_inter_mb_segment(const AV1_COMP *const cpi, MACROBLOCK *x,
int64_t best_yrd, int i, int *labelyrate,
int64_t *distortion, int64_t *sse,
ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl,
int ir, int ic, int mi_row, int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
int k;
MACROBLOCKD *xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
MODE_INFO *const mi = xd->mi[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd);
const int txb_width = max_block_wide(xd, plane_bsize, 0);
const int txb_height = max_block_high(xd, plane_bsize, 0);
const int width = block_size_wide[plane_bsize];
const int height = block_size_high[plane_bsize];
int idx, idy;
const uint8_t *const src =
&p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
uint8_t *const dst =
&pd->dst.buf[av1_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
int64_t thisdistortion = 0, thissse = 0;
int thisrate = 0;
TX_SIZE tx_size = mi->mbmi.tx_size;
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, i, tx_size);
const int num_4x4_w = tx_size_wide_unit[tx_size];
const int num_4x4_h = tx_size_high_unit[tx_size];
#if !CONFIG_PVQ
const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 1);
#else
(void)cpi;
(void)ta;
(void)tl;
(void)tx_type;
#endif
#if CONFIG_EXT_TX && CONFIG_RECT_TX
assert(IMPLIES(xd->lossless[mi->mbmi.segment_id], tx_size == TX_4X4));
assert(IMPLIES(!xd->lossless[mi->mbmi.segment_id],
tx_size == max_txsize_rect_lookup[mi->mbmi.sb_type]));
#else
assert(tx_size == TX_4X4);
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
assert(tx_type == DCT_DCT);
av1_build_inter_predictor_sub8x8(xd, 0, i, ir, ic, mi_row, mi_col);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(
height, width, av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride, xd->bd);
} else {
aom_subtract_block(height, width,
av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride);
}
#else
aom_subtract_block(height, width,
av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride);
#endif // CONFIG_AOM_HIGHBITDEPTH
k = i;
for (idy = 0; idy < txb_height; idy += num_4x4_h) {
for (idx = 0; idx < txb_width; idx += num_4x4_w) {
int64_t dist, ssz, rd, rd1, rd2;
int block;
int coeff_ctx;
k += (idy * 2 + idx);
if (tx_size == TX_4X4)
block = k;
else
block = (i ? 2 : 0);
coeff_ctx = combine_entropy_contexts(*(ta + (k & 1)), *(tl + (k >> 1)));
#if !CONFIG_PVQ
#if CONFIG_NEW_QUANT
av1_xform_quant(cm, x, 0, block, idy + (i >> 1), idx + (i & 0x01),
BLOCK_8X8, tx_size, coeff_ctx, AV1_XFORM_QUANT_FP_NUQ);
#else
av1_xform_quant(cm, x, 0, block, idy + (i >> 1), idx + (i & 0x01),
BLOCK_8X8, tx_size, coeff_ctx, AV1_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
if (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)
av1_optimize_b(cm, x, 0, block, tx_size, coeff_ctx);
#else
av1_xform_quant(cm, x, 0, block, idy + (i >> 1), idx + (i & 0x01),
BLOCK_8X8, tx_size, coeff_ctx, AV1_XFORM_QUANT_FP);
#endif
dist_block(cpi, x, 0, block, idy + (i >> 1), idx + (i & 0x1), tx_size,
&dist, &ssz);
thisdistortion += dist;
thissse += ssz;
#if !CONFIG_PVQ
thisrate +=
av1_cost_coeffs(cm, x, 0, block, coeff_ctx, tx_size, scan_order->scan,
scan_order->neighbors, cpi->sf.use_fast_coef_costing);
*(ta + (k & 1)) = !(p->eobs[block] == 0);
*(tl + (k >> 1)) = !(p->eobs[block] == 0);
#else
thisrate += x->rate;
*(ta + (k & 1)) = !x->pvq_skip[0];
*(tl + (k >> 1)) = !x->pvq_skip[0];
#endif
#if CONFIG_EXT_TX
if (tx_size == TX_8X4) {
*(ta + (k & 1) + 1) = *(ta + (k & 1));
}
if (tx_size == TX_4X8) {
*(tl + (k >> 1) + 1) = *(tl + (k >> 1));
}
#endif // CONFIG_EXT_TX
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse);
rd = AOMMIN(rd1, rd2);
if (rd >= best_yrd) return INT64_MAX;
}
}
*distortion = thisdistortion;
*labelyrate = thisrate;
*sse = thissse;
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
typedef struct {
int eobs;
int brate;
int byrate;
int64_t bdist;
int64_t bsse;
int64_t brdcost;
int_mv mvs[2];
#if CONFIG_REF_MV
int_mv pred_mv[2];
#endif
#if CONFIG_EXT_INTER
int_mv ref_mv[2];
#endif // CONFIG_EXT_INTER
#if CONFIG_CB4X4
ENTROPY_CONTEXT ta[4];
ENTROPY_CONTEXT tl[4];
#else
ENTROPY_CONTEXT ta[2];
ENTROPY_CONTEXT tl[2];
#endif
} SEG_RDSTAT;
typedef struct {
int_mv *ref_mv[2];
int_mv mvp;
int64_t segment_rd;
int r;
int64_t d;
int64_t sse;
int segment_yrate;
PREDICTION_MODE modes[4];
#if CONFIG_EXT_INTER
SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES];
#else
SEG_RDSTAT rdstat[4][INTER_MODES];
#endif // CONFIG_EXT_INTER
int mvthresh;
} BEST_SEG_INFO;
static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) {
return (mv->row >> 3) < x->mv_row_min || (mv->row >> 3) > x->mv_row_max ||
(mv->col >> 3) < x->mv_col_min || (mv->col >> 3) > x->mv_col_max;
}
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
p->src.buf =
&p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
assert(((intptr_t)pd->pre[0].buf & 0x7) == 0);
pd->pre[0].buf =
&pd->pre[0].buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)];
if (has_second_ref(mbmi))
pd->pre[1].buf =
&pd->pre[1]
.buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)];
}
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
struct buf_2d orig_pre[2]) {
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
x->plane[0].src = orig_src;
x->e_mbd.plane[0].pre[0] = orig_pre[0];
if (has_second_ref(mbmi)) x->e_mbd.plane[0].pre[1] = orig_pre[1];
}
// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion.
// TODO(aconverse): Find out if this is still productive then clean up or remove
static int check_best_zero_mv(
const AV1_COMP *const cpi, const int16_t mode_context[TOTAL_REFS_PER_FRAME],
#if CONFIG_REF_MV && CONFIG_EXT_INTER
const int16_t compound_mode_context[TOTAL_REFS_PER_FRAME],
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME], int this_mode,
const MV_REFERENCE_FRAME ref_frames[2], const BLOCK_SIZE bsize, int block) {
#if !CONFIG_EXT_INTER
assert(ref_frames[1] != INTRA_FRAME); // Just sanity check
#endif
if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
(ref_frames[1] <= INTRA_FRAME ||
frame_mv[this_mode][ref_frames[1]].as_int == 0)) {
#if CONFIG_REF_MV
int16_t rfc =
av1_mode_context_analyzer(mode_context, ref_frames, bsize, block);
#else
int16_t rfc = mode_context[ref_frames[0]];
#endif
#if CONFIG_REF_MV && CONFIG_EXT_INTER
int c1 = cost_mv_ref(cpi, NEARMV, ref_frames[1] > INTRA_FRAME, rfc);
int c2 = cost_mv_ref(cpi, NEARESTMV, ref_frames[1] > INTRA_FRAME, rfc);
int c3 = cost_mv_ref(cpi, ZEROMV, ref_frames[1] > INTRA_FRAME, rfc);
#else
int c1 = cost_mv_ref(cpi, NEARMV, rfc);
int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
#if !CONFIG_REF_MV
(void)bsize;
(void)block;
#endif
if (this_mode == NEARMV) {
if (c1 > c3) return 0;
} else if (this_mode == NEARESTMV) {
if (c2 > c3) return 0;
} else {
assert(this_mode == ZEROMV);
if (ref_frames[1] <= INTRA_FRAME) {
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) ||
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0))
return 0;
} else {
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) ||
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEARMV][ref_frames[1]].as_int == 0))
return 0;
}
}
}
#if CONFIG_EXT_INTER
else if ((this_mode == NEAREST_NEARESTMV || this_mode == NEAREST_NEARMV ||
this_mode == NEAR_NEARESTMV || this_mode == NEAR_NEARMV ||
this_mode == ZERO_ZEROMV) &&
frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
frame_mv[this_mode][ref_frames[1]].as_int == 0) {
#if CONFIG_REF_MV
int16_t rfc = compound_mode_context[ref_frames[0]];
int c1 = cost_mv_ref(cpi, NEAREST_NEARMV, 1, rfc);
int c2 = cost_mv_ref(cpi, NEAREST_NEARESTMV, 1, rfc);
int c3 = cost_mv_ref(cpi, ZERO_ZEROMV, 1, rfc);
int c4 = cost_mv_ref(cpi, NEAR_NEARESTMV, 1, rfc);
int c5 = cost_mv_ref(cpi, NEAR_NEARMV, 1, rfc);
#else
int16_t rfc = mode_context[ref_frames[0]];
int c1 = cost_mv_ref(cpi, NEAREST_NEARMV, rfc);
int c2 = cost_mv_ref(cpi, NEAREST_NEARESTMV, rfc);
int c3 = cost_mv_ref(cpi, ZERO_ZEROMV, rfc);
int c4 = cost_mv_ref(cpi, NEAR_NEARESTMV, rfc);
int c5 = cost_mv_ref(cpi, NEAR_NEARMV, rfc);
#endif
if (this_mode == NEAREST_NEARMV) {
if (c1 > c3) return 0;
} else if (this_mode == NEAREST_NEARESTMV) {
if (c2 > c3) return 0;
} else if (this_mode == NEAR_NEARESTMV) {
if (c4 > c3) return 0;
} else if (this_mode == NEAR_NEARMV) {
if (c5 > c3) return 0;
} else {
assert(this_mode == ZERO_ZEROMV);
if ((c3 >= c2 && frame_mv[NEAREST_NEARESTMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEAREST_NEARESTMV][ref_frames[1]].as_int == 0) ||
(c3 >= c1 && frame_mv[NEAREST_NEARMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEAREST_NEARMV][ref_frames[1]].as_int == 0) ||
(c3 >= c5 && frame_mv[NEAR_NEARMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEAR_NEARMV][ref_frames[1]].as_int == 0) ||
(c3 >= c4 && frame_mv[NEAR_NEARESTMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEAR_NEARESTMV][ref_frames[1]].as_int == 0))
return 0;
}
}
#endif // CONFIG_EXT_INTER
return 1;
}
static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int_mv *frame_mv, int mi_row,
int mi_col,
#if CONFIG_EXT_INTER
int_mv *ref_mv_sub8x8[2],
#endif
int_mv single_newmv[TOTAL_REFS_PER_FRAME],
int *rate_mv, const int block) {
const AV1_COMMON *const cm = &cpi->common;
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int refs[2] = { mbmi->ref_frame[0],
mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
int_mv ref_mv[2];
int ite, ref;
#if CONFIG_DUAL_FILTER
InterpFilter interp_filter[4] = {
mbmi->interp_filter[0], mbmi->interp_filter[1], mbmi->interp_filter[2],
mbmi->interp_filter[3],
};
#else
const InterpFilter interp_filter = mbmi->interp_filter;
#endif
struct scale_factors sf;
// Do joint motion search in compound mode to get more accurate mv.
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
int last_besterr[2] = { INT_MAX, INT_MAX };
const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
av1_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]),
av1_get_scaled_ref_frame(cpi, mbmi->ref_frame[1])
};
// Prediction buffer from second frame.
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]);
uint8_t *second_pred;
#else
DECLARE_ALIGNED(16, uint8_t, second_pred[MAX_SB_SQUARE]);
#endif // CONFIG_AOM_HIGHBITDEPTH
for (ref = 0; ref < 2; ++ref) {
#if CONFIG_EXT_INTER
if (bsize < BLOCK_8X8 && ref_mv_sub8x8 != NULL)
ref_mv[ref].as_int = ref_mv_sub8x8[ref]->as_int;
else
#endif // CONFIG_EXT_INTER
ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0];
if (scaled_ref_frame[ref]) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[ref][i] = xd->plane[i].pre[ref];
av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
NULL);
}
frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int;
}
// Since we have scaled the reference frames to match the size of the current
// frame we must use a unit scaling factor during mode selection.
#if CONFIG_AOM_HIGHBITDEPTH
av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
cm->height, cm->use_highbitdepth);
#else
av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
cm->height);
#endif // CONFIG_AOM_HIGHBITDEPTH
// Allow joint search multiple times iteratively for each reference frame
// and break out of the search loop if it couldn't find a better mv.
for (ite = 0; ite < 4; ite++) {
struct buf_2d ref_yv12[2];
int bestsme = INT_MAX;
int sadpb = x->sadperbit16;
MV *const best_mv = &x->best_mv.as_mv;
int search_range = 3;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
int id = ite % 2; // Even iterations search in the first reference frame,
// odd iterations search in the second. The predictor
// found for the 'other' reference frame is factored in.
// Initialized here because of compiler problem in Visual Studio.
ref_yv12[0] = xd->plane[0].pre[0];
ref_yv12[1] = xd->plane[0].pre[1];
#if CONFIG_DUAL_FILTER
// reload the filter types
interp_filter[0] =
(id == 0) ? mbmi->interp_filter[2] : mbmi->interp_filter[0];
interp_filter[1] =
(id == 0) ? mbmi->interp_filter[3] : mbmi->interp_filter[1];
#endif
// Get the prediction block from the 'other' reference frame.
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
av1_highbd_build_inter_predictor(
ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw,
&frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, interp_filter,
MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd->bd);
} else {
second_pred = (uint8_t *)second_pred_alloc_16;
av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
second_pred, pw, &frame_mv[refs[!id]].as_mv,
&sf, pw, ph, 0, interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE, mi_row * MI_SIZE);
}
#else
av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf,
pw, ph, 0, interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE, mi_row * MI_SIZE);
#endif // CONFIG_AOM_HIGHBITDEPTH
// Do compound motion search on the current reference frame.
if (id) xd->plane[0].pre[0] = ref_yv12[id];
av1_set_mv_search_range(x, &ref_mv[id].as_mv);
// Use the mv result from the single mode as mv predictor.
*best_mv = frame_mv[refs[id]].as_mv;
best_mv->col >>= 3;
best_mv->row >>= 3;
#if CONFIG_REF_MV
av1_set_mvcost(x, refs[id], id, mbmi->ref_mv_idx);
#endif
// Small-range full-pixel motion search.
bestsme =
av1_refining_search_8p_c(x, sadpb, search_range, &cpi->fn_ptr[bsize],
&ref_mv[id].as_mv, second_pred);
if (bestsme < INT_MAX)
bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv,
second_pred, &cpi->fn_ptr[bsize], 1);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
unsigned int sse;
if (cpi->sf.use_upsampled_references) {
// Use up-sampled reference frames.
struct macroblockd_plane *const pd = &xd->plane[0];
struct buf_2d backup_pred = pd->pre[0];
const YV12_BUFFER_CONFIG *upsampled_ref =
get_upsampled_ref(cpi, refs[id]);
// Set pred for Y plane
setup_pred_plane(&pd->pre[0], upsampled_ref->y_buffer,
upsampled_ref->y_crop_width,
upsampled_ref->y_crop_height, upsampled_ref->y_stride,
(mi_row << 3), (mi_col << 3), NULL, pd->subsampling_x,
pd->subsampling_y);
// If bsize < BLOCK_8X8, adjust pred pointer for this block
#if !CONFIG_CB4X4
if (bsize < BLOCK_8X8)
pd->pre[0].buf =
&pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, block,
pd->pre[0].stride))
<< 3];
#endif
bestsme = cpi->find_fractional_mv_step(
x, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], 0,
cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred, pw, ph, 1);
// Restore the reference frames.
pd->pre[0] = backup_pred;
} else {
(void)block;
bestsme = cpi->find_fractional_mv_step(
x, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], 0,
cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred, pw, ph, 0);
}
}
// Restore the pointer to the first (possibly scaled) prediction buffer.
if (id) xd->plane[0].pre[0] = ref_yv12[0];
if (bestsme < last_besterr[id]) {
frame_mv[refs[id]].as_mv = *best_mv;
last_besterr[id] = bestsme;
} else {
break;
}
}
*rate_mv = 0;
for (ref = 0; ref < 2; ++ref) {
if (scaled_ref_frame[ref]) {
// Restore the prediction frame pointers to their unscaled versions.
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[ref] = backup_yv12[ref][i];
}
#if CONFIG_REF_MV
av1_set_mvcost(x, refs[ref], ref, mbmi->ref_mv_idx);
#endif
#if CONFIG_EXT_INTER
if (bsize >= BLOCK_8X8)
#endif // CONFIG_EXT_INTER
*rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
&x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
#if CONFIG_EXT_INTER
else
*rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
&ref_mv_sub8x8[ref]->as_mv, x->nmvjointcost,
x->mvcost, MV_COST_WEIGHT);
#endif // CONFIG_EXT_INTER
}
}
static int64_t rd_pick_best_sub8x8_mode(
const AV1_COMP *const cpi, MACROBLOCK *x, int_mv *best_ref_mv,
int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate,
int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse,
int mvthresh,
#if CONFIG_EXT_INTER
int_mv seg_mvs[4][2][TOTAL_REFS_PER_FRAME],
int_mv compound_seg_newmvs[4][2],
#else
int_mv seg_mvs[4][TOTAL_REFS_PER_FRAME],
#endif // CONFIG_EXT_INTER
BEST_SEG_INFO *bsi_buf, int filter_idx, int mi_row, int mi_col) {
BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
#if CONFIG_REF_MV
int_mv tmp_ref_mv[2];
#endif
MACROBLOCKD *xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
MB_MODE_INFO *mbmi = &mi->mbmi;
int mode_idx;
int k, br = 0, idx, idy;
int64_t bd = 0, block_sse = 0;
PREDICTION_MODE this_mode;
const AV1_COMMON *cm = &cpi->common;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const int label_count = 4;
int64_t this_segment_rd = 0;
int label_mv_thresh;
int segmentyrate = 0;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
#if CONFIG_CB4X4
ENTROPY_CONTEXT t_above[4], t_left[4];
#else
ENTROPY_CONTEXT t_above[2], t_left[2];
#endif
int subpelmv = 1, have_ref = 0;
const int has_second_rf = has_second_ref(mbmi);
const int inter_mode_mask = cpi->sf.inter_mode_mask[bsize];
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
#if CONFIG_PVQ
od_rollback_buffer pre_buf;
od_encode_checkpoint(&x->daala_enc, &pre_buf);
#endif
#if CONFIG_EXT_TX && CONFIG_RECT_TX
mbmi->tx_size =
xd->lossless[mbmi->segment_id] ? TX_4X4 : max_txsize_rect_lookup[bsize];
#else
mbmi->tx_size = TX_4X4;
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
av1_zero(*bsi);
bsi->segment_rd = best_rd;
bsi->ref_mv[0] = best_ref_mv;
bsi->ref_mv[1] = second_best_ref_mv;
bsi->mvp.as_int = best_ref_mv->as_int;
bsi->mvthresh = mvthresh;
for (idx = 0; idx < 4; ++idx) bsi->modes[idx] = ZEROMV;
#if CONFIG_REFMV
for (idx = 0; idx < 4; ++idx) {
for (k = NEARESTMV; k <= NEWMV; ++k) {
bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[0].as_int = INVALID_MV;
bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[1].as_int = INVALID_MV;
bsi->rdstat[idx][INTER_OFFSET(k)].mvs[0].as_int = INVALID_MV;
bsi->rdstat[idx][INTER_OFFSET(k)].mvs[1].as_int = INVALID_MV;
}
}
#endif
memcpy(t_above, pd->above_context, sizeof(t_above));
memcpy(t_left, pd->left_context, sizeof(t_left));
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
int_mv mode_mv[MB_MODE_COUNT][2];
int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
PREDICTION_MODE mode_selected = ZEROMV;
int64_t new_best_rd = INT64_MAX;
const int index = idy * 2 + idx;
int ref;
#if CONFIG_REF_MV
CANDIDATE_MV ref_mv_stack[2][MAX_REF_MV_STACK_SIZE];
uint8_t ref_mv_count[2];
#endif
#if CONFIG_EXT_INTER
int mv_idx;
int_mv ref_mvs_sub8x8[2][2];
#endif // CONFIG_EXT_INTER
#if CONFIG_PVQ
od_rollback_buffer idx_buf, post_buf;
od_encode_checkpoint(&x->daala_enc, &idx_buf);
od_encode_checkpoint(&x->daala_enc, &post_buf);
#endif
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
#if CONFIG_EXT_INTER
int_mv mv_ref_list[MAX_MV_REF_CANDIDATES];
av1_update_mv_context(xd, mi, frame, mv_ref_list, index, mi_row, mi_col,
NULL);
#endif // CONFIG_EXT_INTER
#if CONFIG_GLOBAL_MOTION
frame_mv[ZEROMV][frame].as_int =
gm_get_motion_vector(&cm->global_motion[frame],
cm->allow_high_precision_mv)
.as_int;
#else // CONFIG_GLOBAL_MOTION
frame_mv[ZEROMV][frame].as_int = 0;
#endif // CONFIG_GLOBAL_MOTION
av1_append_sub8x8_mvs_for_idx(cm, xd, index, ref, mi_row, mi_col,
#if CONFIG_REF_MV
ref_mv_stack[ref], &ref_mv_count[ref],
#endif
#if CONFIG_EXT_INTER
mv_ref_list,
#endif // CONFIG_EXT_INTER
&frame_mv[NEARESTMV][frame],
&frame_mv[NEARMV][frame]);
#if CONFIG_REF_MV
tmp_ref_mv[ref] = frame_mv[NEARESTMV][mbmi->ref_frame[ref]];
lower_mv_precision(&tmp_ref_mv[ref].as_mv, cm->allow_high_precision_mv);
bsi->ref_mv[ref] = &tmp_ref_mv[ref];
mbmi_ext->ref_mvs[frame][0] = tmp_ref_mv[ref];
#endif
#if CONFIG_EXT_INTER
mv_ref_list[0].as_int = frame_mv[NEARESTMV][frame].as_int;
mv_ref_list[1].as_int = frame_mv[NEARMV][frame].as_int;
av1_find_best_ref_mvs(cm->allow_high_precision_mv, mv_ref_list,
&ref_mvs_sub8x8[0][ref], &ref_mvs_sub8x8[1][ref]);
if (has_second_rf) {
frame_mv[ZERO_ZEROMV][frame].as_int = 0;
frame_mv[NEAREST_NEARESTMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
if (ref == 0) {
frame_mv[NEAREST_NEARMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
frame_mv[NEAR_NEARESTMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
frame_mv[NEAREST_NEWMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
frame_mv[NEAR_NEWMV][frame].as_int = frame_mv[NEARMV][frame].as_int;
frame_mv[NEAR_NEARMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
} else if (ref == 1) {
frame_mv[NEAREST_NEARMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
frame_mv[NEAR_NEARESTMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
frame_mv[NEW_NEARESTMV][frame].as_int =
frame_mv[NEARESTMV][frame].as_int;
frame_mv[NEW_NEARMV][frame].as_int = frame_mv[NEARMV][frame].as_int;
frame_mv[NEAR_NEARMV][frame].as_int =
frame_mv[NEARMV][frame].as_int;
}
}
#endif // CONFIG_EXT_INTER
}
// search for the best motion vector on this segment
#if CONFIG_EXT_INTER
for (this_mode = (has_second_rf ? NEAREST_NEARESTMV : NEARESTMV);
this_mode <= (has_second_rf ? NEW_NEWMV : NEWFROMNEARMV);
++this_mode)
#else
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode)
#endif // CONFIG_EXT_INTER
{
const struct buf_2d orig_src = x->plane[0].src;
struct buf_2d orig_pre[2];
// This flag controls if the motion estimation will kick off. When it
// is set to a non-zero value, the encoder will force motion estimation.
int run_mv_search = 0;
mode_idx = INTER_OFFSET(this_mode);
#if CONFIG_EXT_INTER
mv_idx = (this_mode == NEWFROMNEARMV) ? 1 : 0;
for (ref = 0; ref < 1 + has_second_rf; ++ref)
bsi->ref_mv[ref]->as_int = ref_mvs_sub8x8[mv_idx][ref].as_int;
#endif // CONFIG_EXT_INTER
bsi->rdstat[index][mode_idx].brdcost = INT64_MAX;
if (!(inter_mode_mask & (1 << this_mode))) continue;
#if CONFIG_REF_MV
run_mv_search = 2;
#if !CONFIG_EXT_INTER
if (filter_idx > 0 && this_mode == NEWMV) {
BEST_SEG_INFO *ref_bsi = bsi_buf;
SEG_RDSTAT *ref_rdstat = &ref_bsi->rdstat[index][mode_idx];
if (has_second_rf) {
if (seg_mvs[index][mbmi->ref_frame[0]].as_int ==
ref_rdstat->mvs[0].as_int &&
ref_rdstat->mvs[0].as_int != INVALID_MV)
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int)
--run_mv_search;
if (seg_mvs[index][mbmi->ref_frame[1]].as_int ==
ref_rdstat->mvs[1].as_int &&
ref_rdstat->mvs[1].as_int != INVALID_MV)
if (bsi->ref_mv[1]->as_int == ref_rdstat->pred_mv[1].as_int)
--run_mv_search;
} else {
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int &&
ref_rdstat->mvs[0].as_int != INVALID_MV) {
run_mv_search = 0;
seg_mvs[index][mbmi->ref_frame[0]].as_int =
ref_rdstat->mvs[0].as_int;
}
}
if (run_mv_search != 0 && filter_idx > 1) {
ref_bsi = bsi_buf + 1;
ref_rdstat = &ref_bsi->rdstat[index][mode_idx];
run_mv_search = 2;
if (has_second_rf) {
if (seg_mvs[index][mbmi->ref_frame[0]].as_int ==
ref_rdstat->mvs[0].as_int &&
ref_rdstat->mvs[0].as_int != INVALID_MV)
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int)
--run_mv_search;
if (seg_mvs[index][mbmi->ref_frame[1]].as_int ==
ref_rdstat->mvs[1].as_int &&
ref_rdstat->mvs[1].as_int != INVALID_MV)
if (bsi->ref_mv[1]->as_int == ref_rdstat->pred_mv[1].as_int)
--run_mv_search;
} else {
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int &&
ref_rdstat->mvs[0].as_int != INVALID_MV) {
run_mv_search = 0;
seg_mvs[index][mbmi->ref_frame[0]].as_int =
ref_rdstat->mvs[0].as_int;
}
}
}
}
#endif // CONFIG_EXT_INTER
#endif // CONFIG_REF_MV
#if CONFIG_GLOBAL_MOTION
if (cm->global_motion[mbmi->ref_frame[0]].wmtype == IDENTITY &&
(!has_second_rf ||
cm->global_motion[mbmi->ref_frame[1]].wmtype == IDENTITY))
#endif // CONFIG_GLOBAL_MOTION
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
mbmi_ext->compound_mode_context,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
frame_mv, this_mode, mbmi->ref_frame, bsize,
index))
continue;
memcpy(orig_pre, pd->pre, sizeof(orig_pre));
memcpy(bsi->rdstat[index][mode_idx].ta, t_above,
sizeof(bsi->rdstat[index][mode_idx].ta));
memcpy(bsi->rdstat[index][mode_idx].tl, t_left,
sizeof(bsi->rdstat[index][mode_idx].tl));
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &idx_buf);
#endif
// motion search for newmv (single predictor case only)
if (!has_second_rf &&
#if CONFIG_EXT_INTER
have_newmv_in_inter_mode(this_mode) &&
(seg_mvs[index][mv_idx][mbmi->ref_frame[0]].as_int == INVALID_MV)
#else
this_mode == NEWMV &&
(seg_mvs[index][mbmi->ref_frame[0]].as_int == INVALID_MV ||
run_mv_search)
#endif // CONFIG_EXT_INTER
) {
int step_param = 0;
int bestsme = INT_MAX;
int sadpb = x->sadperbit4;
MV mvp_full;
int max_mv;
int cost_list[5];
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
/* Is the best so far sufficiently good that we cant justify doing
* and new motion search. */
if (new_best_rd < label_mv_thresh) break;
if (cpi->oxcf.mode != BEST) {
#if CONFIG_EXT_INTER
bsi->mvp.as_int = bsi->ref_mv[0]->as_int;
#else
// use previous block's result as next block's MV predictor.
#if !CONFIG_REF_MV
if (index > 0) {
bsi->mvp.as_int = mi->bmi[index - 1].as_mv[0].as_int;
if (index == 2)
bsi->mvp.as_int = mi->bmi[index - 2].as_mv[0].as_int;
}
#endif
#endif // CONFIG_EXT_INTER
}
max_mv = (index == 0) ? (int)x->max_mv_context[mbmi->ref_frame[0]]
: AOMMAX(abs(bsi->mvp.as_mv.row),
abs(bsi->mvp.as_mv.col)) >>
3;
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and the best ref mvs of the current block for
// the given reference.
step_param =
(av1_init_search_range(max_mv) + cpi->mv_step_param) / 2;
} else {
step_param = cpi->mv_step_param;
}
#if CONFIG_REF_MV
mvp_full.row = bsi->ref_mv[0]->as_mv.row >> 3;
mvp_full.col = bsi->ref_mv[0]->as_mv.col >> 3;
#else
mvp_full.row = bsi->mvp.as_mv.row >> 3;
mvp_full.col = bsi->mvp.as_mv.col >> 3;
#endif
if (cpi->sf.adaptive_motion_search) {
mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3;
mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3;
step_param = AOMMAX(step_param, 8);
}
// adjust src pointer for this block
mi_buf_shift(x, index);
av1_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv);
x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV;
#if CONFIG_REF_MV
av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx);
#endif
bestsme = av1_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, sadpb,
cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL,
&bsi->ref_mv[0]->as_mv, INT_MAX, 1);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int distortion;
if (cpi->sf.use_upsampled_references) {
int best_mv_var;
const int try_second =
x->second_best_mv.as_int != INVALID_MV &&
x->second_best_mv.as_int != x->best_mv.as_int;
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
// Use up-sampled reference frames.
struct buf_2d backup_pred = pd->pre[0];
const YV12_BUFFER_CONFIG *upsampled_ref =
get_upsampled_ref(cpi, mbmi->ref_frame[0]);
// Set pred for Y plane
setup_pred_plane(
&pd->pre[0], upsampled_ref->y_buffer,
upsampled_ref->y_crop_width, upsampled_ref->y_crop_height,
upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3), NULL,
pd->subsampling_x, pd->subsampling_y);
// adjust pred pointer for this block
pd->pre[0].buf =
&pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, index,
pd->pre[0].stride))
<< 3];
best_mv_var = cpi->find_fractional_mv_step(
x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
&distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, pw, ph,
1);
if (try_second) {
int this_var;
MV best_mv = x->best_mv.as_mv;
const MV ref_mv = bsi->ref_mv[0]->as_mv;
const int minc = AOMMAX(x->mv_col_min * 8, ref_mv.col - MV_MAX);
const int maxc = AOMMIN(x->mv_col_max * 8, ref_mv.col + MV_MAX);
const int minr = AOMMAX(x->mv_row_min * 8, ref_mv.row - MV_MAX);
const int maxr = AOMMIN(x->mv_row_max * 8, ref_mv.row + MV_MAX);
x->best_mv = x->second_best_mv;
if (x->best_mv.as_mv.row * 8 <= maxr &&
x->best_mv.as_mv.row * 8 >= minr &&
x->best_mv.as_mv.col * 8 <= maxc &&
x->best_mv.as_mv.col * 8 >= minc) {
this_var = cpi->find_fractional_mv_step(
x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list), x->nmvjointcost,
x->mvcost, &distortion, &x->pred_sse[mbmi->ref_frame[0]],
NULL, pw, ph, 1);
if (this_var < best_mv_var) best_mv = x->best_mv.as_mv;
x->best_mv.as_mv = best_mv;
}
}
// Restore the reference frames.
pd->pre[0] = backup_pred;
} else {
cpi->find_fractional_mv_step(
x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
&distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, 0, 0, 0);
}
// save motion search result for use in compound prediction
#if CONFIG_EXT_INTER
seg_mvs[index][mv_idx][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv;
#else
seg_mvs[index][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv;
#endif // CONFIG_EXT_INTER
}
if (cpi->sf.adaptive_motion_search)
x->pred_mv[mbmi->ref_frame[0]] = x->best_mv.as_mv;
#if CONFIG_EXT_INTER
mode_mv[this_mode][0] = x->best_mv;
#else
mode_mv[NEWMV][0] = x->best_mv;
#endif // CONFIG_EXT_INTER
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
if (has_second_rf) {
#if CONFIG_EXT_INTER
if (seg_mvs[index][mv_idx][mbmi->ref_frame[1]].as_int == INVALID_MV ||
seg_mvs[index][mv_idx][mbmi->ref_frame[0]].as_int == INVALID_MV)
#else
if (seg_mvs[index][mbmi->ref_frame[1]].as_int == INVALID_MV ||
seg_mvs[index][mbmi->ref_frame[0]].as_int == INVALID_MV)
#endif // CONFIG_EXT_INTER
continue;
}
#if CONFIG_DUAL_FILTER
(void)run_mv_search;
#endif
if (has_second_rf &&
#if CONFIG_EXT_INTER
this_mode == NEW_NEWMV &&
#else
this_mode == NEWMV &&
#endif // CONFIG_EXT_INTER
#if CONFIG_DUAL_FILTER
(mbmi->interp_filter[0] == EIGHTTAP_REGULAR || run_mv_search))
#else
(mbmi->interp_filter == EIGHTTAP_REGULAR || run_mv_search))
#endif
{
// adjust src pointers
mi_buf_shift(x, index);
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
int rate_mv;
joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row,
mi_col,
#if CONFIG_EXT_INTER
bsi->ref_mv, seg_mvs[index][mv_idx],
#else
seg_mvs[index],
#endif // CONFIG_EXT_INTER
&rate_mv, index);
#if CONFIG_EXT_INTER
compound_seg_newmvs[index][0].as_int =
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
compound_seg_newmvs[index][1].as_int =
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
#else
seg_mvs[index][mbmi->ref_frame[0]].as_int =
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
seg_mvs[index][mbmi->ref_frame[1]].as_int =
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
#endif // CONFIG_EXT_INTER
}
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
bsi->rdstat[index][mode_idx].brate = set_and_cost_bmi_mvs(
cpi, x, xd, index, this_mode, mode_mv[this_mode], frame_mv,
#if CONFIG_EXT_INTER
seg_mvs[index][mv_idx], compound_seg_newmvs[index],
#else
seg_mvs[index],
#endif // CONFIG_EXT_INTER
bsi->ref_mv, x->nmvjointcost, x->mvcost);
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
bsi->rdstat[index][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_wide > 1)
bsi->rdstat[index + 1][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_high > 1)
bsi->rdstat[index + 2][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
#if CONFIG_REF_MV
bsi->rdstat[index][mode_idx].pred_mv[ref].as_int =
mi->bmi[index].pred_mv[ref].as_int;
if (num_4x4_blocks_wide > 1)
bsi->rdstat[index + 1][mode_idx].pred_mv[ref].as_int =
mi->bmi[index].pred_mv[ref].as_int;
if (num_4x4_blocks_high > 1)
bsi->rdstat[index + 2][mode_idx].pred_mv[ref].as_int =
mi->bmi[index].pred_mv[ref].as_int;
#endif
#if CONFIG_EXT_INTER
bsi->rdstat[index][mode_idx].ref_mv[ref].as_int =
bsi->ref_mv[ref]->as_int;
if (num_4x4_blocks_wide > 1)
bsi->rdstat[index + 1][mode_idx].ref_mv[ref].as_int =
bsi->ref_mv[ref]->as_int;
if (num_4x4_blocks_high > 1)
bsi->rdstat[index + 2][mode_idx].ref_mv[ref].as_int =
bsi->ref_mv[ref]->as_int;
#endif // CONFIG_EXT_INTER
}
// Trap vectors that reach beyond the UMV borders
if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) ||
(has_second_rf && mv_check_bounds(x, &mode_mv[this_mode][1].as_mv)))
continue;
if (filter_idx > 0) {
BEST_SEG_INFO *ref_bsi = bsi_buf;
subpelmv = 0;
have_ref = 1;
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv);
#if CONFIG_EXT_INTER
if (have_newmv_in_inter_mode(this_mode))
have_ref &=
((mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int) &&
(bsi->ref_mv[ref]->as_int ==
ref_bsi->rdstat[index][mode_idx].ref_mv[ref].as_int));
else
#endif // CONFIG_EXT_INTER
have_ref &= mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int;
}
have_ref &= ref_bsi->rdstat[index][mode_idx].brate > 0;
if (filter_idx > 1 && !subpelmv && !have_ref) {
ref_bsi = bsi_buf + 1;
have_ref = 1;
for (ref = 0; ref < 1 + has_second_rf; ++ref)
#if CONFIG_EXT_INTER
if (have_newmv_in_inter_mode(this_mode))
have_ref &=
((mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int) &&
(bsi->ref_mv[ref]->as_int ==
ref_bsi->rdstat[index][mode_idx].ref_mv[ref].as_int));
else
#endif // CONFIG_EXT_INTER
have_ref &= mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int;
have_ref &= ref_bsi->rdstat[index][mode_idx].brate > 0;
}
if (!subpelmv && have_ref &&
ref_bsi->rdstat[index][mode_idx].brdcost < INT64_MAX) {
#if CONFIG_REF_MV
bsi->rdstat[index][mode_idx].byrate =
ref_bsi->rdstat[index][mode_idx].byrate;
bsi->rdstat[index][mode_idx].bdist =
ref_bsi->rdstat[index][mode_idx].bdist;
bsi->rdstat[index][mode_idx].bsse =
ref_bsi->rdstat[index][mode_idx].bsse;
bsi->rdstat[index][mode_idx].brate +=
ref_bsi->rdstat[index][mode_idx].byrate;
bsi->rdstat[index][mode_idx].eobs =
ref_bsi->rdstat[index][mode_idx].eobs;
bsi->rdstat[index][mode_idx].brdcost =
RDCOST(x->rdmult, x->rddiv, bsi->rdstat[index][mode_idx].brate,
bsi->rdstat[index][mode_idx].bdist);
memcpy(bsi->rdstat[index][mode_idx].ta,
ref_bsi->rdstat[index][mode_idx].ta,
sizeof(bsi->rdstat[index][mode_idx].ta));
memcpy(bsi->rdstat[index][mode_idx].tl,
ref_bsi->rdstat[index][mode_idx].tl,
sizeof(bsi->rdstat[index][mode_idx].tl));
#else
memcpy(&bsi->rdstat[index][mode_idx],
&ref_bsi->rdstat[index][mode_idx], sizeof(SEG_RDSTAT));
#endif
if (num_4x4_blocks_wide > 1)
bsi->rdstat[index + 1][mode_idx].eobs =
ref_bsi->rdstat[index + 1][mode_idx].eobs;
if (num_4x4_blocks_high > 1)
bsi->rdstat[index + 2][mode_idx].eobs =
ref_bsi->rdstat[index + 2][mode_idx].eobs;
if (bsi->rdstat[index][mode_idx].brdcost < new_best_rd) {
#if CONFIG_REF_MV
// If the NEWMV mode is using the same motion vector as the
// NEARESTMV mode, skip the rest rate-distortion calculations
// and use the inferred motion vector modes.
if (this_mode == NEWMV) {
if (has_second_rf) {
if (bsi->rdstat[index][mode_idx].mvs[0].as_int ==
bsi->ref_mv[0]->as_int &&
bsi->rdstat[index][mode_idx].mvs[1].as_int ==
bsi->ref_mv[1]->as_int)
continue;
} else {
if (bsi->rdstat[index][mode_idx].mvs[0].as_int ==
bsi->ref_mv[0]->as_int)
continue;
}
}
#endif
mode_selected = this_mode;
new_best_rd = bsi->rdstat[index][mode_idx].brdcost;
#if CONFIG_PVQ
od_encode_checkpoint(&x->daala_enc, &post_buf);
#endif
}
continue;
}
}
bsi->rdstat[index][mode_idx].brdcost = encode_inter_mb_segment(
cpi, x, bsi->segment_rd - this_segment_rd, index,
&bsi->rdstat[index][mode_idx].byrate,
&bsi->rdstat[index][mode_idx].bdist,
&bsi->rdstat[index][mode_idx].bsse, bsi->rdstat[index][mode_idx].ta,
bsi->rdstat[index][mode_idx].tl, idy, idx, mi_row, mi_col);
if (bsi->rdstat[index][mode_idx].brdcost < INT64_MAX) {
bsi->rdstat[index][mode_idx].brdcost += RDCOST(
x->rdmult, x->rddiv, bsi->rdstat[index][mode_idx].brate, 0);
bsi->rdstat[index][mode_idx].brate +=
bsi->rdstat[index][mode_idx].byrate;
bsi->rdstat[index][mode_idx].eobs = p->eobs[index];
if (num_4x4_blocks_wide > 1)
bsi->rdstat[index + 1][mode_idx].eobs = p->eobs[index + 1];
if (num_4x4_blocks_high > 1)
bsi->rdstat[index + 2][mode_idx].eobs = p->eobs[index + 2];
}
if (bsi->rdstat[index][mode_idx].brdcost < new_best_rd) {
#if CONFIG_REF_MV
// If the NEWMV mode is using the same motion vector as the
// NEARESTMV mode, skip the rest rate-distortion calculations
// and use the inferred motion vector modes.
if (this_mode == NEWMV) {
if (has_second_rf) {
if (bsi->rdstat[index][mode_idx].mvs[0].as_int ==
bsi->ref_mv[0]->as_int &&
bsi->rdstat[index][mode_idx].mvs[1].as_int ==
bsi->ref_mv[1]->as_int)
continue;
} else {
if (bsi->rdstat[index][mode_idx].mvs[0].as_int ==
bsi->ref_mv[0]->as_int)
continue;
}
}
#endif
mode_selected = this_mode;
new_best_rd = bsi->rdstat[index][mode_idx].brdcost;
#if CONFIG_PVQ
od_encode_checkpoint(&x->daala_enc, &post_buf);
#endif
}
} /*for each 4x4 mode*/
if (new_best_rd == INT64_MAX) {
int iy, midx;
for (iy = index + 1; iy < 4; ++iy)
#if CONFIG_EXT_INTER
for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx)
#else
for (midx = 0; midx < INTER_MODES; ++midx)
#endif // CONFIG_EXT_INTER
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &pre_buf);
#endif
return INT64_MAX;
}
mode_idx = INTER_OFFSET(mode_selected);
memcpy(t_above, bsi->rdstat[index][mode_idx].ta, sizeof(t_above));
memcpy(t_left, bsi->rdstat[index][mode_idx].tl, sizeof(t_left));
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &post_buf);
#endif
#if CONFIG_EXT_INTER
mv_idx = (mode_selected == NEWFROMNEARMV) ? 1 : 0;
bsi->ref_mv[0]->as_int = bsi->rdstat[index][mode_idx].ref_mv[0].as_int;
if (has_second_rf)
bsi->ref_mv[1]->as_int = bsi->rdstat[index][mode_idx].ref_mv[1].as_int;
#endif // CONFIG_EXT_INTER
set_and_cost_bmi_mvs(cpi, x, xd, index, mode_selected,
mode_mv[mode_selected], frame_mv,
#if CONFIG_EXT_INTER
seg_mvs[index][mv_idx], compound_seg_newmvs[index],
#else
seg_mvs[index],
#endif // CONFIG_EXT_INTER
bsi->ref_mv, x->nmvjointcost, x->mvcost);
br += bsi->rdstat[index][mode_idx].brate;
bd += bsi->rdstat[index][mode_idx].bdist;
block_sse += bsi->rdstat[index][mode_idx].bsse;
segmentyrate += bsi->rdstat[index][mode_idx].byrate;
this_segment_rd += bsi->rdstat[index][mode_idx].brdcost;
if (this_segment_rd > bsi->segment_rd) {
int iy, midx;
for (iy = index + 1; iy < 4; ++iy)
#if CONFIG_EXT_INTER
for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx)
#else
for (midx = 0; midx < INTER_MODES; ++midx)
#endif // CONFIG_EXT_INTER
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &pre_buf);
#endif
return INT64_MAX;
}
}
} /* for each label */
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &pre_buf);
#endif
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->sse = block_sse;
// update the coding decisions
for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode;
if (bsi->segment_rd > best_rd) return INT64_MAX;
/* set it to the best */
for (idx = 0; idx < 4; idx++) {
mode_idx = INTER_OFFSET(bsi->modes[idx]);
mi->bmi[idx].as_mv[0].as_int = bsi->rdstat[idx][mode_idx].mvs[0].as_int;
if (has_second_ref(mbmi))
mi->bmi[idx].as_mv[1].as_int = bsi->rdstat[idx][mode_idx].mvs[1].as_int;
#if CONFIG_REF_MV
mi->bmi[idx].pred_mv[0] = bsi->rdstat[idx][mode_idx].pred_mv[0];
if (has_second_ref(mbmi))
mi->bmi[idx].pred_mv[1] = bsi->rdstat[idx][mode_idx].pred_mv[1];
#endif
#if CONFIG_EXT_INTER
mi->bmi[idx].ref_mv[0].as_int = bsi->rdstat[idx][mode_idx].ref_mv[0].as_int;
if (has_second_rf)
mi->bmi[idx].ref_mv[1].as_int =
bsi->rdstat[idx][mode_idx].ref_mv[1].as_int;
#endif // CONFIG_EXT_INTER
x->plane[0].eobs[idx] = bsi->rdstat[idx][mode_idx].eobs;
mi->bmi[idx].as_mode = bsi->modes[idx];
}
/*
* used to set mbmi->mv.as_int
*/
*returntotrate = bsi->r;
*returndistortion = bsi->d;
*returnyrate = bsi->segment_yrate;
*skippable = av1_is_skippable_in_plane(x, BLOCK_8X8, 0);
*psse = bsi->sse;
mbmi->mode = bsi->modes[3];
return bsi->segment_rd;
}
static void estimate_ref_frame_costs(const AV1_COMMON *cm,
const MACROBLOCKD *xd, int segment_id,
unsigned int *ref_costs_single,
unsigned int *ref_costs_comp,
aom_prob *comp_mode_p) {
int seg_ref_active =
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0,
TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_single));
memset(ref_costs_comp, 0, TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_comp));
*comp_mode_p = 128;
} else {
aom_prob intra_inter_p = av1_get_intra_inter_prob(cm, xd);
aom_prob comp_inter_p = 128;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
comp_inter_p = av1_get_reference_mode_prob(cm, xd);
*comp_mode_p = comp_inter_p;
} else {
*comp_mode_p = 128;
}
ref_costs_single[INTRA_FRAME] = av1_cost_bit(intra_inter_p, 0);
if (cm->reference_mode != COMPOUND_REFERENCE) {
aom_prob ref_single_p1 = av1_get_pred_prob_single_ref_p1(cm, xd);
aom_prob ref_single_p2 = av1_get_pred_prob_single_ref_p2(cm, xd);
#if CONFIG_EXT_REFS
aom_prob ref_single_p3 = av1_get_pred_prob_single_ref_p3(cm, xd);
aom_prob ref_single_p4 = av1_get_pred_prob_single_ref_p4(cm, xd);
aom_prob ref_single_p5 = av1_get_pred_prob_single_ref_p5(cm, xd);
#endif // CONFIG_EXT_REFS
unsigned int base_cost = av1_cost_bit(intra_inter_p, 1);
ref_costs_single[LAST_FRAME] =
#if CONFIG_EXT_REFS
ref_costs_single[LAST2_FRAME] = ref_costs_single[LAST3_FRAME] =
ref_costs_single[BWDREF_FRAME] =
#endif // CONFIG_EXT_REFS
ref_costs_single[GOLDEN_FRAME] =
ref_costs_single[ALTREF_FRAME] = base_cost;
#if CONFIG_EXT_REFS
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p1, 1);
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1);
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p3, 0);
ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p3, 0);
ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p3, 1);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p3, 1);
ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p2, 0);
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1);
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p4, 0);
ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p4, 1);
ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p5, 0);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p5, 1);
#else
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 1);
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1);
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p2, 0);
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1);
#endif // CONFIG_EXT_REFS
} else {
ref_costs_single[LAST_FRAME] = 512;
#if CONFIG_EXT_REFS
ref_costs_single[LAST2_FRAME] = 512;
ref_costs_single[LAST3_FRAME] = 512;
ref_costs_single[BWDREF_FRAME] = 512;
#endif // CONFIG_EXT_REFS
ref_costs_single[GOLDEN_FRAME] = 512;
ref_costs_single[ALTREF_FRAME] = 512;
}
if (cm->reference_mode != SINGLE_REFERENCE) {
aom_prob ref_comp_p = av1_get_pred_prob_comp_ref_p(cm, xd);
#if CONFIG_EXT_REFS
aom_prob ref_comp_p1 = av1_get_pred_prob_comp_ref_p1(cm, xd);
aom_prob ref_comp_p2 = av1_get_pred_prob_comp_ref_p2(cm, xd);
aom_prob bwdref_comp_p = av1_get_pred_prob_comp_bwdref_p(cm, xd);
#endif // CONFIG_EXT_REFS
unsigned int base_cost = av1_cost_bit(intra_inter_p, 1);
ref_costs_comp[LAST_FRAME] =
#if CONFIG_EXT_REFS
ref_costs_comp[LAST2_FRAME] = ref_costs_comp[LAST3_FRAME] =
#endif // CONFIG_EXT_REFS
ref_costs_comp[GOLDEN_FRAME] = base_cost;
#if CONFIG_EXT_REFS
ref_costs_comp[BWDREF_FRAME] = ref_costs_comp[ALTREF_FRAME] = 0;
#endif // CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p, 0);
ref_costs_comp[LAST2_FRAME] += av1_cost_bit(ref_comp_p, 0);
ref_costs_comp[LAST3_FRAME] += av1_cost_bit(ref_comp_p, 1);
ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p, 1);
ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p1, 1);
ref_costs_comp[LAST2_FRAME] += av1_cost_bit(ref_comp_p1, 0);
ref_costs_comp[LAST3_FRAME] += av1_cost_bit(ref_comp_p2, 0);
ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p2, 1);
// NOTE(zoeliu): BWDREF and ALTREF each add an extra cost by coding 1
// more bit.
ref_costs_comp[BWDREF_FRAME] += av1_cost_bit(bwdref_comp_p, 0);
ref_costs_comp[ALTREF_FRAME] += av1_cost_bit(bwdref_comp_p, 1);
#else
ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p, 0);
ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p, 1);
#endif // CONFIG_EXT_REFS
} else {
ref_costs_comp[LAST_FRAME] = 512;
#if CONFIG_EXT_REFS
ref_costs_comp[LAST2_FRAME] = 512;
ref_costs_comp[LAST3_FRAME] = 512;
ref_costs_comp[BWDREF_FRAME] = 512;
ref_costs_comp[ALTREF_FRAME] = 512;
#endif // CONFIG_EXT_REFS
ref_costs_comp[GOLDEN_FRAME] = 512;
}
}
}
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index,
int64_t comp_pred_diff[REFERENCE_MODES],
int skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->skippable = skippable;
ctx->best_mode_index = mode_index;
ctx->mic = *xd->mi[0];
ctx->mbmi_ext = *x->mbmi_ext;
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
}
static void setup_buffer_inter(const AV1_COMP *const cpi, MACROBLOCK *x,
MV_REFERENCE_FRAME ref_frame,
BLOCK_SIZE block_size, int mi_row, int mi_col,
int_mv frame_nearest_mv[TOTAL_REFS_PER_FRAME],
int_mv frame_near_mv[TOTAL_REFS_PER_FRAME],
struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME]
[MAX_MB_PLANE]) {
const AV1_COMMON *cm = &cpi->common;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
assert(yv12 != NULL);
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
// use the UV scaling factors.
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
// Gets an initial list of candidate vectors from neighbours and orders them
av1_find_mv_refs(
cm, xd, mi, ref_frame,
#if CONFIG_REF_MV
&mbmi_ext->ref_mv_count[ref_frame], mbmi_ext->ref_mv_stack[ref_frame],
#if CONFIG_EXT_INTER
mbmi_ext->compound_mode_context,
#endif // CONFIG_EXT_INTER
#endif
candidates, mi_row, mi_col, NULL, NULL, mbmi_ext->mode_context);
// Candidate refinement carried out at encoder and decoder
av1_find_best_ref_mvs(cm->allow_high_precision_mv, candidates,
&frame_nearest_mv[ref_frame],
&frame_near_mv[ref_frame]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
// The current implementation doesn't support scaling.
#if CONFIG_CB4X4
av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
block_size);
#else
if (!av1_is_scaled(sf) && block_size >= BLOCK_8X8)
av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
block_size);
#endif
}
static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
#if CONFIG_EXT_INTER
int ref_idx, int mv_idx,
#endif // CONFIG_EXT_INTER
int *rate_mv) {
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *cm = &cpi->common;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
int bestsme = INT_MAX;
int step_param;
int sadpb = x->sadperbit16;
MV mvp_full;
#if CONFIG_EXT_INTER
int ref = mbmi->ref_frame[ref_idx];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv;
#else
int ref = mbmi->ref_frame[0];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
int ref_idx = 0;
#endif // CONFIG_EXT_INTER
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
int cost_list[5];
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
MV pred_mv[3];
pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
pred_mv[2] = x->pred_mv[ref];
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[ref_idx];
av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL);
}
av1_set_mv_search_range(x, &ref_mv);
#if CONFIG_REF_MV
av1_set_mvcost(x, ref, ref_idx, mbmi->ref_mv_idx);
#endif
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is AOMMAX >> 1 etc.
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and that based on the best ref mvs of the current
// block for the given reference.
step_param =
(av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
2;
} else {
step_param = cpi->mv_step_param;
}
if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size) {
int boffset =
2 * (b_width_log2_lookup[cm->sb_size] -
AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
step_param = AOMMAX(step_param, boffset);
}
if (cpi->sf.adaptive_motion_search) {
int bwl = b_width_log2_lookup[bsize];
int bhl = b_height_log2_lookup[bsize];
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
if (tlevel < 5) step_param += 2;
// prev_mv_sad is not setup for dynamically scaled frames.
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
int i;
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
x->pred_mv[ref].row = 0;
x->pred_mv[ref].col = 0;
x->best_mv.as_int = INVALID_MV;
if (scaled_ref_frame) {
int j;
for (j = 0; j < MAX_MB_PLANE; ++j)
xd->plane[j].pre[ref_idx] = backup_yv12[j];
}
return;
}
}
}
}
av1_set_mv_search_range(x, &ref_mv);
#if CONFIG_MOTION_VAR
if (mbmi->motion_mode != SIMPLE_TRANSLATION)
mvp_full = mbmi->mv[0].as_mv;
else
#endif // CONFIG_MOTION_VAR
mvp_full = pred_mv[x->mv_best_ref_index[ref]];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV;
#if CONFIG_MOTION_VAR
switch (mbmi->motion_mode) {
case SIMPLE_TRANSLATION:
#endif // CONFIG_MOTION_VAR
bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param,
sadpb, cond_cost_list(cpi, cost_list),
&ref_mv, INT_MAX, 1);
#if CONFIG_MOTION_VAR
break;
case OBMC_CAUSAL:
bestsme = av1_obmc_full_pixel_diamond(
cpi, x, &mvp_full, step_param, sadpb,
MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv,
&(x->best_mv.as_mv), 0);
break;
default: assert("Invalid motion mode!\n");
}
#endif // CONFIG_MOTION_VAR
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
#if CONFIG_MOTION_VAR
switch (mbmi->motion_mode) {
case SIMPLE_TRANSLATION:
#endif // CONFIG_MOTION_VAR
if (cpi->sf.use_upsampled_references) {
int best_mv_var;
const int try_second = x->second_best_mv.as_int != INVALID_MV &&
x->second_best_mv.as_int != x->best_mv.as_int;
const int pw = block_size_wide[bsize];
const int ph = block_size_high[bsize];
// Use up-sampled reference frames.
struct macroblockd_plane *const pd = &xd->plane[0];
struct buf_2d backup_pred = pd->pre[ref_idx];
const YV12_BUFFER_CONFIG *upsampled_ref = get_upsampled_ref(cpi, ref);
// Set pred for Y plane
setup_pred_plane(
&pd->pre[ref_idx], upsampled_ref->y_buffer,
upsampled_ref->y_crop_width, upsampled_ref->y_crop_height,
upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3), NULL,
pd->subsampling_x, pd->subsampling_y);
best_mv_var = cpi->find_fractional_mv_step(
x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, pw, ph,
1);
if (try_second) {
const int minc = AOMMAX(x->mv_col_min * 8, ref_mv.col - MV_MAX);
const int maxc = AOMMIN(x->mv_col_max * 8, ref_mv.col + MV_MAX);
const int minr = AOMMAX(x->mv_row_min * 8, ref_mv.row - MV_MAX);
const int maxr = AOMMIN(x->mv_row_max * 8, ref_mv.row + MV_MAX);
int this_var;
MV best_mv = x->best_mv.as_mv;
x->best_mv = x->second_best_mv;
if (x->best_mv.as_mv.row * 8 <= maxr &&
x->best_mv.as_mv.row * 8 >= minr &&
x->best_mv.as_mv.col * 8 <= maxc &&
x->best_mv.as_mv.col * 8 >= minc) {
this_var = cpi->find_fractional_mv_step(
x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
&dis, &x->pred_sse[ref], NULL, pw, ph, 1);
if (this_var < best_mv_var) best_mv = x->best_mv.as_mv;
x->best_mv.as_mv = best_mv;
}
}
// Restore the reference frames.
pd->pre[ref_idx] = backup_pred;
} else {
cpi->find_fractional_mv_step(
x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0,
0);
}
#if CONFIG_MOTION_VAR
break;
case OBMC_CAUSAL:
av1_find_best_obmc_sub_pixel_tree_up(
cpi, x, mi_row, mi_col, &x->best_mv.as_mv, &ref_mv,
cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step,
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], 0,
cpi->sf.use_upsampled_references);
break;
default: assert("Invalid motion mode!\n");
}
#endif // CONFIG_MOTION_VAR
}
*rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmvjointcost,
x->mvcost, MV_COST_WEIGHT);
#if CONFIG_MOTION_VAR
if (cpi->sf.adaptive_motion_search && mbmi->motion_mode == SIMPLE_TRANSLATION)
#else
if (cpi->sf.adaptive_motion_search)
#endif // CONFIG_MOTION_VAR
x->pred_mv[ref] = x->best_mv.as_mv;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
}
static INLINE void restore_dst_buf(MACROBLOCKD *xd, BUFFER_SET dst) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst.plane[i];
xd->plane[i].dst.stride = dst.stride[i];
}
}
#if CONFIG_EXT_INTER
static void do_masked_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x,
const uint8_t *mask, int mask_stride,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv, int ref_idx,
int mv_idx) {
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *cm = &cpi->common;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
int bestsme = INT_MAX;
int step_param;
int sadpb = x->sadperbit16;
MV mvp_full;
int ref = mbmi->ref_frame[ref_idx];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv;
int tmp_col_min = x->mv_col_min;
int tmp_col_max = x->mv_col_max;
int tmp_row_min = x->mv_row_min;
int tmp_row_max = x->mv_row_max;
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
int i;
MV pred_mv[3];
pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
pred_mv[2] = x->pred_mv[ref];
#if CONFIG_REF_MV
av1_set_mvcost(x, ref, ref_idx, mbmi->ref_mv_idx);
#endif
if (scaled_ref_frame) {
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[ref_idx];
av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL);
}
av1_set_mv_search_range(x, &ref_mv);
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is MAX >> 1 etc.
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and that based on the best ref mvs of the current
// block for the given reference.
step_param =
(av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
2;
} else {
step_param = cpi->mv_step_param;
}
// TODO(debargha): is show_frame needed here?
if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size && cm->show_frame) {
int boffset =
2 * (b_width_log2_lookup[cm->sb_size] -
AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
step_param = AOMMAX(step_param, boffset);
}
if (cpi->sf.adaptive_motion_search) {
int bwl = b_width_log2_lookup[bsize];
int bhl = b_height_log2_lookup[bsize];
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
if (tlevel < 5) step_param += 2;
// prev_mv_sad is not setup for dynamically scaled frames.
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
x->pred_mv[ref].row = 0;
x->pred_mv[ref].col = 0;
tmp_mv->as_int = INVALID_MV;
if (scaled_ref_frame) {
int j;
for (j = 0; j < MAX_MB_PLANE; ++j)
xd->plane[j].pre[ref_idx] = backup_yv12[j];
}
return;
}
}
}
}
mvp_full = pred_mv[x->mv_best_ref_index[ref]];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
bestsme = av1_masked_full_pixel_diamond(
cpi, x, mask, mask_stride, &mvp_full, step_param, sadpb,
MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv,
&tmp_mv->as_mv, ref_idx);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
if (bestsme < INT_MAX) {
int dis; /* TODO: use dis in distortion calculation later. */
av1_find_best_masked_sub_pixel_tree_up(
cpi, x, mask, mask_stride, mi_row, mi_col, &tmp_mv->as_mv, &ref_mv,
cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step,
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], ref_idx,
cpi->sf.use_upsampled_references);
}
*rate_mv = av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost,
x->mvcost, MV_COST_WEIGHT);
if (cpi->sf.adaptive_motion_search && cm->show_frame)
x->pred_mv[ref] = tmp_mv->as_mv;
if (scaled_ref_frame) {
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[ref_idx] = backup_yv12[i];
}
}
static void do_masked_motion_search_indexed(
const AV1_COMP *const cpi, MACROBLOCK *x,
INTERINTER_COMPOUND_DATA *comp_data, BLOCK_SIZE bsize, int mi_row,
int mi_col, int_mv *tmp_mv, int *rate_mv, int mv_idx[2], int which) {
// NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
BLOCK_SIZE sb_type = mbmi->sb_type;
const uint8_t *mask;
const int mask_stride = block_size_wide[bsize];
mask = av1_get_compound_type_mask(comp_data, sb_type, 0);
if (which == 0 || which == 2)
do_masked_motion_search(cpi, x, mask, mask_stride, bsize, mi_row, mi_col,
&tmp_mv[0], &rate_mv[0], 0, mv_idx[0]);
if (which == 1 || which == 2) {
// get the negative mask
mask = av1_get_compound_type_mask(comp_data, sb_type, 1);
do_masked_motion_search(cpi, x, mask, mask_stride, bsize, mi_row, mi_col,
&tmp_mv[1], &rate_mv[1], 1, mv_idx[1]);
}
}
#endif // CONFIG_EXT_INTER
// In some situations we want to discount tha pparent cost of a new motion
// vector. Where there is a subtle motion field and especially where there is
// low spatial complexity then it can be hard to cover the cost of a new motion
// vector in a single block, even if that motion vector reduces distortion.
// However, once established that vector may be usable through the nearest and
// near mv modes to reduce distortion in subsequent blocks and also improve
// visual quality.
static int discount_newmv_test(const AV1_COMP *const cpi, int this_mode,
int_mv this_mv,
int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME],
int ref_frame) {
return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) &&
(this_mv.as_int != 0) &&
((mode_mv[NEARESTMV][ref_frame].as_int == 0) ||
(mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) &&
((mode_mv[NEARMV][ref_frame].as_int == 0) ||
(mode_mv[NEARMV][ref_frame].as_int == INVALID_MV)));
}
#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
// TODO(jingning): this mv clamping function should be block size dependent.
static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN,
xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
xd->mb_to_top_edge - LEFT_TOP_MARGIN,
xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN);
}
#if CONFIG_EXT_INTER
static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x,
const BLOCK_SIZE bsize, const uint8_t *pred0,
int stride0, const uint8_t *pred1, int stride1) {
const struct macroblock_plane *const p = &x->plane[0];
const uint8_t *src = p->src.buf;
int src_stride = p->src.stride;
const int f_index = bsize - BLOCK_8X8;
const int bw = 4 << (b_width_log2_lookup[bsize]);
const int bh = 4 << (b_height_log2_lookup[bsize]);
uint32_t esq[2][4], var;
int64_t tl, br;
#if CONFIG_AOM_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
pred0 = CONVERT_TO_BYTEPTR(pred0);
pred1 = CONVERT_TO_BYTEPTR(pred1);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
var = cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]);
var = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2,
stride0, &esq[0][1]);
var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride,
pred0 + bh / 2 * stride0, stride0, &esq[0][2]);
var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride,
pred0 + bh / 2 * stride0 + bw / 2, stride0,
&esq[0][3]);
var = cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]);
var = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2,
stride1, &esq[1][1]);
var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride,
pred1 + bh / 2 * stride1, stride0, &esq[1][2]);
var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride,
pred1 + bh / 2 * stride1 + bw / 2, stride0,
&esq[1][3]);
(void)var;
tl = (int64_t)(esq[0][0] + esq[0][1] + esq[0][2]) -
(int64_t)(esq[1][0] + esq[1][1] + esq[1][2]);
br = (int64_t)(esq[1][3] + esq[1][1] + esq[1][2]) -
(int64_t)(esq[0][3] + esq[0][1] + esq[0][2]);
return (tl + br > 0);
}
#endif // CONFIG_EXT_INTER
#if !CONFIG_DUAL_FILTER
static InterpFilter predict_interp_filter(
const AV1_COMP *cpi, const MACROBLOCK *x, const BLOCK_SIZE bsize,
const int mi_row, const int mi_col,
InterpFilter (*single_filter)[TOTAL_REFS_PER_FRAME]) {
InterpFilter best_filter = SWITCHABLE;
const AV1_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &x->e_mbd;
int bsl = mi_width_log2_lookup[bsize];
int pred_filter_search =
cpi->sf.cb_pred_filter_search
? (((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_video_frame)) &
0x1
: 0;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int is_comp_pred = has_second_ref(mbmi);
const int this_mode = mbmi->mode;
int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
if (pred_filter_search) {
InterpFilter af = SWITCHABLE, lf = SWITCHABLE;
if (xd->up_available) af = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
if (xd->left_available) lf = xd->mi[-1]->mbmi.interp_filter;
#if CONFIG_EXT_INTER
if ((this_mode != NEWMV && this_mode != NEWFROMNEARMV &&
this_mode != NEW_NEWMV) ||
(af == lf))
#else
if ((this_mode != NEWMV) || (af == lf))
#endif // CONFIG_EXT_INTER
best_filter = af;
}
if (is_comp_pred) {
if (cpi->sf.adaptive_mode_search) {
#if CONFIG_EXT_INTER
switch (this_mode) {
case NEAREST_NEARESTMV:
if (single_filter[NEARESTMV][refs[0]] ==
single_filter[NEARESTMV][refs[1]])
best_filter = single_filter[NEARESTMV][refs[0]];
break;
case NEAREST_NEARMV:
if (single_filter[NEARESTMV][refs[0]] ==
single_filter[NEARMV][refs[1]])
best_filter = single_filter[NEARESTMV][refs[0]];
break;
case NEAR_NEARESTMV:
if (single_filter[NEARMV][refs[0]] ==
single_filter[NEARESTMV][refs[1]])
best_filter = single_filter[NEARMV][refs[0]];
break;
case NEAR_NEARMV:
if (single_filter[NEARMV][refs[0]] == single_filter[NEARMV][refs[1]])
best_filter = single_filter[NEARMV][refs[0]];
break;
case ZERO_ZEROMV:
if (single_filter[ZEROMV][refs[0]] == single_filter[ZEROMV][refs[1]])
best_filter = single_filter[ZEROMV][refs[0]];
break;
case NEW_NEWMV:
if (single_filter[NEWMV][refs[0]] == single_filter[NEWMV][refs[1]])
best_filter = single_filter[NEWMV][refs[0]];
break;
case NEAREST_NEWMV:
if (single_filter[NEARESTMV][refs[0]] ==
single_filter[NEWMV][refs[1]])
best_filter = single_filter[NEARESTMV][refs[0]];
break;
case NEAR_NEWMV:
if (single_filter[NEARMV][refs[0]] == single_filter[NEWMV][refs[1]])
best_filter = single_filter[NEARMV][refs[0]];
break;
case NEW_NEARESTMV:
if (single_filter[NEWMV][refs[0]] ==
single_filter[NEARESTMV][refs[1]])
best_filter = single_filter[NEWMV][refs[0]];
break;
case NEW_NEARMV:
if (single_filter[NEWMV][refs[0]] == single_filter[NEARMV][refs[1]])
best_filter = single_filter[NEWMV][refs[0]];
break;
default:
if (single_filter[this_mode][refs[0]] ==
single_filter[this_mode][refs[1]])
best_filter = single_filter[this_mode][refs[0]];
break;
}
#else
if (single_filter[this_mode][refs[0]] ==
single_filter[this_mode][refs[1]])
best_filter = single_filter[this_mode][refs[0]];
#endif // CONFIG_EXT_INTER
}
}
if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
best_filter = EIGHTTAP_REGULAR;
}
return best_filter;
}
#endif
#if CONFIG_EXT_INTER
// Choose the best wedge index and sign
static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x,
const BLOCK_SIZE bsize, const uint8_t *const p0,
const uint8_t *const p1, int *const best_wedge_sign,
int *const best_wedge_index) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const src = &x->plane[0].src;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const int N = bw * bh;
int rate;
int64_t dist;
int64_t rd, best_rd = INT64_MAX;
int wedge_index;
int wedge_sign;
int wedge_types = (1 << get_wedge_bits_lookup(bsize));
const uint8_t *mask;
uint64_t sse;
#if CONFIG_AOM_HIGHBITDEPTH
const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
#else
const int bd_round = 0;
#endif // CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]);
int64_t sign_limit;
#if CONFIG_AOM_HIGHBITDEPTH
if (hbd) {
aom_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride,
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride,
CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw,
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
} else // NOLINT
#endif // CONFIG_AOM_HIGHBITDEPTH
{
aom_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw);
aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw);
aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw);
}
sign_limit = ((int64_t)aom_sum_squares_i16(r0, N) -
(int64_t)aom_sum_squares_i16(r1, N)) *
(1 << WEDGE_WEIGHT_BITS) / 2;
av1_wedge_compute_delta_squares(ds, r0, r1, N);
for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize);
wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit);
mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
sse = av1_wedge_sse_from_residuals(r1, d10, mask, N);
sse = ROUND_POWER_OF_TWO(sse, bd_round);
model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
if (rd < best_rd) {
*best_wedge_index = wedge_index;
*best_wedge_sign = wedge_sign;
best_rd = rd;
}
}
return best_rd;
}
// Choose the best wedge index the specified sign
static int64_t pick_wedge_fixed_sign(
const AV1_COMP *const cpi, const MACROBLOCK *const x,
const BLOCK_SIZE bsize, const uint8_t *const p0, const uint8_t *const p1,
const int wedge_sign, int *const best_wedge_index) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const src = &x->plane[0].src;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const int N = bw * bh;
int rate;
int64_t dist;
int64_t rd, best_rd = INT64_MAX;
int wedge_index;
int wedge_types = (1 << get_wedge_bits_lookup(bsize));
const uint8_t *mask;
uint64_t sse;
#if CONFIG_AOM_HIGHBITDEPTH
const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
#else
const int bd_round = 0;
#endif // CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]);
#if CONFIG_AOM_HIGHBITDEPTH
if (hbd) {
aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride,
CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw,
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
} else // NOLINT
#endif // CONFIG_AOM_HIGHBITDEPTH
{
aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw);
aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw);
}
for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
sse = av1_wedge_sse_from_residuals(r1, d10, mask, N);
sse = ROUND_POWER_OF_TWO(sse, bd_round);
model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
if (rd < best_rd) {
*best_wedge_index = wedge_index;
best_rd = rd;
}
}
return best_rd;
}
static int64_t pick_interinter_wedge(const AV1_COMP *const cpi,
const MACROBLOCK *const x,
const BLOCK_SIZE bsize,
const uint8_t *const p0,
const uint8_t *const p1) {
const MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int bw = block_size_wide[bsize];
int64_t rd;
int wedge_index = -1;
int wedge_sign = 0;
assert(is_interinter_wedge_used(bsize));
if (cpi->sf.fast_wedge_sign_estimate) {
wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw);
rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, wedge_sign, &wedge_index);
} else {
rd = pick_wedge(cpi, x, bsize, p0, p1, &wedge_sign, &wedge_index);
}
mbmi->interinter_compound_data.wedge_sign = wedge_sign;
mbmi->interinter_compound_data.wedge_index = wedge_index;
return rd;
}
#if CONFIG_COMPOUND_SEGMENT
static int64_t pick_interinter_seg_mask(const AV1_COMP *const cpi,
const MACROBLOCK *const x,
const BLOCK_SIZE bsize,
const uint8_t *const p0,
const uint8_t *const p1) {
const MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const struct buf_2d *const src = &x->plane[0].src;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const int N = bw * bh;
int rate;
uint64_t sse;
int64_t dist;
int rd0, rd1;
#if CONFIG_AOM_HIGHBITDEPTH
const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
#else
const int bd_round = 0;
#endif // CONFIG_AOM_HIGHBITDEPTH
INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_compound_data;
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]);
#if CONFIG_AOM_HIGHBITDEPTH
if (hbd) {
aom_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride,
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride,
CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw,
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
} else // NOLINT
#endif // CONFIG_AOM_HIGHBITDEPTH
{
aom_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw);
aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw);
aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw);
}
// build mask and inverse
build_compound_seg_mask(comp_data, p0, bw, p1, bw, bsize, bh, bw);
// compute rd for mask0
sse = av1_wedge_sse_from_residuals(r1, d10, comp_data->seg_mask[0], N);
sse = ROUND_POWER_OF_TWO(sse, bd_round);
model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
rd0 = RDCOST(x->rdmult, x->rddiv, rate, dist);
// compute rd for mask1
sse = av1_wedge_sse_from_residuals(r1, d10, comp_data->seg_mask[1], N);
sse = ROUND_POWER_OF_TWO(sse, bd_round);
model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist);
// pick the better of the two
mbmi->interinter_compound_data.which = rd1 < rd0;
return mbmi->interinter_compound_data.which ? rd1 : rd0;
}
#endif // CONFIG_COMPOUND_SEGMENT
static int64_t pick_interintra_wedge(const AV1_COMP *const cpi,
const MACROBLOCK *const x,
const BLOCK_SIZE bsize,
const uint8_t *const p0,
const uint8_t *const p1) {
const MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int64_t rd;
int wedge_index = -1;
assert(is_interintra_wedge_used(bsize));
rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, 0, &wedge_index);
mbmi->interintra_wedge_sign = 0;
mbmi->interintra_wedge_index = wedge_index;
return rd;
}
static int interinter_compound_motion_search(const AV1_COMP *const cpi,
MACROBLOCK *x,
const BLOCK_SIZE bsize,
const int this_mode, int mi_row,
int mi_col) {
const MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int_mv tmp_mv[2];
int rate_mvs[2], tmp_rate_mv = 0;
if (this_mode == NEW_NEWMV) {
int mv_idxs[2] = { 0, 0 };
do_masked_motion_search_indexed(cpi, x, &mbmi->interinter_compound_data,
bsize, mi_row, mi_col, tmp_mv, rate_mvs,
mv_idxs, 2);
tmp_rate_mv = rate_mvs[0] + rate_mvs[1];
mbmi->mv[0].as_int = tmp_mv[0].as_int;
mbmi->mv[1].as_int = tmp_mv[1].as_int;
} else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) {
int mv_idxs[2] = { 0, 0 };
do_masked_motion_search_indexed(cpi, x, &mbmi->interinter_compound_data,
bsize, mi_row, mi_col, tmp_mv, rate_mvs,
mv_idxs, 0);
tmp_rate_mv = rate_mvs[0];
mbmi->mv[0].as_int = tmp_mv[0].as_int;
} else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
int mv_idxs[2] = { 0, 0 };
do_masked_motion_search_indexed(cpi, x, &mbmi->interinter_compound_data,
bsize, mi_row, mi_col, tmp_mv, rate_mvs,
mv_idxs, 1);
tmp_rate_mv = rate_mvs[1];
mbmi->mv[1].as_int = tmp_mv[1].as_int;
}
return tmp_rate_mv;
}
#if CONFIG_COMPOUND_SEGMENT
// TODO(sarahparker) this and build_and_cost_compound_wedge can probably
// be combined in a refactor
static int64_t build_and_cost_compound_seg(
const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
const BLOCK_SIZE bsize, const int this_mode, int rs2, int rate_mv,
BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0, uint8_t **preds1,
int *strides, int mi_row, int mi_col) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int rate_sum;
int64_t dist_sum;
int64_t best_rd_cur = INT64_MAX;
int64_t rd = INT64_MAX;
int tmp_skip_txfm_sb;
int64_t tmp_skip_sse_sb;
best_rd_cur = pick_interinter_seg_mask(cpi, x, bsize, *preds0, *preds1);
best_rd_cur += RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv, 0);
if (have_newmv_in_inter_mode(this_mode)) {
*out_rate_mv = interinter_compound_motion_search(cpi, x, bsize, this_mode,
mi_row, mi_col);
av1_build_inter_predictors_sby(xd, mi_row, mi_col, ctx, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs2 + *out_rate_mv + rate_sum, dist_sum);
if (rd < best_rd_cur) {
best_rd_cur = rd;
} else {
mbmi->mv[0].as_int = cur_mv[0].as_int;
mbmi->mv[1].as_int = cur_mv[1].as_int;
*out_rate_mv = rate_mv;
av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
preds1, strides);
}
av1_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv, rs2 + *out_rate_mv + rate_sum, dist_sum);
best_rd_cur = rd;
} else {
av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
preds1, strides);
av1_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv + rate_sum, dist_sum);
best_rd_cur = rd;
}
return best_rd_cur;
}
#endif // CONFIG_COMPOUND_SEGMENT
static int64_t build_and_cost_compound_wedge(
const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
const BLOCK_SIZE bsize, const int this_mode, int rs2, int rate_mv,
BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0, uint8_t **preds1,
int *strides, int mi_row, int mi_col) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int rate_sum;
int64_t dist_sum;
int64_t best_rd_cur = INT64_MAX;
int64_t rd = INT64_MAX;
int tmp_skip_txfm_sb;
int64_t tmp_skip_sse_sb;
best_rd_cur = pick_interinter_wedge(cpi, x, bsize, *preds0, *preds1);
best_rd_cur += RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv, 0);
if (have_newmv_in_inter_mode(this_mode)) {
*out_rate_mv = interinter_compound_motion_search(cpi, x, bsize, this_mode,
mi_row, mi_col);
av1_build_inter_predictors_sby(xd, mi_row, mi_col, ctx, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs2 + *out_rate_mv + rate_sum, dist_sum);
if (rd >= best_rd_cur) {
mbmi->mv[0].as_int = cur_mv[0].as_int;
mbmi->mv[1].as_int = cur_mv[1].as_int;
*out_rate_mv = rate_mv;
av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
preds1, strides);
}
av1_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv, rs2 + *out_rate_mv + rate_sum, dist_sum);
best_rd_cur = rd;
} else {
av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
preds1, strides);
av1_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv + rate_sum, dist_sum);
best_rd_cur = rd;
}
return best_rd_cur;
}
#endif // CONFIG_EXT_INTER
static int64_t handle_inter_mode(
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
RD_STATS *rd_stats, RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv,
int *disable_skip, int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], int mi_row,
int mi_col,
#if CONFIG_MOTION_VAR
uint8_t *above_pred_buf[3], int above_pred_stride[3],
uint8_t *left_pred_buf[3], int left_pred_stride[3],
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTER
int_mv single_newmvs[2][TOTAL_REFS_PER_FRAME],
int single_newmvs_rate[2][TOTAL_REFS_PER_FRAME],
int *compmode_interintra_cost, int *compmode_interinter_cost,
int64_t (*const modelled_rd)[TOTAL_REFS_PER_FRAME],
#else
int_mv single_newmv[TOTAL_REFS_PER_FRAME],
#endif // CONFIG_EXT_INTER
InterpFilter (*single_filter)[TOTAL_REFS_PER_FRAME],
int (*single_skippable)[TOTAL_REFS_PER_FRAME], const int64_t ref_best_rd) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const int is_comp_pred = has_second_ref(mbmi);
const int this_mode = mbmi->mode;
int_mv *frame_mv = mode_mv[this_mode];
int i;
int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
int_mv cur_mv[2];
int rate_mv = 0;
#if CONFIG_EXT_INTER
int pred_exists = 1;
const int bw = block_size_wide[bsize];
int mv_idx = (this_mode == NEWFROMNEARMV) ? 1 : 0;
int_mv single_newmv[TOTAL_REFS_PER_FRAME];
const unsigned int *const interintra_mode_cost =
cpi->interintra_mode_cost[size_group_lookup[bsize]];
const int is_comp_interintra_pred = (mbmi->ref_frame[1] == INTRA_FRAME);
#if CONFIG_REF_MV
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
#endif
#endif // CONFIG_EXT_INTER
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf_[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_AOM_HIGHBITDEPTH
uint8_t *tmp_buf;
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
MOTION_MODE motion_mode, last_motion_mode_allowed;
int rate2_nocoeff = 0, best_xskip, best_disable_skip = 0;
RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
#if CONFIG_VAR_TX
uint8_t best_blk_skip[MAX_MB_PLANE][MAX_MIB_SIZE * MAX_MIB_SIZE * 4];
#endif // CONFIG_VAR_TX
int64_t best_rd = INT64_MAX;
MB_MODE_INFO base_mbmi, best_mbmi;
#if CONFIG_EXT_INTER
int rate2_bmc_nocoeff;
MB_MODE_INFO best_bmc_mbmi;
#if CONFIG_MOTION_VAR
int rate_mv_bmc;
#endif // CONFIG_MOTION_VAR
#endif // CONFIG_EXT_INTER
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_WARPED_MOTION
double pts[144], pts_inref[144];
#endif // CONFIG_WARPED_MOTION
int64_t rd = INT64_MAX;
BUFFER_SET orig_dst, tmp_dst;
int rs = 0;
InterpFilter assign_filter = SWITCHABLE;
int skip_txfm_sb = 0;
int64_t skip_sse_sb = INT64_MAX;
int16_t mode_ctx;
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
av1_invalid_rd_stats(&best_rd_stats);
#endif
#if CONFIG_EXT_INTER
*compmode_interintra_cost = 0;
mbmi->use_wedge_interintra = 0;
*compmode_interinter_cost = 0;
mbmi->interinter_compound_data.type = COMPOUND_AVERAGE;
// is_comp_interintra_pred implies !is_comp_pred
assert(!is_comp_interintra_pred || (!is_comp_pred));
// is_comp_interintra_pred implies is_interintra_allowed(mbmi->sb_type)
assert(!is_comp_interintra_pred || is_interintra_allowed(mbmi));
#endif // CONFIG_EXT_INTER
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (is_comp_pred)
mode_ctx = mbmi_ext->compound_mode_context[refs[0]];
else
#endif // CONFIG_EXT_INTER
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, -1);
#else // CONFIG_REF_MV
mode_ctx = mbmi_ext->mode_context[refs[0]];
#endif // CONFIG_REF_MV
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf_);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
tmp_buf = tmp_buf_;
// Make sure that we didn't leave the plane destination buffers set
// to tmp_buf at the end of the last iteration
assert(xd->plane[0].dst.buf != tmp_buf);
#if CONFIG_WARPED_MOTION
mbmi->num_proj_ref[0] = 0;
mbmi->num_proj_ref[1] = 0;
#endif // CONFIG_WARPED_MOTION
if (is_comp_pred) {
if (frame_mv[refs[0]].as_int == INVALID_MV ||
frame_mv[refs[1]].as_int == INVALID_MV)
return INT64_MAX;
}
mbmi->motion_mode = SIMPLE_TRANSLATION;
if (have_newmv_in_inter_mode(this_mode)) {
if (is_comp_pred) {
#if CONFIG_EXT_INTER
for (i = 0; i < 2; ++i) {
single_newmv[refs[i]].as_int = single_newmvs[mv_idx][refs[i]].as_int;
}
if (this_mode == NEW_NEWMV) {
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, NULL,
single_newmv, &rate_mv, 0);
} else {
#if CONFIG_REF_MV
av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx);
#endif // CONFIG_REF_MV
rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv,
&mbmi_ext->ref_mvs[refs[0]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
#if CONFIG_REF_MV
av1_set_mvcost(x, mbmi->ref_frame[1], 1, mbmi->ref_mv_idx);
#endif // CONFIG_REF_MV
rate_mv += av1_mv_bit_cost(
&frame_mv[refs[1]].as_mv, &mbmi_ext->ref_mvs[refs[1]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
} else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
rate_mv = av1_mv_bit_cost(&frame_mv[refs[1]].as_mv,
&mbmi_ext->ref_mvs[refs[1]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
} else {
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv,
&mbmi_ext->ref_mvs[refs[0]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
#else
// Initialize mv using single prediction mode result.
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col,
single_newmv, &rate_mv, 0);
} else {
#if CONFIG_REF_MV
av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx);
#endif // CONFIG_REF_MV
rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv,
&mbmi_ext->ref_mvs[refs[0]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
#if CONFIG_REF_MV
av1_set_mvcost(x, mbmi->ref_frame[1], 1, mbmi->ref_mv_idx);
#endif // CONFIG_REF_MV
rate_mv += av1_mv_bit_cost(&frame_mv[refs[1]].as_mv,
&mbmi_ext->ref_mvs[refs[1]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
#endif // CONFIG_EXT_INTER
} else {
#if CONFIG_EXT_INTER
if (is_comp_interintra_pred) {
x->best_mv = single_newmvs[mv_idx][refs[0]];
rate_mv = single_newmvs_rate[mv_idx][refs[0]];
} else {
single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, mv_idx,
&rate_mv);
single_newmvs[mv_idx][refs[0]] = x->best_mv;
single_newmvs_rate[mv_idx][refs[0]] = rate_mv;
}
#else
single_motion_search(cpi, x, bsize, mi_row, mi_col, &rate_mv);
single_newmv[refs[0]] = x->best_mv;
#endif // CONFIG_EXT_INTER
if (x->best_mv.as_int == INVALID_MV) return INT64_MAX;
frame_mv[refs[0]] = x->best_mv;
xd->mi[0]->bmi[0].as_mv[0] = x->best_mv;
// Estimate the rate implications of a new mv but discount this
// under certain circumstances where we want to help initiate a weak
// motion field, where the distortion gain for a single block may not
// be enough to overcome the cost of a new mv.
if (discount_newmv_test(cpi, this_mode, x->best_mv, mode_mv, refs[0])) {
rate_mv = AOMMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
}
}
rd_stats->rate += rate_mv;
}
for (i = 0; i < is_comp_pred + 1; ++i) {
cur_mv[i] = frame_mv[refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
#if CONFIG_EXT_INTER
if (this_mode != NEWMV && this_mode != NEWFROMNEARMV)
#else
if (this_mode != NEWMV)
#endif // CONFIG_EXT_INTER
clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (this_mode == NEAREST_NEARESTMV)
#else
if (this_mode == NEARESTMV && is_comp_pred)
#endif // CONFIG_EXT_INTER
{
#if !CONFIG_EXT_INTER
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
#endif
if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) {
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv;
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
for (i = 0; i < 2; ++i) {
clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
}
}
#if CONFIG_EXT_INTER
if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) {
if (this_mode == NEAREST_NEWMV || this_mode == NEAREST_NEARMV) {
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv;
lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[0].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[0].as_mv)) return INT64_MAX;
mbmi->mv[0].as_int = cur_mv[0].as_int;
}
if (this_mode == NEW_NEARESTMV || this_mode == NEAR_NEARESTMV) {
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[1].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[1].as_mv)) return INT64_MAX;
mbmi->mv[1].as_int = cur_mv[1].as_int;
}
}
if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
if (this_mode == NEAR_NEWMV || this_mode == NEAR_NEARESTMV ||
this_mode == NEAR_NEARMV) {
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][1].this_mv;
lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[0].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[0].as_mv)) return INT64_MAX;
mbmi->mv[0].as_int = cur_mv[0].as_int;
}
if (this_mode == NEW_NEARMV || this_mode == NEAREST_NEARMV ||
this_mode == NEAR_NEARMV) {
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][1].comp_mv;
lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv);
clamp_mv2(&cur_mv[1].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[1].as_mv)) return INT64_MAX;
mbmi->mv[1].as_int = cur_mv[1].as_int;
}
}
#else
if (this_mode == NEARMV && is_comp_pred) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
int ref_mv_idx = mbmi->ref_mv_idx + 1;
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
for (i = 0; i < 2; ++i) {
clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
}
}
#endif // CONFIG_EXT_INTER
#endif // CONFIG_REF_MV
// do first prediction into the destination buffer. Do the next
// prediction into a temporary buffer. Then keep track of which one
// of these currently holds the best predictor, and use the other
// one for future predictions. In the end, copy from tmp_buf to
// dst if necessary.
for (i = 0; i < MAX_MB_PLANE; i++) {
tmp_dst.plane[i] = tmp_buf + i * MAX_SB_SQUARE;
tmp_dst.stride[i] = MAX_SB_SIZE;
}
for (i = 0; i < MAX_MB_PLANE; i++) {
orig_dst.plane[i] = xd->plane[i].dst.buf;
orig_dst.stride[i] = xd->plane[i].dst.stride;
}
// We don't include the cost of the second reference here, because there
// are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
// words if you present them in that order, the second one is always known
// if the first is known.
//
// Under some circumstances we discount the cost of new mv mode to encourage
// initiation of a motion field.
if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv,
refs[0])) {
#if CONFIG_REF_MV && CONFIG_EXT_INTER
rd_stats->rate +=
AOMMIN(cost_mv_ref(cpi, this_mode, is_comp_pred, mode_ctx),
cost_mv_ref(cpi, NEARESTMV, is_comp_pred, mode_ctx));
#else
rd_stats->rate += AOMMIN(cost_mv_ref(cpi, this_mode, mode_ctx),
cost_mv_ref(cpi, NEARESTMV, mode_ctx));
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
} else {
#if CONFIG_REF_MV && CONFIG_EXT_INTER
rd_stats->rate += cost_mv_ref(cpi, this_mode, is_comp_pred, mode_ctx);
#else
rd_stats->rate += cost_mv_ref(cpi, this_mode, mode_ctx);
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
}
if (RDCOST(x->rdmult, x->rddiv, rd_stats->rate, 0) > ref_best_rd &&
#if CONFIG_EXT_INTER
mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV
#else
mbmi->mode != NEARESTMV
#endif // CONFIG_EXT_INTER
)
return INT64_MAX;
if (cm->interp_filter == SWITCHABLE) {
#if !CONFIG_DUAL_FILTER
assign_filter =
predict_interp_filter(cpi, x, bsize, mi_row, mi_col, single_filter);
#endif
#if CONFIG_EXT_INTERP || CONFIG_DUAL_FILTER
if (!av1_is_interp_needed(xd)) assign_filter = EIGHTTAP_REGULAR;
#endif
} else {
assign_filter = cm->interp_filter;
}
{ // Do interpolation filter search in the parentheses
int tmp_rate;
int64_t tmp_dist;
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] =
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
mbmi->interp_filter[1] =
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
mbmi->interp_filter[2] =
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
mbmi->interp_filter[3] =
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
#else
mbmi->interp_filter =
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
#endif
rs = av1_get_switchable_rate(cpi, xd);
av1_build_inter_predictors_sb(xd, mi_row, mi_col, &orig_dst, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate,
&tmp_dist, &skip_txfm_sb, &skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
if (assign_filter == SWITCHABLE) {
// do interp_filter search
if (av1_is_interp_needed(xd)) {
#if CONFIG_DUAL_FILTER
const int filter_set_size = DUAL_FILTER_SET_SIZE;
#else
const int filter_set_size = SWITCHABLE_FILTERS;
#endif
int best_in_temp = 0;
#if CONFIG_DUAL_FILTER
InterpFilter best_filter[4];
av1_copy(best_filter, mbmi->interp_filter);
#else
InterpFilter best_filter = mbmi->interp_filter;
#endif
restore_dst_buf(xd, tmp_dst);
// EIGHTTAP_REGULAR mode is calculated beforehand
for (i = 1; i < filter_set_size; ++i) {
int tmp_skip_sb = 0;
int64_t tmp_skip_sse = INT64_MAX;
int tmp_rs;
int64_t tmp_rd;
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] = filter_sets[i][0];
mbmi->interp_filter[1] = filter_sets[i][1];
mbmi->interp_filter[2] = filter_sets[i][0];
mbmi->interp_filter[3] = filter_sets[i][1];
#else
mbmi->interp_filter = i;
#endif
tmp_rs = av1_get_switchable_rate(cpi, xd);
av1_build_inter_predictors_sb(xd, mi_row, mi_col, &orig_dst, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate,
&tmp_dist, &tmp_skip_sb, &tmp_skip_sse);
tmp_rd = RDCOST(x->rdmult, x->rddiv, tmp_rs + tmp_rate, tmp_dist);
if (tmp_rd < rd) {
rd = tmp_rd;
rs = av1_get_switchable_rate(cpi, xd);
#if CONFIG_DUAL_FILTER
av1_copy(best_filter, mbmi->interp_filter);
#else
best_filter = mbmi->interp_filter;
#endif
skip_txfm_sb = tmp_skip_sb;
skip_sse_sb = tmp_skip_sse;
best_in_temp = !best_in_temp;
if (best_in_temp) {
restore_dst_buf(xd, orig_dst);
} else {
restore_dst_buf(xd, tmp_dst);
}
}
}
if (best_in_temp) {
restore_dst_buf(xd, tmp_dst);
} else {
restore_dst_buf(xd, orig_dst);
}
#if CONFIG_DUAL_FILTER
av1_copy(mbmi->interp_filter, best_filter);
#else
mbmi->interp_filter = best_filter;
#endif
} else {
#if !CONFIG_EXT_INTERP && !CONFIG_DUAL_FILTER
int tmp_rs;
InterpFilter best_filter = mbmi->interp_filter;
rs = av1_get_switchable_rate(cpi, xd);
for (i = 1; i < SWITCHABLE_FILTERS; ++i) {
mbmi->interp_filter = i;
tmp_rs = av1_get_switchable_rate(cpi, xd);
if (tmp_rs < rs) {
rs = tmp_rs;
best_filter = i;
}
}
mbmi->interp_filter = best_filter;
#else
assert(0);
#endif
}
}
}
#if CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
best_bmc_mbmi = *mbmi;
rate2_bmc_nocoeff = rd_stats->rate;
if (cm->interp_filter == SWITCHABLE) rate2_bmc_nocoeff += rs;
#if CONFIG_MOTION_VAR
rate_mv_bmc = rate_mv;
#endif // CONFIG_MOTION_VAR
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
if (is_comp_pred) {
int rate_sum, rs2;
int64_t dist_sum;
int64_t best_rd_compound = INT64_MAX, best_rd_cur = INT64_MAX;
INTERINTER_COMPOUND_DATA best_compound_data;
int_mv best_mv[2];
int best_tmp_rate_mv = rate_mv;
int tmp_skip_txfm_sb;
int64_t tmp_skip_sse_sb;
int compound_type_cost[COMPOUND_TYPES];
uint8_t pred0[2 * MAX_SB_SQUARE];
uint8_t pred1[2 * MAX_SB_SQUARE];
uint8_t *preds0[1] = { pred0 };
uint8_t *preds1[1] = { pred1 };
int strides[1] = { bw };
COMPOUND_TYPE cur_type;
best_mv[0].as_int = cur_mv[0].as_int;
best_mv[1].as_int = cur_mv[1].as_int;
memset(&best_compound_data, 0, sizeof(INTERINTER_COMPOUND_DATA));
av1_cost_tokens(compound_type_cost, cm->fc->compound_type_prob[bsize],
av1_compound_type_tree);
if (is_interinter_wedge_used(bsize)) {
// get inter predictors to use for masked compound modes
av1_build_inter_predictors_for_planes_single_buf(
xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides);
av1_build_inter_predictors_for_planes_single_buf(
xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides);
}
for (cur_type = COMPOUND_AVERAGE; cur_type < COMPOUND_TYPES; cur_type++) {
best_rd_cur = INT64_MAX;
mbmi->interinter_compound_data.type = cur_type;
rs2 = av1_cost_literal(get_interinter_compound_type_bits(
bsize, mbmi->interinter_compound_data.type)) +
compound_type_cost[mbmi->interinter_compound_data.type];
switch (cur_type) {
case COMPOUND_AVERAGE:
av1_build_inter_predictors_sby(xd, mi_row, mi_col, &orig_dst, bsize);
av1_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb,
INT64_MAX);
if (rd != INT64_MAX)
rd =
RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv + rate_sum, dist_sum);
best_rd_compound = rd;
break;
case COMPOUND_WEDGE:
if (!is_interinter_wedge_used(bsize)) break;
if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh &&
best_rd_compound / 3 < ref_best_rd) {
int tmp_rate_mv = 0;
best_rd_cur = build_and_cost_compound_wedge(
cpi, x, cur_mv, bsize, this_mode, rs2, rate_mv, &orig_dst,
&tmp_rate_mv, preds0, preds1, strides, mi_row, mi_col);
if (best_rd_cur < best_rd_compound) {
best_rd_compound = best_rd_cur;
memcpy(&best_compound_data, &mbmi->interinter_compound_data,
sizeof(best_compound_data));
if (have_newmv_in_inter_mode(this_mode)) {
best_tmp_rate_mv = tmp_rate_mv;
best_mv[0].as_int = mbmi->mv[0].as_int;
best_mv[1].as_int = mbmi->mv[1].as_int;
// reset to original mvs for next iteration
mbmi->mv[0].as_int = cur_mv[0].as_int;
mbmi->mv[1].as_int = cur_mv[1].as_int;
}
}
}
break;
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG:
if (!is_interinter_wedge_used(bsize)) break;
if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh &&
best_rd_compound / 3 < ref_best_rd) {
int tmp_rate_mv = 0;
best_rd_cur = build_and_cost_compound_seg(
cpi, x, cur_mv, bsize, this_mode, rs2, rate_mv, &orig_dst,
&tmp_rate_mv, preds0, preds1, strides, mi_row, mi_col);
if (best_rd_cur < best_rd_compound) {
best_rd_compound = best_rd_cur;
memcpy(&best_compound_data, &mbmi->interinter_compound_data,
sizeof(best_compound_data));
if (have_newmv_in_inter_mode(this_mode)) {
best_tmp_rate_mv = tmp_rate_mv;
best_mv[0].as_int = mbmi->mv[0].as_int;
best_mv[1].as_int = mbmi->mv[1].as_int;
// reset to original mvs for next iteration
mbmi->mv[0].as_int = cur_mv[0].as_int;
mbmi->mv[1].as_int = cur_mv[1].as_int;
}
}
}
break;
#endif // CONFIG_COMPOUND_SEGMENT
default: assert(0); return 0;
}
}
memcpy(&mbmi->interinter_compound_data, &best_compound_data,
sizeof(INTERINTER_COMPOUND_DATA));
if (have_newmv_in_inter_mode(this_mode)) {
mbmi->mv[0].as_int = best_mv[0].as_int;
mbmi->mv[1].as_int = best_mv[1].as_int;
xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
xd->mi[0]->bmi[0].as_mv[1].as_int = mbmi->mv[1].as_int;
if (mbmi->interinter_compound_data.type) {
rd_stats->rate += best_tmp_rate_mv - rate_mv;
rate_mv = best_tmp_rate_mv;
}
}
if (ref_best_rd < INT64_MAX && best_rd_compound / 3 > ref_best_rd) {
restore_dst_buf(xd, orig_dst);
return INT64_MAX;
}
pred_exists = 0;
*compmode_interinter_cost =
compound_type_cost[mbmi->interinter_compound_data.type] +
av1_cost_literal(get_interinter_compound_type_bits(
bsize, mbmi->interinter_compound_data.type));
}
if (is_comp_interintra_pred) {
INTERINTRA_MODE best_interintra_mode = II_DC_PRED;
int64_t best_interintra_rd = INT64_MAX;
int rmode, rate_sum;
int64_t dist_sum;
int j;
int64_t best_interintra_rd_nowedge = INT64_MAX;
int64_t best_interintra_rd_wedge = INT64_MAX;
int rwedge;
int_mv tmp_mv;
int tmp_rate_mv = 0;
int tmp_skip_txfm_sb;
int64_t tmp_skip_sse_sb;
DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_SB_SQUARE]);
uint8_t *intrapred;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
intrapred = CONVERT_TO_BYTEPTR(intrapred_);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
intrapred = intrapred_;
mbmi->ref_frame[1] = NONE;
for (j = 0; j < MAX_MB_PLANE; j++) {
xd->plane[j].dst.buf = tmp_buf + j * MAX_SB_SQUARE;
xd->plane[j].dst.stride = bw;
}
av1_build_inter_predictors_sby(xd, mi_row, mi_col, &orig_dst, bsize);
restore_dst_buf(xd, orig_dst);
mbmi->ref_frame[1] = INTRA_FRAME;
mbmi->use_wedge_interintra = 0;
for (j = 0; j < INTERINTRA_MODES; ++j) {
mbmi->interintra_mode = (INTERINTRA_MODE)j;
rmode = interintra_mode_cost[mbmi->interintra_mode];
av1_build_intra_predictors_for_interintra(xd, bsize, 0, &orig_dst,
intrapred, bw);
av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_mv + rate_sum, dist_sum);
if (rd < best_interintra_rd) {
best_interintra_rd = rd;
best_interintra_mode = mbmi->interintra_mode;
}
}
mbmi->interintra_mode = best_interintra_mode;
rmode = interintra_mode_cost[mbmi->interintra_mode];
av1_build_intra_predictors_for_interintra(xd, bsize, 0, &orig_dst,
intrapred, bw);
av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
av1_subtract_plane(x, bsize, 0);
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv, rate_mv + rmode + rate_sum, dist_sum);
best_interintra_rd = rd;
if (ref_best_rd < INT64_MAX && best_interintra_rd > 2 * ref_best_rd) {
// Don't need to call restore_dst_buf here
return INT64_MAX;
}
if (is_interintra_wedge_used(bsize)) {
rwedge = av1_cost_bit(cm->fc->wedge_interintra_prob[bsize], 0);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv, rmode + rate_mv + rwedge + rate_sum,
dist_sum);
best_interintra_rd_nowedge = rd;
// Disbale wedge search if source variance is small
if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) {
mbmi->use_wedge_interintra = 1;
rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) +
av1_cost_bit(cm->fc->wedge_interintra_prob[bsize], 1);
best_interintra_rd_wedge =
pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
best_interintra_rd_wedge +=
RDCOST(x->rdmult, x->rddiv, rmode + rate_mv + rwedge, 0);
// Refine motion vector.
if (have_newmv_in_inter_mode(this_mode)) {
// get negative of mask
const uint8_t *mask = av1_get_contiguous_soft_mask(
mbmi->interintra_wedge_index, 1, bsize);
do_masked_motion_search(cpi, x, mask, bw, bsize, mi_row, mi_col,
&tmp_mv, &tmp_rate_mv, 0, mv_idx);
mbmi->mv[0].as_int = tmp_mv.as_int;
av1_build_inter_predictors_sby(xd, mi_row, mi_col, &orig_dst, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv,
rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum);
if (rd < best_interintra_rd_wedge) {
best_interintra_rd_wedge = rd;
} else {
tmp_mv.as_int = cur_mv[0].as_int;
tmp_rate_mv = rate_mv;
}
} else {
tmp_mv.as_int = cur_mv[0].as_int;
tmp_rate_mv = rate_mv;
av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
}
// Evaluate closer to true rd
av1_subtract_plane(x, bsize, 0);
rd =
estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
if (rd != INT64_MAX)
rd = RDCOST(x->rdmult, x->rddiv,
rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum);
best_interintra_rd_wedge = rd;
if (best_interintra_rd_wedge < best_interintra_rd_nowedge) {
mbmi->use_wedge_interintra = 1;
best_interintra_rd = best_interintra_rd_wedge;
mbmi->mv[0].as_int = tmp_mv.as_int;
rd_stats->rate += tmp_rate_mv - rate_mv;
rate_mv = tmp_rate_mv;
} else {
mbmi->use_wedge_interintra = 0;
best_interintra_rd = best_interintra_rd_nowedge;
mbmi->mv[0].as_int = cur_mv[0].as_int;
}
} else {
mbmi->use_wedge_interintra = 0;
best_interintra_rd = best_interintra_rd_nowedge;
}
}
pred_exists = 0;
*compmode_interintra_cost =
av1_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 1);
*compmode_interintra_cost += interintra_mode_cost[mbmi->interintra_mode];
if (is_interintra_wedge_used(bsize)) {
*compmode_interintra_cost += av1_cost_bit(
cm->fc->wedge_interintra_prob[bsize], mbmi->use_wedge_interintra);
if (mbmi->use_wedge_interintra) {
*compmode_interintra_cost +=
av1_cost_literal(get_interintra_wedge_bits(bsize));
}
}
} else if (is_interintra_allowed(mbmi)) {
*compmode_interintra_cost =
av1_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 0);
}
#if CONFIG_EXT_INTERP
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE) {
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = EIGHTTAP_REGULAR;
#else
mbmi->interp_filter = EIGHTTAP_REGULAR;
#endif
pred_exists = 0;
}
#endif // CONFIG_EXT_INTERP
if (pred_exists == 0) {
int tmp_rate;
int64_t tmp_dist;
av1_build_inter_predictors_sb(xd, mi_row, mi_col, &orig_dst, bsize);
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate,
&tmp_dist, &skip_txfm_sb, &skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
}
#endif // CONFIG_EXT_INTER
#if CONFIG_DUAL_FILTER
if (!is_comp_pred) single_filter[this_mode][refs[0]] = mbmi->interp_filter[0];
#else
if (!is_comp_pred) single_filter[this_mode][refs[0]] = mbmi->interp_filter;
#endif
#if CONFIG_EXT_INTER
if (modelled_rd != NULL) {
if (is_comp_pred) {
const int mode0 = compound_ref0_mode(this_mode);
const int mode1 = compound_ref1_mode(this_mode);
int64_t mrd =
AOMMIN(modelled_rd[mode0][refs[0]], modelled_rd[mode1][refs[1]]);
if (rd / 4 * 3 > mrd && ref_best_rd < INT64_MAX) {
restore_dst_buf(xd, orig_dst);
return INT64_MAX;
}
} else if (!is_comp_interintra_pred) {
modelled_rd[this_mode][refs[0]] = rd;
}
}
#endif // CONFIG_EXT_INTER
if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
// if current pred_error modeled rd is substantially more than the best
// so far, do not bother doing full rd
if (rd / 2 > ref_best_rd) {
restore_dst_buf(xd, orig_dst);
return INT64_MAX;
}
}
if (cm->interp_filter == SWITCHABLE) rd_stats->rate += rs;
#if CONFIG_WARPED_MOTION
aom_clear_system_state();
mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref);
#endif // CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
rate2_nocoeff = rd_stats->rate;
last_motion_mode_allowed = motion_mode_allowed(mbmi);
base_mbmi = *mbmi;
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
best_rd = INT64_MAX;
for (motion_mode = SIMPLE_TRANSLATION;
motion_mode <= last_motion_mode_allowed; motion_mode++) {
int64_t tmp_rd = INT64_MAX;
int tmp_rate;
int64_t tmp_dist;
#if CONFIG_EXT_INTER
int tmp_rate2 =
motion_mode != SIMPLE_TRANSLATION ? rate2_bmc_nocoeff : rate2_nocoeff;
#else
int tmp_rate2 = rate2_nocoeff;
#endif // CONFIG_EXT_INTER
*mbmi = base_mbmi;
mbmi->motion_mode = motion_mode;
#if CONFIG_MOTION_VAR
if (mbmi->motion_mode == OBMC_CAUSAL) {
#if CONFIG_EXT_INTER
*mbmi = best_bmc_mbmi;
mbmi->motion_mode = OBMC_CAUSAL;
#endif // CONFIG_EXT_INTER
if (!is_comp_pred && have_newmv_in_inter_mode(this_mode)) {
int tmp_rate_mv = 0;
single_motion_search(cpi, x, bsize, mi_row, mi_col,
#if CONFIG_EXT_INTER
0, mv_idx,
#endif // CONFIG_EXT_INTER
&tmp_rate_mv);
mbmi->mv[0].as_int = x->best_mv.as_int;
if (discount_newmv_test(cpi, this_mode, mbmi->mv[0], mode_mv,
refs[0])) {
tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
}
#if CONFIG_EXT_INTER
tmp_rate2 = rate2_bmc_nocoeff - rate_mv_bmc + tmp_rate_mv;
#else
tmp_rate2 = rate2_nocoeff - rate_mv + tmp_rate_mv;
#endif // CONFIG_EXT_INTER
#if CONFIG_EXT_INTERP
#if CONFIG_DUAL_FILTER
if (!has_subpel_mv_component(xd->mi[0], xd, 0))
mbmi->interp_filter[0] = EIGHTTAP_REGULAR;
if (!has_subpel_mv_component(xd->mi[0], xd, 1))
mbmi->interp_filter[1] = EIGHTTAP_REGULAR;
#else
if (!av1_is_interp_needed(xd)) mbmi->interp_filter = EIGHTTAP_REGULAR;
#endif // CONFIG_DUAL_FILTER
// This is not quite correct with CONFIG_DUAL_FILTER when a filter
// is needed in only one direction
if (!av1_is_interp_needed(xd)) tmp_rate2 -= rs;
#endif // CONFIG_EXT_INTERP
av1_build_inter_predictors_sb(xd, mi_row, mi_col, &orig_dst, bsize);
#if CONFIG_EXT_INTER
} else {
av1_build_inter_predictors_sb(xd, mi_row, mi_col, &orig_dst, bsize);
#endif // CONFIG_EXT_INTER
}
av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, above_pred_buf,
above_pred_stride, left_pred_buf,
left_pred_stride);
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate,
&tmp_dist, &skip_txfm_sb, &skip_sse_sb);
}
#endif // CONFIG_MOTION_VAR
#if CONFIG_WARPED_MOTION
if (mbmi->motion_mode == WARPED_CAUSAL) {
#if CONFIG_EXT_INTER
*mbmi = best_bmc_mbmi;
mbmi->motion_mode = WARPED_CAUSAL;
#endif // CONFIG_EXT_INTER
mbmi->wm_params[0].wmtype = DEFAULT_WMTYPE;
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] = cm->interp_filter == SWITCHABLE
? EIGHTTAP_REGULAR
: cm->interp_filter;
mbmi->interp_filter[1] = cm->interp_filter == SWITCHABLE
? EIGHTTAP_REGULAR
: cm->interp_filter;
#else
mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR
: cm->interp_filter;
#endif // CONFIG_DUAL_FILTER
if (find_projection(mbmi->num_proj_ref[0], pts, pts_inref,
&mbmi->wm_params[0]) == 0) {
int plane;
#if CONFIG_AOM_HIGHBITDEPTH
int use_hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
#endif // CONFIG_AOM_HIGHBITDEPTH
for (plane = 0; plane < 3; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
av1_warp_plane(&mbmi->wm_params[0],
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height,
pd->pre[0].stride, pd->dst.buf,
(mi_col * MI_SIZE) >> pd->subsampling_x,
(mi_row * MI_SIZE) >> pd->subsampling_y,
(xd->n8_w * MI_SIZE) >> pd->subsampling_x,
(xd->n8_h * MI_SIZE) >> pd->subsampling_y,
pd->dst.stride, pd->subsampling_x, pd->subsampling_y,
16, 16, 0);
}
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate,
&tmp_dist, &skip_txfm_sb, &skip_sse_sb);
} else {
continue;
}
}
#endif // CONFIG_WARPED_MOTION
x->skip = 0;
rd_stats->dist = 0;
rd_stats->sse = 0;
rd_stats->skip = 1;
rd_stats->rate = tmp_rate2;
if (last_motion_mode_allowed > SIMPLE_TRANSLATION) {
#if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR
if (last_motion_mode_allowed == WARPED_CAUSAL)
#endif // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR
rd_stats->rate += cpi->motion_mode_cost[bsize][mbmi->motion_mode];
#if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR
else
rd_stats->rate += cpi->motion_mode_cost1[bsize][mbmi->motion_mode];
#endif // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR
}
#if CONFIG_WARPED_MOTION
if (mbmi->motion_mode == WARPED_CAUSAL) {
rd_stats->rate -= rs;
}
#endif // CONFIG_WARPED_MOTION
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
if (!skip_txfm_sb) {
int64_t rdcosty = INT64_MAX;
int is_cost_valid_uv = 0;
// cost and distortion
av1_subtract_plane(x, bsize, 0);
#if CONFIG_VAR_TX
if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) {
select_tx_type_yrd(cpi, x, rd_stats_y, bsize, ref_best_rd);
} else {
int idx, idy;
super_block_yrd(cpi, x, rd_stats_y, bsize, ref_best_rd);
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
mbmi->inter_tx_size[idy][idx] = mbmi->tx_size;
memset(x->blk_skip[0], rd_stats_y->skip,
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
}
#else
/* clang-format off */
super_block_yrd(cpi, x, rd_stats_y, bsize, ref_best_rd);
/* clang-format on */
#endif // CONFIG_VAR_TX
if (rd_stats_y->rate == INT_MAX) {
av1_invalid_rd_stats(rd_stats);
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
if (mbmi->motion_mode != SIMPLE_TRANSLATION) {
continue;
} else {
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
restore_dst_buf(xd, orig_dst);
return INT64_MAX;
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
}
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
}
av1_merge_rd_stats(rd_stats, rd_stats_y);
rdcosty = RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist);
rdcosty = AOMMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse));
/* clang-format off */
#if CONFIG_VAR_TX
is_cost_valid_uv =
inter_block_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_rd - rdcosty);
#else
is_cost_valid_uv =
super_block_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_rd - rdcosty);
#endif // CONFIG_VAR_TX
if (!is_cost_valid_uv) {
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
continue;
#else
restore_dst_buf(xd, orig_dst);
return INT64_MAX;
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
}
/* clang-format on */
av1_merge_rd_stats(rd_stats, rd_stats_uv);
#if CONFIG_RD_DEBUG
// record transform block coefficient cost
// TODO(angiebird): So far rd_debug tool only detects descrepancy of
// coefficient cost. Therefore, it is fine to copy rd_stats into mbmi
// here because we already collect the coefficient cost. Move this part to
// other place when we need to compare non-coefficient cost.
mbmi->rd_stats = *rd_stats;
#endif
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
if (rd_stats->skip) {
rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate;
rd_stats_y->rate = 0;
rd_stats_uv->rate = 0;
rd_stats->rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
mbmi->skip = 0;
// here mbmi->skip temporarily plays a role as what this_skip2 does
} else if (!xd->lossless[mbmi->segment_id] &&
(RDCOST(x->rdmult, x->rddiv,
rd_stats_y->rate + rd_stats_uv->rate +
av1_cost_bit(av1_get_skip_prob(cm, xd), 0),
rd_stats->dist) >=
RDCOST(x->rdmult, x->rddiv,
av1_cost_bit(av1_get_skip_prob(cm, xd), 1),
rd_stats->sse))) {
rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate;
rd_stats->rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
rd_stats->dist = rd_stats->sse;
rd_stats_y->rate = 0;
rd_stats_uv->rate = 0;
mbmi->skip = 1;
} else {
rd_stats->rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
mbmi->skip = 0;
}
*disable_skip = 0;
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
} else {
x->skip = 1;
*disable_skip = 1;
mbmi->tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1);
// The cost of skip bit needs to be added.
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
mbmi->skip = 0;
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
rd_stats->rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
rd_stats->dist = skip_sse_sb;
rd_stats->sse = skip_sse_sb;
rd_stats_y->rate = 0;
rd_stats_uv->rate = 0;
rd_stats->skip = 1;
}
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
if (!is_comp_pred && mbmi->motion_mode == SIMPLE_TRANSLATION)
single_skippable[this_mode][refs[0]] = rd_stats->skip;
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_GLOBAL_MOTION
if (this_mode == ZEROMV) {
rd_stats->rate += GLOBAL_MOTION_RATE(cpi, mbmi->ref_frame[0]);
if (is_comp_pred)
rd_stats->rate += GLOBAL_MOTION_RATE(cpi, mbmi->ref_frame[1]);
}
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
tmp_rd = RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist);
if (mbmi->motion_mode == SIMPLE_TRANSLATION || (tmp_rd < best_rd)) {
best_mbmi = *mbmi;
best_rd = tmp_rd;
best_rd_stats = *rd_stats;
best_rd_stats_y = *rd_stats_y;
best_rd_stats_uv = *rd_stats_uv;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(best_blk_skip[i], x->blk_skip[i],
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
#endif // CONFIG_VAR_TX
best_xskip = x->skip;
best_disable_skip = *disable_skip;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->recon_variance = av1_high_get_sby_perpixel_variance(
cpi, &xd->plane[0].dst, bsize, xd->bd);
} else {
x->recon_variance =
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
}
#else
x->recon_variance =
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
#endif // CONFIG_AOM_HIGHBITDEPTH
}
}
if (best_rd == INT64_MAX) {
av1_invalid_rd_stats(rd_stats);
restore_dst_buf(xd, orig_dst);
return INT64_MAX;
}
*mbmi = best_mbmi;
*rd_stats = best_rd_stats;
*rd_stats_y = best_rd_stats_y;
*rd_stats_uv = best_rd_stats_uv;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(x->blk_skip[i], best_blk_skip[i],
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
#endif // CONFIG_VAR_TX
x->skip = best_xskip;
*disable_skip = best_disable_skip;
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if !(CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION)
if (!is_comp_pred) single_skippable[this_mode][refs[0]] = rd_stats->skip;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->recon_variance = av1_high_get_sby_perpixel_variance(
cpi, &xd->plane[0].dst, bsize, xd->bd);
} else {
x->recon_variance =
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
}
#else
x->recon_variance =
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // !(CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION)
restore_dst_buf(xd, orig_dst);
return 0; // The rate-distortion cost will be re-calculated by caller.
}
void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = xd->plane;
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
int y_skip = 0, uv_skip = 0;
int64_t dist_y = 0, dist_uv = 0;
TX_SIZE max_uv_tx_size;
const int unify_bsize = CONFIG_CB4X4;
ctx->skip = 0;
xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
xd->mi[0]->mbmi.ref_frame[1] = NONE;
if (bsize >= BLOCK_8X8 || unify_bsize) {
if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
&y_skip, bsize, best_rd) >= best_rd) {
rd_cost->rate = INT_MAX;
return;
}
} else {
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, &y_skip, best_rd) >= best_rd) {
rd_cost->rate = INT_MAX;
return;
}
}
max_uv_tx_size = uv_txsize_lookup[bsize][xd->mi[0]->mbmi.tx_size]
[pd[1].subsampling_x][pd[1].subsampling_y];
#if CONFIG_CB4X4
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv,
&uv_skip, bsize, max_uv_tx_size);
#else
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv,
&uv_skip, AOMMAX(BLOCK_8X8, bsize), max_uv_tx_size);
#endif
if (y_skip && uv_skip) {
rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
rd_cost->dist = dist_y + dist_uv;
} else {
rd_cost->rate =
rate_y + rate_uv + av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
rd_cost->dist = dist_y + dist_uv;
}
ctx->mic = *xd->mi[0];
ctx->mbmi_ext = *x->mbmi_ext;
rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
}
// Do we have an internal image edge (e.g. formatting bars).
int av1_internal_image_edge(const AV1_COMP *cpi) {
return (cpi->oxcf.pass == 2) &&
((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) ||
(cpi->twopass.this_frame_stats.inactive_zone_cols > 0));
}
// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
int top_edge = 0;
int bottom_edge = cpi->common.mi_rows;
int is_active_h_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
const TWO_PASS *const twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge = AOMMAX(top_edge, bottom_edge);
}
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
is_active_h_edge = 1;
}
return is_active_h_edge;
}
// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
int left_edge = 0;
int right_edge = cpi->common.mi_cols;
int is_active_v_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
const TWO_PASS *const twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge = AOMMAX(left_edge, right_edge);
}
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
is_active_v_edge = 1;
}
return is_active_v_edge;
}
// Checks to see if a super block is at the edge of the active image.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_edge_sb(const AV1_COMP *cpi, int mi_row, int mi_col) {
return av1_active_h_edge(cpi, mi_row, cpi->common.mib_size) ||
av1_active_v_edge(cpi, mi_col, cpi->common.mib_size);
}
#if CONFIG_PALETTE
static void restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int rows = block_size_high[bsize] >> (xd->plane[1].subsampling_y);
const int cols = block_size_wide[bsize] >> (xd->plane[1].subsampling_x);
int src_stride = x->plane[1].src.stride;
const uint8_t *const src_u = x->plane[1].src.buf;
const uint8_t *const src_v = x->plane[2].src.buf;
float *const data = x->palette_buffer->kmeans_data_buf;
float centroids[2 * PALETTE_MAX_SIZE];
uint8_t *const color_map = xd->plane[1].color_index_map;
int r, c;
#if CONFIG_AOM_HIGHBITDEPTH
const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u);
const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v);
#endif // CONFIG_AOM_HIGHBITDEPTH
(void)cpi;
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
#if CONFIG_AOM_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) {
data[(r * cols + c) * 2] = src_u16[r * src_stride + c];
data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c];
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
data[(r * cols + c) * 2] = src_u[r * src_stride + c];
data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c];
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
}
}
for (r = 1; r < 3; ++r) {
for (c = 0; c < pmi->palette_size[1]; ++c) {
centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c];
}
}
av1_calc_indices(data, centroids, color_map, rows * cols,
pmi->palette_size[1], 2);
}
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
static void pick_filter_intra_interframe(
const AV1_COMP *cpi, MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE bsize, int *rate_uv_intra, int *rate_uv_tokenonly,
int64_t *dist_uv, int *skip_uv, PREDICTION_MODE *mode_uv,
FILTER_INTRA_MODE_INFO *filter_intra_mode_info_uv,
#if CONFIG_EXT_INTRA
int8_t *uv_angle_delta,
#endif // CONFIG_EXT_INTRA
#if CONFIG_PALETTE
PALETTE_MODE_INFO *pmi_uv, int palette_ctx,
#endif // CONFIG_PALETTE
int skip_mask, unsigned int *ref_costs_single, int64_t *best_rd,
int64_t *best_intra_rd, PREDICTION_MODE *best_intra_mode,
int *best_mode_index, int *best_skip2, int *best_mode_skippable,
#if CONFIG_SUPERTX
int *returnrate_nocoef,
#endif // CONFIG_SUPERTX
int64_t *best_pred_rd, MB_MODE_INFO *best_mbmode, RD_COST *rd_cost) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if CONFIG_PALETTE
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
#endif // CONFIG_PALETTE
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
int rate2 = 0, rate_y = INT_MAX, skippable = 0, rate_uv, rate_dummy, i;
int dc_mode_index;
const int *const intra_mode_cost = cpi->mbmode_cost[size_group_lookup[bsize]];
int64_t distortion2 = 0, distortion_y = 0, this_rd = *best_rd, distortion_uv;
TX_SIZE uv_tx;
for (i = 0; i < MAX_MODES; ++i)
if (av1_mode_order[i].mode == DC_PRED &&
av1_mode_order[i].ref_frame[0] == INTRA_FRAME)
break;
dc_mode_index = i;
assert(i < MAX_MODES);
// TODO(huisu): use skip_mask for further speedup.
(void)skip_mask;
mbmi->mode = DC_PRED;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
if (!rd_pick_filter_intra_sby(cpi, x, &rate_dummy, &rate_y, &distortion_y,
&skippable, bsize, intra_mode_cost[mbmi->mode],
&this_rd, 0)) {
return;
}
if (rate_y == INT_MAX) return;
uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][xd->plane[1].subsampling_x]
[xd->plane[1].subsampling_y];
if (rate_uv_intra[uv_tx] == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx],
&rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx],
&skip_uv[uv_tx], &mode_uv[uv_tx]);
#if CONFIG_PALETTE
if (cm->allow_screen_content_tools) pmi_uv[uv_tx] = *pmi;
#endif // CONFIG_PALETTE
filter_intra_mode_info_uv[uv_tx] = mbmi->filter_intra_mode_info;
#if CONFIG_EXT_INTRA
uv_angle_delta[uv_tx] = mbmi->angle_delta[1];
#endif // CONFIG_EXT_INTRA
}
rate_uv = rate_uv_tokenonly[uv_tx];
distortion_uv = dist_uv[uv_tx];
skippable = skippable && skip_uv[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
#if CONFIG_PALETTE
if (cm->allow_screen_content_tools) {
pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1];
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
}
#endif // CONFIG_PALETTE
#if CONFIG_EXT_INTRA
mbmi->angle_delta[1] = uv_angle_delta[uv_tx];
#endif // CONFIG_EXT_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1];
if (filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]) {
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
filter_intra_mode_info_uv[uv_tx].filter_intra_mode[1];
}
rate2 = rate_y + intra_mode_cost[mbmi->mode] + rate_uv +
cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode];
#if CONFIG_PALETTE
if (cpi->common.allow_screen_content_tools && mbmi->mode == DC_PRED)
rate2 += av1_cost_bit(
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0);
#endif // CONFIG_PALETTE
if (!xd->lossless[mbmi->segment_id]) {
// super_block_yrd above includes the cost of the tx_size in the
// tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
rate_y -= cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)]
[tx_size_to_depth(mbmi->tx_size)];
}
rate2 += av1_cost_bit(cm->fc->filter_intra_probs[0],
mbmi->filter_intra_mode_info.use_filter_intra_mode[0]);
rate2 += write_uniform_cost(
FILTER_INTRA_MODES, mbmi->filter_intra_mode_info.filter_intra_mode[0]);
#if CONFIG_EXT_INTRA
if (av1_is_directional_mode(mbmi->uv_mode, bsize)) {
rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTA_UV + 1,
MAX_ANGLE_DELTA_UV + mbmi->angle_delta[1]);
}
#endif // CONFIG_EXT_INTRA
if (mbmi->mode == DC_PRED) {
rate2 +=
av1_cost_bit(cpi->common.fc->filter_intra_probs[1],
mbmi->filter_intra_mode_info.use_filter_intra_mode[1]);
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[1])
rate2 +=
write_uniform_cost(FILTER_INTRA_MODES,
mbmi->filter_intra_mode_info.filter_intra_mode[1]);
}
distortion2 = distortion_y + distortion_uv;
av1_encode_intra_block_plane((AV1_COMMON *)cm, x, bsize, 0, 0);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->recon_variance = av1_high_get_sby_perpixel_variance(
cpi, &xd->plane[0].dst, bsize, xd->bd);
} else {
x->recon_variance =
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
}
#else
x->recon_variance =
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
#endif // CONFIG_AOM_HIGHBITDEPTH
rate2 += ref_costs_single[INTRA_FRAME];
if (skippable) {
rate2 -= (rate_y + rate_uv);
rate_y = 0;
rate_uv = 0;
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
} else {
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
}
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
if (this_rd < *best_intra_rd) {
*best_intra_rd = this_rd;
*best_intra_mode = mbmi->mode;
}
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd);
if (this_rd < *best_rd) {
*best_mode_index = dc_mode_index;
mbmi->mv[0].as_int = 0;
rd_cost->rate = rate2;
#if CONFIG_SUPERTX
if (x->skip)
*returnrate_nocoef = rate2;
else
*returnrate_nocoef = rate2 - rate_y - rate_uv;
*returnrate_nocoef -= av1_cost_bit(av1_get_skip_prob(cm, xd), skippable);
*returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd),
mbmi->ref_frame[0] != INTRA_FRAME);
#endif // CONFIG_SUPERTX
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
*best_rd = this_rd;
*best_mbmode = *mbmi;
*best_skip2 = 0;
*best_mode_skippable = skippable;
}
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_MOTION_VAR
static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x,
const MACROBLOCKD *xd, int mi_row,
int mi_col, const uint8_t *above,
int above_stride, const uint8_t *left,
int left_stride);
#endif // CONFIG_MOTION_VAR
void av1_rd_pick_inter_mode_sb(const AV1_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *x, int mi_row, int mi_col,
RD_COST *rd_cost,
#if CONFIG_SUPERTX
int *returnrate_nocoef,
#endif // CONFIG_SUPERTX
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
const AV1_COMMON *const cm = &cpi->common;
const RD_OPT *const rd_opt = &cpi->rd;
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if CONFIG_PALETTE
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
#endif // CONFIG_PALETTE
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const struct segmentation *const seg = &cm->seg;
PREDICTION_MODE this_mode;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mbmi->segment_id;
int comp_pred, i, k;
int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE];
#if CONFIG_EXT_INTER
int_mv single_newmvs[2][TOTAL_REFS_PER_FRAME] = { { { 0 } }, { { 0 } } };
int single_newmvs_rate[2][TOTAL_REFS_PER_FRAME] = { { 0 }, { 0 } };
int64_t modelled_rd[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
#else
int_mv single_newmv[TOTAL_REFS_PER_FRAME] = { { 0 } };
#endif // CONFIG_EXT_INTER
InterpFilter single_inter_filter[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
int single_skippable[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
static const int flag_list[TOTAL_REFS_PER_FRAME] = {
0,
AOM_LAST_FLAG,
#if CONFIG_EXT_REFS
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
#endif // CONFIG_EXT_REFS
AOM_GOLD_FLAG,
#if CONFIG_EXT_REFS
AOM_BWD_FLAG,
#endif // CONFIG_EXT_REFS
AOM_ALT_FLAG
};
int64_t best_rd = best_rd_so_far;
int best_rate_y = INT_MAX, best_rate_uv = INT_MAX;
int64_t best_pred_diff[REFERENCE_MODES];
int64_t best_pred_rd[REFERENCE_MODES];
MB_MODE_INFO best_mbmode;
#if CONFIG_REF_MV
int rate_skip0 = av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
int rate_skip1 = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
#endif
int best_mode_skippable = 0;
int midx, best_mode_index = -1;
unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME];
unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME];
aom_prob comp_mode_p;
int64_t best_intra_rd = INT64_MAX;
unsigned int best_pred_sse = UINT_MAX;
PREDICTION_MODE best_intra_mode = DC_PRED;
int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
int64_t dist_uvs[TX_SIZES];
int skip_uvs[TX_SIZES];
PREDICTION_MODE mode_uv[TX_SIZES];
#if CONFIG_PALETTE
PALETTE_MODE_INFO pmi_uv[TX_SIZES];
#endif // CONFIG_PALETTE
#if CONFIG_EXT_INTRA
int8_t uv_angle_delta[TX_SIZES];
int is_directional_mode, angle_stats_ready = 0;
uint8_t directional_mode_skip_mask[INTRA_MODES];
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
int8_t dc_skipped = 1;
FILTER_INTRA_MODE_INFO filter_intra_mode_info_uv[TX_SIZES];
#endif // CONFIG_FILTER_INTRA
const int intra_cost_penalty = av1_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
const int *const intra_mode_cost = cpi->mbmode_cost[size_group_lookup[bsize]];
int best_skip2 = 0;
uint8_t ref_frame_skip_mask[2] = { 0 };
#if CONFIG_EXT_INTER
uint32_t mode_skip_mask[TOTAL_REFS_PER_FRAME] = { 0 };
MV_REFERENCE_FRAME best_single_inter_ref = LAST_FRAME;
int64_t best_single_inter_rd = INT64_MAX;
#else
uint16_t mode_skip_mask[TOTAL_REFS_PER_FRAME] = { 0 };
#endif // CONFIG_EXT_INTER
int mode_skip_start = sf->mode_skip_start + 1;
const int *const rd_threshes = rd_opt->threshes[segment_id][bsize];
const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
int64_t mode_threshold[MAX_MODES];
int *mode_map = tile_data->mode_map[bsize];
const int mode_search_skip_flags = sf->mode_search_skip_flags;
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
#if CONFIG_PVQ
od_rollback_buffer pre_buf;
#endif
#if CONFIG_PALETTE || CONFIG_EXT_INTRA
const int rows = block_size_high[bsize];
const int cols = block_size_wide[bsize];
#endif // CONFIG_PALETTE || CONFIG_EXT_INTRA
#if CONFIG_PALETTE
int palette_ctx = 0;
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
#endif // CONFIG_PALETTE
#if CONFIG_MOTION_VAR
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, int32_t, weighted_src_buf[MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, int32_t, mask2d_buf[MAX_SB_SQUARE]);
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_SB_SQUARE * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_SB_SQUARE * len);
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + 2 * MAX_SB_SQUARE;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + 2 * MAX_SB_SQUARE;
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // CONFIG_MOTION_VAR
av1_zero(best_mbmode);
#if CONFIG_PALETTE
av1_zero(pmi_uv);
if (cm->allow_screen_content_tools) {
if (above_mi)
palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
if (left_mi)
palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
}
#endif // CONFIG_PALETTE
#if CONFIG_EXT_INTRA
memset(directional_mode_skip_mask, 0,
sizeof(directional_mode_skip_mask[0]) * INTRA_MODES);
#endif // CONFIG_EXT_INTRA
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX;
for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX;
for (i = 0; i < MB_MODE_COUNT; ++i) {
for (k = 0; k < TOTAL_REFS_PER_FRAME; ++k) {
single_inter_filter[i][k] = SWITCHABLE;
single_skippable[i][k] = 0;
}
}
rd_cost->rate = INT_MAX;
#if CONFIG_SUPERTX
*returnrate_nocoef = INT_MAX;
#endif // CONFIG_SUPERTX
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
x->pred_mv_sad[ref_frame] = INT_MAX;
x->mbmi_ext->mode_context[ref_frame] = 0;
#if CONFIG_REF_MV && CONFIG_EXT_INTER
x->mbmi_ext->compound_mode_context[ref_frame] = 0;
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
#if CONFIG_GLOBAL_MOTION
frame_mv[ZEROMV][ref_frame].as_int =
gm_get_motion_vector(&cm->global_motion[ref_frame],
cm->allow_high_precision_mv)
.as_int;
#else // CONFIG_GLOBAL_MOTION
frame_mv[ZEROMV][ref_frame].as_int = 0;
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_EXT_INTER
frame_mv[NEWFROMNEARMV][ref_frame].as_int = INVALID_MV;
frame_mv[NEW_NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZERO_ZEROMV][ref_frame].as_int = 0;
#endif // CONFIG_EXT_INTER
}
#if CONFIG_REF_MV
for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
MODE_INFO *const mi = xd->mi[0];
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
x->mbmi_ext->mode_context[ref_frame] = 0;
av1_find_mv_refs(cm, xd, mi, ref_frame, &mbmi_ext->ref_mv_count[ref_frame],
mbmi_ext->ref_mv_stack[ref_frame],
#if CONFIG_EXT_INTER
mbmi_ext->compound_mode_context,
#endif // CONFIG_EXT_INTER
candidates, mi_row, mi_col, NULL, NULL,
mbmi_ext->mode_context);
if (mbmi_ext->ref_mv_count[ref_frame] < 2) {
MV_REFERENCE_FRAME rf[2];
av1_set_ref_frame(rf, ref_frame);
if (mbmi_ext->ref_mvs[rf[0]][0].as_int !=
frame_mv[ZEROMV][rf[0]].as_int ||
mbmi_ext->ref_mvs[rf[0]][1].as_int !=
frame_mv[ZEROMV][rf[0]].as_int ||
mbmi_ext->ref_mvs[rf[1]][0].as_int !=
frame_mv[ZEROMV][rf[1]].as_int ||
mbmi_ext->ref_mvs[rf[1]][1].as_int != frame_mv[ZEROMV][rf[1]].as_int)
mbmi_ext->mode_context[ref_frame] &= ~(1 << ALL_ZERO_FLAG_OFFSET);
}
}
#endif // CONFIG_REF_MV
#if CONFIG_MOTION_VAR
av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_width1, dst_height1, dst_stride1);
av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
dst_width2, dst_height2, dst_stride2);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
x->mask_buf = mask2d_buf;
x->wsrc_buf = weighted_src_buf;
calc_target_weighted_pred(cm, x, xd, mi_row, mi_col, dst_buf1[0],
dst_stride1[0], dst_buf2[0], dst_stride2[0]);
#endif // CONFIG_MOTION_VAR
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (!(cpi->ref_frame_flags & flag_list[ref_frame])) {
// Skip checking missing references in both single and compound reference
// modes. Note that a mode will be skipped iff both reference frames
// are masked out.
#if CONFIG_EXT_REFS
if (ref_frame == BWDREF_FRAME || ref_frame == ALTREF_FRAME) {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= ((1 << ref_frame) | 0x01);
} else {
#endif // CONFIG_EXT_REFS
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
#if CONFIG_EXT_REFS
}
#endif // CONFIG_EXT_REFS
} else {
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
// Skip fixed mv modes for poor references
if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) {
mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
break;
}
}
}
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
}
}
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
int_mv zeromv;
ref_frame_skip_mask[0] = (1 << LAST_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << GOLDEN_FRAME);
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
// TODO(zoeliu): To further explore whether following needs to be done for
// BWDREF_FRAME as well.
mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
#if CONFIG_GLOBAL_MOTION
zeromv.as_int = gm_get_motion_vector(&cm->global_motion[ALTREF_FRAME],
cm->allow_high_precision_mv)
.as_int;
#else
zeromv.as_int = 0;
#endif // CONFIG_GLOBAL_MOTION
if (frame_mv[NEARMV][ALTREF_FRAME].as_int != zeromv.as_int)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
#if CONFIG_EXT_INTER
if (frame_mv[NEAREST_NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARESTMV);
if (frame_mv[NEAREST_NEARMV][ALTREF_FRAME].as_int != zeromv.as_int)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARMV);
if (frame_mv[NEAR_NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARESTMV);
if (frame_mv[NEAR_NEARMV][ALTREF_FRAME].as_int != zeromv.as_int)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARMV);
#endif // CONFIG_EXT_INTER
}
}
if (cpi->rc.is_src_frame_alt_ref) {
if (sf->alt_ref_search_fp) {
assert(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]);
mode_skip_mask[ALTREF_FRAME] = 0;
ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
}
}
if (sf->alt_ref_search_fp)
if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;
if (sf->adaptive_mode_search) {
if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
cpi->rc.frames_since_golden >= 3)
if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1))
mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
}
if (bsize > sf->max_intra_bsize) {
ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
}
mode_skip_mask[INTRA_FRAME] |=
~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);
for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0;
for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5;
midx = sf->schedule_mode_search ? mode_skip_start : 0;
while (midx > 4) {
uint8_t end_pos = 0;
for (i = 5; i < midx; ++i) {
if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) {
uint8_t tmp = mode_map[i];
mode_map[i] = mode_map[i - 1];
mode_map[i - 1] = tmp;
end_pos = i;
}
}
midx = end_pos;
}
if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
x->use_default_intra_tx_type = 1;
else
x->use_default_intra_tx_type = 0;
if (cpi->sf.tx_type_search.fast_inter_tx_type_search)
x->use_default_inter_tx_type = 1;
else
x->use_default_inter_tx_type = 0;
#if CONFIG_PVQ
od_encode_checkpoint(&x->daala_enc, &pre_buf);
#endif
#if CONFIG_EXT_INTER
for (i = 0; i < MB_MODE_COUNT; ++i)
for (ref_frame = 0; ref_frame < TOTAL_REFS_PER_FRAME; ++ref_frame)
modelled_rd[i][ref_frame] = INT64_MAX;
#endif // CONFIG_EXT_INTER
for (midx = 0; midx < MAX_MODES; ++midx) {
int mode_index;
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
#if CONFIG_EXT_INTER
int compmode_interintra_cost = 0;
int compmode_interinter_cost = 0;
#endif // CONFIG_EXT_INTER
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable = 0;
int this_skip2 = 0;
int64_t total_sse = INT64_MAX;
#if CONFIG_REF_MV
uint8_t ref_frame_type;
#endif
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &pre_buf);
#endif
mode_index = mode_map[midx];
this_mode = av1_mode_order[mode_index].mode;
ref_frame = av1_mode_order[mode_index].ref_frame[0];
second_ref_frame = av1_mode_order[mode_index].ref_frame[1];
#if CONFIG_REF_MV
mbmi->ref_mv_idx = 0;
#endif
#if CONFIG_EXT_INTER
if (ref_frame > INTRA_FRAME && second_ref_frame == INTRA_FRAME) {
// Mode must by compatible
assert(is_interintra_allowed_mode(this_mode));
#if !USE_RECT_INTERINTRA
// Note: If the subsampling is unequal, any block size we pick
// either a rectangular luma block or a rectangular chroma block.
// So in this case, we can't use any interintra modes
if (xd->plane[1].subsampling_x != xd->plane[1].subsampling_y ||
xd->plane[2].subsampling_x != xd->plane[2].subsampling_y)
continue;
#endif
if (!is_interintra_allowed_bsize(bsize)) continue;
}
if (is_inter_compound_mode(this_mode)) {
frame_mv[this_mode][ref_frame].as_int =
frame_mv[compound_ref0_mode(this_mode)][ref_frame].as_int;
frame_mv[this_mode][second_ref_frame].as_int =
frame_mv[compound_ref1_mode(this_mode)][second_ref_frame].as_int;
}
#endif // CONFIG_EXT_INTER
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
if (midx == mode_skip_start && best_mode_index >= 0) {
switch (best_mbmode.ref_frame[0]) {
case INTRA_FRAME: break;
case LAST_FRAME:
ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case LAST2_FRAME:
ref_frame_skip_mask[0] |= LAST2_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case LAST3_FRAME:
ref_frame_skip_mask[0] |= LAST3_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#endif // CONFIG_EXT_REFS
case GOLDEN_FRAME:
ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case BWDREF_FRAME:
ref_frame_skip_mask[0] |= BWDREF_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#endif // CONFIG_EXT_REFS
case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALTREF_FRAME_MODE_MASK;
#if CONFIG_EXT_REFS
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
#endif // CONFIG_EXT_REFS
break;
case NONE:
case TOTAL_REFS_PER_FRAME:
assert(0 && "Invalid Reference frame");
break;
}
}
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
(ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame))))
continue;
if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue;
// Test best rd so far against threshold for trying this mode.
if (best_mode_skippable && sf->schedule_mode_search)
mode_threshold[mode_index] <<= 1;
if (best_rd < mode_threshold[mode_index]) continue;
comp_pred = second_ref_frame > INTRA_FRAME;
if (comp_pred) {
if (!cpi->allow_comp_inter_inter) continue;
// Skip compound inter modes if ARF is not available.
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME)
continue;
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
} else {
if (ref_frame != INTRA_FRAME)
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
}
if (ref_frame == INTRA_FRAME) {
if (sf->adaptive_mode_search)
if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse)
continue;
if (this_mode != DC_PRED) {
// Disable intra modes other than DC_PRED for blocks with low variance
// Threshold for intra skipping based on source variance
// TODO(debargha): Specialize the threshold for super block sizes
const unsigned int skip_intra_var_thresh = 64;
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
x->source_variance < skip_intra_var_thresh)
continue;
// Only search the oblique modes if the best so far is
// one of the neighboring directional modes
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
(this_mode >= D45_PRED && this_mode <= TM_PRED)) {
if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME)
continue;
}
if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(this_mode, best_intra_mode)) continue;
}
}
#if CONFIG_GLOBAL_MOTION
} else if (cm->global_motion[ref_frame].wmtype == IDENTITY &&
(!comp_pred ||
cm->global_motion[second_ref_frame].wmtype == IDENTITY)) {
#else // CONFIG_GLOBAL_MOTION
} else {
#endif // CONFIG_GLOBAL_MOTION
const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame };
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
mbmi_ext->compound_mode_context,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
frame_mv, this_mode, ref_frames, bsize, -1))
continue;
}
mbmi->mode = this_mode;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = second_ref_frame;
#if CONFIG_PALETTE
pmi->palette_size[0] = 0;
pmi->palette_size[1] = 0;
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
#endif // CONFIG_FILTER_INTRA
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i) {
mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE
? EIGHTTAP_REGULAR
: cm->interp_filter;
}
#else
mbmi->interp_filter =
cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter;
#endif
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
#if CONFIG_EXT_INTER
mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
#endif // CONFIG_EXT_INTER
if (ref_frame == INTRA_FRAME) {
RD_STATS rd_stats_y;
TX_SIZE uv_tx;
struct macroblockd_plane *const pd = &xd->plane[1];
#if CONFIG_EXT_INTRA
is_directional_mode = av1_is_directional_mode(mbmi->mode, bsize);
if (is_directional_mode) {
int rate_dummy;
if (!angle_stats_ready) {
const int src_stride = x->plane[0].src.stride;
const uint8_t *src = x->plane[0].src.buf;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
highbd_angle_estimation(src, src_stride, rows, cols,
directional_mode_skip_mask);
else
#endif
angle_estimation(src, src_stride, rows, cols,
directional_mode_skip_mask);
angle_stats_ready = 1;
}
if (directional_mode_skip_mask[mbmi->mode]) continue;
rd_stats_y.rate = INT_MAX;
this_rd =
rd_pick_intra_angle_sby(cpi, x, &rate_dummy, &rd_stats_y, bsize,
intra_mode_cost[mbmi->mode], best_rd);
} else {
mbmi->angle_delta[0] = 0;
super_block_yrd(cpi, x, &rd_stats_y, bsize, best_rd);
}
#else
super_block_yrd(cpi, x, &rd_stats_y, bsize, best_rd);
#endif // CONFIG_EXT_INTRA
rate_y = rd_stats_y.rate;
distortion_y = rd_stats_y.dist;
skippable = rd_stats_y.skip;
if (rate_y == INT_MAX) continue;
#if CONFIG_FILTER_INTRA
if (mbmi->mode == DC_PRED) dc_skipped = 0;
#endif // CONFIG_FILTER_INTRA
uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][pd->subsampling_x]
[pd->subsampling_y];
if (rate_uv_intra[uv_tx] == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx],
&rate_uv_tokenonly[uv_tx], &dist_uvs[uv_tx],
&skip_uvs[uv_tx], &mode_uv[uv_tx]);
#if CONFIG_PALETTE
if (cm->allow_screen_content_tools) pmi_uv[uv_tx] = *pmi;
#endif // CONFIG_PALETTE
#if CONFIG_EXT_INTRA
uv_angle_delta[uv_tx] = mbmi->angle_delta[1];
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
filter_intra_mode_info_uv[uv_tx] = mbmi->filter_intra_mode_info;
#endif // CONFIG_FILTER_INTRA
}
rate_uv = rate_uv_tokenonly[uv_tx];
distortion_uv = dist_uvs[uv_tx];
skippable = skippable && skip_uvs[uv_tx];
mbmi->uv_mode = mode_uv[uv_tx];
#if CONFIG_PALETTE
if (cm->allow_screen_content_tools) {
pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1];
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
}
#endif // CONFIG_PALETTE
#if CONFIG_EXT_INTRA
mbmi->angle_delta[1] = uv_angle_delta[uv_tx];
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1];
if (filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]) {
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
filter_intra_mode_info_uv[uv_tx].filter_intra_mode[1];
}
#endif // CONFIG_FILTER_INTRA
rate2 = rate_y + intra_mode_cost[mbmi->mode] + rate_uv +
cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode];
#if CONFIG_PALETTE
if (cpi->common.allow_screen_content_tools && mbmi->mode == DC_PRED)
rate2 += av1_cost_bit(
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0);
#endif // CONFIG_PALETTE
if (!xd->lossless[mbmi->segment_id] && bsize >= BLOCK_8X8) {
// super_block_yrd above includes the cost of the tx_size in the
// tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
rate_y -=
cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)]
[tx_size_to_depth(mbmi->tx_size)];
}
#if CONFIG_EXT_INTRA
if (is_directional_mode) {
const int max_angle_delta = av1_get_max_angle_delta(bsize, 0);
#if CONFIG_INTRA_INTERP
int p_angle;
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
p_angle = mode_to_angle_map[mbmi->mode] +
mbmi->angle_delta[0] * av1_get_angle_step(bsize, 0);
if (av1_is_intra_filter_switchable(p_angle))
rate2 += cpi->intra_filter_cost[intra_filter_ctx][mbmi->intra_filter];
#endif // CONFIG_INTRA_INTERP
rate2 += write_uniform_cost(2 * max_angle_delta + 1,
max_angle_delta + mbmi->angle_delta[0]);
}
if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED) {
rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTA_UV + 1,
MAX_ANGLE_DELTA_UV + mbmi->angle_delta[1]);
}
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
if (mbmi->mode == DC_PRED) {
rate2 +=
av1_cost_bit(cm->fc->filter_intra_probs[0],
mbmi->filter_intra_mode_info.use_filter_intra_mode[0]);
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[0]) {
rate2 += write_uniform_cost(
FILTER_INTRA_MODES,
mbmi->filter_intra_mode_info.filter_intra_mode[0]);
}
}
if (mbmi->uv_mode == DC_PRED) {
rate2 +=
av1_cost_bit(cpi->common.fc->filter_intra_probs[1],
mbmi->filter_intra_mode_info.use_filter_intra_mode[1]);
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[1])
rate2 += write_uniform_cost(
FILTER_INTRA_MODES,
mbmi->filter_intra_mode_info.filter_intra_mode[1]);
}
#endif // CONFIG_FILTER_INTRA
if (this_mode != DC_PRED && this_mode != TM_PRED)
rate2 += intra_cost_penalty;
distortion2 = distortion_y + distortion_uv;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->recon_variance = av1_high_get_sby_perpixel_variance(
cpi, &xd->plane[0].dst, bsize, xd->bd);
} else {
x->recon_variance =
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
}
#else
x->recon_variance =
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
#endif // CONFIG_AOM_HIGHBITDEPTH
} else {
#if CONFIG_REF_MV
int_mv backup_ref_mv[2];
backup_ref_mv[0] = mbmi_ext->ref_mvs[ref_frame][0];
if (comp_pred) backup_ref_mv[1] = mbmi_ext->ref_mvs[second_ref_frame][0];
#endif
#if CONFIG_EXT_INTER
if (second_ref_frame == INTRA_FRAME) {
if (best_single_inter_ref != ref_frame) continue;
mbmi->interintra_mode = intra_to_interintra_mode[best_intra_mode];
// TODO(debargha|geza.lore):
// Should we use ext_intra modes for interintra?
#if CONFIG_EXT_INTRA
mbmi->angle_delta[0] = 0;
mbmi->angle_delta[1] = 0;
#if CONFIG_INTRA_INTERP
mbmi->intra_filter = INTRA_FILTER_LINEAR;
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
#endif // CONFIG_FILTER_INTRA
}
#endif // CONFIG_EXT_INTER
#if CONFIG_REF_MV
mbmi->ref_mv_idx = 0;
ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (this_mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
int ref;
for (ref = 0; ref < 1 + comp_pred; ++ref) {
int_mv this_mv =
(ref == 0) ? mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv
: mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2,
xd->n8_h << MI_SIZE_LOG2, xd);
mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv;
}
}
#endif
{
RD_STATS rd_stats, rd_stats_y, rd_stats_uv;
av1_init_rd_stats(&rd_stats);
rd_stats.rate = rate2;
this_rd = handle_inter_mode(
cpi, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, &disable_skip,
frame_mv, mi_row, mi_col,
#if CONFIG_MOTION_VAR
dst_buf1, dst_stride1, dst_buf2, dst_stride2,
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTER
single_newmvs, single_newmvs_rate, &compmode_interintra_cost,
&compmode_interinter_cost, modelled_rd,
#else
single_newmv,
#endif // CONFIG_EXT_INTER
single_inter_filter, single_skippable, best_rd);
rate2 = rd_stats.rate;
skippable = rd_stats.skip;
distortion2 = rd_stats.dist;
total_sse = rd_stats.sse;
rate_y = rd_stats_y.rate;
rate_uv = rd_stats_uv.rate;
}
#if CONFIG_REF_MV
// TODO(jingning): This needs some refactoring to improve code quality
// and reduce redundant steps.
#if CONFIG_EXT_INTER
if (((mbmi->mode == NEARMV || mbmi->mode == NEAR_NEARMV) &&
mbmi_ext->ref_mv_count[ref_frame_type] > 2) ||
((mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) &&
mbmi_ext->ref_mv_count[ref_frame_type] > 1)) {
#else
if ((mbmi->mode == NEARMV &&
mbmi_ext->ref_mv_count[ref_frame_type] > 2) ||
(mbmi->mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1)) {
#endif // CONFIG_EXT_INTER
int_mv backup_mv = frame_mv[NEARMV][ref_frame];
MB_MODE_INFO backup_mbmi = *mbmi;
int backup_skip = x->skip;
int64_t tmp_ref_rd = this_rd;
int ref_idx;
// TODO(jingning): This should be deprecated shortly.
#if CONFIG_EXT_INTER
int idx_offset =
(mbmi->mode == NEARMV || mbmi->mode == NEAR_NEARMV) ? 1 : 0;
#else
int idx_offset = (mbmi->mode == NEARMV) ? 1 : 0;
#endif
int ref_set =
AOMMIN(2, mbmi_ext->ref_mv_count[ref_frame_type] - 1 - idx_offset);
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx_offset);
// Dummy
int_mv backup_fmv[2];
backup_fmv[0] = frame_mv[NEWMV][ref_frame];
if (comp_pred) backup_fmv[1] = frame_mv[NEWMV][second_ref_frame];
rate2 += (rate2 < INT_MAX ? cpi->drl_mode_cost0[drl_ctx][0] : 0);
if (this_rd < INT64_MAX) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse))
tmp_ref_rd =
RDCOST(x->rdmult, x->rddiv,
rate2 + av1_cost_bit(av1_get_skip_prob(cm, xd), 0),
distortion2);
else
tmp_ref_rd =
RDCOST(x->rdmult, x->rddiv,
rate2 + av1_cost_bit(av1_get_skip_prob(cm, xd), 1) -
rate_y - rate_uv,
total_sse);
}
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(x->blk_skip_drl[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
for (ref_idx = 0; ref_idx < ref_set; ++ref_idx) {
int64_t tmp_alt_rd = INT64_MAX;
int dummy_disable_skip = 0;
int ref;
int_mv cur_mv;
RD_STATS tmp_rd_stats, tmp_rd_stats_y, tmp_rd_stats_uv;
#if CONFIG_EXT_INTER
int tmp_compmode_interintra_cost = 0;
int tmp_compmode_interinter_cost = 0;
#endif // CONFIG_EXT_INTER
av1_invalid_rd_stats(&tmp_rd_stats);
mbmi->ref_mv_idx = 1 + ref_idx;
for (ref = 0; ref < 1 + comp_pred; ++ref) {
int_mv this_mv =
(ref == 0)
? mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
.this_mv
: mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
.comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2,
xd->n8_h << MI_SIZE_LOG2, xd);
mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv;
}
cur_mv =
mbmi_ext->ref_mv_stack[ref_frame][mbmi->ref_mv_idx + idx_offset]
.this_mv;
clamp_mv2(&cur_mv.as_mv, xd);
if (!mv_check_bounds(x, &cur_mv.as_mv)) {
int dummy_single_skippable[MB_MODE_COUNT]
[TOTAL_REFS_PER_FRAME] = { { 0 } };
#if CONFIG_EXT_INTER
int_mv dummy_single_newmvs[2][TOTAL_REFS_PER_FRAME] = { { { 0 } },
{ { 0 } } };
int dummy_single_newmvs_rate[2][TOTAL_REFS_PER_FRAME] = { { 0 },
{ 0 } };
#else
int_mv dummy_single_newmv[TOTAL_REFS_PER_FRAME] = { { 0 } };
#endif
frame_mv[NEARMV][ref_frame] = cur_mv;
av1_init_rd_stats(&tmp_rd_stats);
tmp_alt_rd = handle_inter_mode(
cpi, x, bsize, &tmp_rd_stats, &tmp_rd_stats_y, &tmp_rd_stats_uv,
&dummy_disable_skip, frame_mv, mi_row, mi_col,
#if CONFIG_MOTION_VAR
dst_buf1, dst_stride1, dst_buf2, dst_stride2,
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTER
dummy_single_newmvs, dummy_single_newmvs_rate,
&tmp_compmode_interintra_cost, &tmp_compmode_interinter_cost,
NULL,
#else
dummy_single_newmv,
#endif
single_inter_filter, dummy_single_skippable, best_rd);
}
for (i = 0; i < mbmi->ref_mv_idx; ++i) {
uint8_t drl1_ctx = 0;
drl1_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type],
i + idx_offset);
tmp_rd_stats.rate +=
(tmp_rd_stats.rate < INT_MAX ? cpi->drl_mode_cost0[drl1_ctx][1]
: 0);
}
if (mbmi_ext->ref_mv_count[ref_frame_type] >
mbmi->ref_mv_idx + idx_offset + 1 &&
ref_idx < ref_set - 1) {
uint8_t drl1_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type],
mbmi->ref_mv_idx + idx_offset);
tmp_rd_stats.rate +=
(tmp_rd_stats.rate < INT_MAX ? cpi->drl_mode_cost0[drl1_ctx][0]
: 0);
}
if (tmp_alt_rd < INT64_MAX) {
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
tmp_alt_rd = RDCOST(x->rdmult, x->rddiv, tmp_rd_stats.rate,
tmp_rd_stats.dist);
#else
if (RDCOST(x->rdmult, x->rddiv,
tmp_rd_stats_y.rate + tmp_rd_stats_uv.rate,
tmp_rd_stats.dist) <
RDCOST(x->rdmult, x->rddiv, 0, tmp_rd_stats.sse))
tmp_alt_rd =
RDCOST(x->rdmult, x->rddiv,
tmp_rd_stats.rate +
av1_cost_bit(av1_get_skip_prob(cm, xd), 0),
tmp_rd_stats.dist);
else
tmp_alt_rd =
RDCOST(x->rdmult, x->rddiv,
tmp_rd_stats.rate +
av1_cost_bit(av1_get_skip_prob(cm, xd), 1) -
tmp_rd_stats_y.rate - tmp_rd_stats_uv.rate,
tmp_rd_stats.sse);
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
}
if (tmp_ref_rd > tmp_alt_rd) {
rate2 = tmp_rd_stats.rate;
disable_skip = dummy_disable_skip;
distortion2 = tmp_rd_stats.dist;
skippable = tmp_rd_stats.skip;
rate_y = tmp_rd_stats_y.rate;
rate_uv = tmp_rd_stats_uv.rate;
total_sse = tmp_rd_stats.sse;
this_rd = tmp_alt_rd;
tmp_ref_rd = tmp_alt_rd;
backup_mbmi = *mbmi;
backup_skip = x->skip;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(x->blk_skip_drl[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
#if CONFIG_EXT_INTER
compmode_interintra_cost = tmp_compmode_interintra_cost;
compmode_interinter_cost = tmp_compmode_interinter_cost;
#endif
} else {
*mbmi = backup_mbmi;
x->skip = backup_skip;
}
}
frame_mv[NEARMV][ref_frame] = backup_mv;
frame_mv[NEWMV][ref_frame] = backup_fmv[0];
if (comp_pred) frame_mv[NEWMV][second_ref_frame] = backup_fmv[1];
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(x->blk_skip[i], x->blk_skip_drl[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
}
mbmi_ext->ref_mvs[ref_frame][0] = backup_ref_mv[0];
if (comp_pred) mbmi_ext->ref_mvs[second_ref_frame][0] = backup_ref_mv[1];
#endif // CONFIG_REF_MV
if (this_rd == INT64_MAX) continue;
compmode_cost = av1_cost_bit(comp_mode_p, comp_pred);
if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
}
#if CONFIG_EXT_INTER
rate2 += compmode_interintra_cost;
if (cm->reference_mode != SINGLE_REFERENCE && comp_pred)
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
if (mbmi->motion_mode == SIMPLE_TRANSLATION)
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
rate2 += compmode_interinter_cost;
#endif // CONFIG_EXT_INTER
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (comp_pred) {
rate2 += ref_costs_comp[ref_frame];
#if CONFIG_EXT_REFS
rate2 += ref_costs_comp[second_ref_frame];
#endif // CONFIG_EXT_REFS
} else {
rate2 += ref_costs_single[ref_frame];
}
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
if (ref_frame == INTRA_FRAME) {
#else
if (!disable_skip) {
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
if (skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
rate_y = 0;
rate_uv = 0;
// Cost the skip mb case
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
} else if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
#if CONFIG_REF_MV
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + rate_skip0,
distortion2) <
RDCOST(x->rdmult, x->rddiv, rate_skip1, total_sse)) {
#else
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
#endif
// Add in the cost of the no skip flag.
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
} else {
// FIXME(rbultje) make this work for splitmv also
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
this_skip2 = 1;
rate_y = 0;
rate_uv = 0;
}
} else {
// Add in the cost of the no skip flag.
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
} else {
this_skip2 = mbmi->skip;
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
if (this_skip2) {
rate_y = 0;
rate_uv = 0;
}
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
}
if (ref_frame == INTRA_FRAME) {
// Keep record of best intra rd
if (this_rd < best_intra_rd) {
best_intra_rd = this_rd;
best_intra_mode = mbmi->mode;
}
#if CONFIG_EXT_INTER
} else if (second_ref_frame == NONE) {
if (this_rd < best_single_inter_rd) {
best_single_inter_rd = this_rd;
best_single_inter_ref = mbmi->ref_frame[0];
}
#endif // CONFIG_EXT_INTER
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd);
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
} else {
best_pred_sse = x->pred_sse[ref_frame];
}
rd_cost->rate = rate2;
#if CONFIG_SUPERTX
if (x->skip)
*returnrate_nocoef = rate2;
else
*returnrate_nocoef = rate2 - rate_y - rate_uv;
*returnrate_nocoef -= av1_cost_bit(
av1_get_skip_prob(cm, xd), disable_skip || skippable || this_skip2);
*returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd),
mbmi->ref_frame[0] != INTRA_FRAME);
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
if (motion_mode_allowed(mbmi) == WARPED_CAUSAL)
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
*returnrate_nocoef -= cpi->motion_mode_cost[bsize][mbmi->motion_mode];
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
else if (motion_mode_allowed(mbmi) == OBMC_CAUSAL)
*returnrate_nocoef -=
cpi->motion_mode_cost1[bsize][mbmi->motion_mode];
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#endif // CONFIG_SUPERTX
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_mbmode = *mbmi;
best_skip2 = this_skip2;
best_mode_skippable = skippable;
best_rate_y = rate_y + av1_cost_bit(av1_get_skip_prob(cm, xd),
this_skip2 || skippable);
best_rate_uv = rate_uv;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(ctx->blk_skip[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
}
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (!comp_pred) {
if (single_rd < best_pred_rd[SINGLE_REFERENCE])
best_pred_rd[SINGLE_REFERENCE] = single_rd;
} else {
if (single_rd < best_pred_rd[COMPOUND_REFERENCE])
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
}
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
if (x->skip && !comp_pred) break;
}
if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 &&
((sf->tx_type_search.fast_inter_tx_type_search == 1 &&
is_inter_mode(best_mbmode.mode)) ||
(sf->tx_type_search.fast_intra_tx_type_search == 1 &&
!is_inter_mode(best_mbmode.mode)))) {
int skip_blk = 0;
RD_STATS rd_stats_y, rd_stats_uv;
x->use_default_inter_tx_type = 0;
x->use_default_intra_tx_type = 0;
*mbmi = best_mbmode;
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
if (has_second_ref(mbmi))
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
if (is_inter_mode(mbmi->mode)) {
#if CONFIG_WARPED_MOTION
if (mbmi->motion_mode == WARPED_CAUSAL) {
int plane;
#if CONFIG_AOM_HIGHBITDEPTH
int use_hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
#endif // CONFIG_AOM_HIGHBITDEPTH
assert(!has_second_ref(mbmi));
for (plane = 0; plane < 3; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
av1_warp_plane(&mbmi->wm_params[0],
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height,
pd->pre[0].stride, pd->dst.buf,
((mi_col * MI_SIZE) >> pd->subsampling_x),
((mi_row * MI_SIZE) >> pd->subsampling_y),
xd->n8_w * (MI_SIZE >> pd->subsampling_x),
xd->n8_h * (MI_SIZE >> pd->subsampling_y),
pd->dst.stride, pd->subsampling_x, pd->subsampling_y,
16, 16, 0);
}
} else {
#endif // CONFIG_WARPED_MOTION
av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, bsize);
#if CONFIG_WARPED_MOTION
}
#endif // CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
if (mbmi->motion_mode == OBMC_CAUSAL)
av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1,
dst_stride1, dst_buf2, dst_stride2);
#endif // CONFIG_MOTION_VAR
av1_subtract_plane(x, bsize, 0);
#if CONFIG_VAR_TX
if (cm->tx_mode == TX_MODE_SELECT || xd->lossless[mbmi->segment_id]) {
select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
} else {
int idx, idy;
super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
mbmi->inter_tx_size[idy][idx] = mbmi->tx_size;
memset(x->blk_skip[0], rd_stats_y.skip,
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
}
inter_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
#else
super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
#endif // CONFIG_VAR_TX
} else {
super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
}
if (RDCOST(x->rdmult, x->rddiv, rd_stats_y.rate + rd_stats_uv.rate,
(rd_stats_y.dist + rd_stats_uv.dist)) >
RDCOST(x->rdmult, x->rddiv, 0, (rd_stats_y.sse + rd_stats_uv.sse))) {
skip_blk = 1;
rd_stats_y.rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
rd_stats_uv.rate = 0;
rd_stats_y.dist = rd_stats_y.sse;
rd_stats_uv.dist = rd_stats_uv.sse;
} else {
skip_blk = 0;
rd_stats_y.rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
}
if (RDCOST(x->rdmult, x->rddiv, best_rate_y + best_rate_uv, rd_cost->dist) >
RDCOST(x->rdmult, x->rddiv, rd_stats_y.rate + rd_stats_uv.rate,
(rd_stats_y.dist + rd_stats_uv.dist))) {
#if CONFIG_VAR_TX
int idx, idy;
#endif
best_mbmode.tx_type = mbmi->tx_type;
best_mbmode.tx_size = mbmi->tx_size;
#if CONFIG_VAR_TX
for (idy = 0; idy < xd->n8_h; ++idy)
for (idx = 0; idx < xd->n8_w; ++idx)
best_mbmode.inter_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx];
for (i = 0; i < MAX_MB_PLANE; ++i)
memcpy(ctx->blk_skip[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
best_mbmode.min_tx_size = mbmi->min_tx_size;
#endif
rd_cost->rate +=
(rd_stats_y.rate + rd_stats_uv.rate - best_rate_y - best_rate_uv);
rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist;
rd_cost->rdcost =
RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
best_skip2 = skip_blk;
}
}
#if CONFIG_PALETTE
// Only try palette mode when the best mode so far is an intra mode.
if (cm->allow_screen_content_tools && !is_inter_mode(best_mbmode.mode)) {
PREDICTION_MODE mode_selected;
int rate2 = 0;
#if CONFIG_SUPERTX
int best_rate_nocoef;
#endif
int64_t distortion2 = 0, dummy_rd = best_rd, this_rd;
int skippable = 0, rate_overhead_palette = 0;
RD_STATS rd_stats_y;
TX_SIZE best_tx_size, uv_tx;
TX_TYPE best_tx_type;
PALETTE_MODE_INFO palette_mode_info;
uint8_t *const best_palette_color_map =
x->palette_buffer->best_palette_color_map;
uint8_t *const color_map = xd->plane[0].color_index_map;
mbmi->mode = DC_PRED;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
palette_mode_info.palette_size[0] = 0;
rate_overhead_palette = rd_pick_palette_intra_sby(
cpi, x, bsize, palette_ctx, intra_mode_cost[DC_PRED],
&palette_mode_info, best_palette_color_map, &best_tx_size,
&best_tx_type, &mode_selected, &dummy_rd);
if (palette_mode_info.palette_size[0] == 0) goto PALETTE_EXIT;
pmi->palette_size[0] = palette_mode_info.palette_size[0];
if (palette_mode_info.palette_size[0] > 0) {
memcpy(pmi->palette_colors, palette_mode_info.palette_colors,
PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0]));
memcpy(color_map, best_palette_color_map,
rows * cols * sizeof(best_palette_color_map[0]));
}
super_block_yrd(cpi, x, &rd_stats_y, bsize, best_rd);
if (rd_stats_y.rate == INT_MAX) goto PALETTE_EXIT;
uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][xd->plane[1].subsampling_x]
[xd->plane[1].subsampling_y];
if (rate_uv_intra[uv_tx] == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx],
&rate_uv_tokenonly[uv_tx], &dist_uvs[uv_tx],
&skip_uvs[uv_tx], &mode_uv[uv_tx]);
pmi_uv[uv_tx] = *pmi;
#if CONFIG_EXT_INTRA
uv_angle_delta[uv_tx] = mbmi->angle_delta[1];
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
filter_intra_mode_info_uv[uv_tx] = mbmi->filter_intra_mode_info;
#endif // CONFIG_FILTER_INTRA
}
mbmi->uv_mode = mode_uv[uv_tx];
pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1];
if (pmi->palette_size[1] > 0)
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
#if CONFIG_EXT_INTRA
mbmi->angle_delta[1] = uv_angle_delta[uv_tx];
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1];
if (filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]) {
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
filter_intra_mode_info_uv[uv_tx].filter_intra_mode[1];
}
#endif // CONFIG_FILTER_INTRA
skippable = rd_stats_y.skip && skip_uvs[uv_tx];
distortion2 = rd_stats_y.dist + dist_uvs[uv_tx];
rate2 = rd_stats_y.rate + rate_overhead_palette + rate_uv_intra[uv_tx];
rate2 += ref_costs_single[INTRA_FRAME];
if (skippable) {
rate2 -= (rd_stats_y.rate + rate_uv_tokenonly[uv_tx]);
#if CONFIG_SUPERTX
best_rate_nocoef = rate2;
#endif
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
} else {
#if CONFIG_SUPERTX
best_rate_nocoef = rate2 - (rd_stats_y.rate + rate_uv_tokenonly[uv_tx]);
#endif
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
}
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
if (this_rd < best_rd) {
best_mode_index = 3;
mbmi->mv[0].as_int = 0;
rd_cost->rate = rate2;
#if CONFIG_SUPERTX
*returnrate_nocoef = best_rate_nocoef;
#endif
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_mbmode = *mbmi;
best_skip2 = 0;
best_mode_skippable = skippable;
}
}
PALETTE_EXIT:
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
// TODO(huisu): filter-intra is turned off in lossless mode for now to
// avoid a unit test failure
if (!xd->lossless[mbmi->segment_id] &&
#if CONFIG_PALETTE
mbmi->palette_mode_info.palette_size[0] == 0 &&
#endif // CONFIG_PALETTE
!dc_skipped && best_mode_index >= 0 &&
best_intra_rd < (best_rd + (best_rd >> 3))) {
pick_filter_intra_interframe(
cpi, x, ctx, bsize, rate_uv_intra, rate_uv_tokenonly, dist_uvs,
skip_uvs, mode_uv, filter_intra_mode_info_uv,
#if CONFIG_EXT_INTRA
uv_angle_delta,
#endif // CONFIG_EXT_INTRA
#if CONFIG_PALETTE
pmi_uv, palette_ctx,
#endif // CONFIG_PALETTE
0, ref_costs_single, &best_rd, &best_intra_rd, &best_intra_mode,
&best_mode_index, &best_skip2, &best_mode_skippable,
#if CONFIG_SUPERTX
returnrate_nocoef,
#endif // CONFIG_SUPERTX
best_pred_rd, &best_mbmode, rd_cost);
}
#endif // CONFIG_FILTER_INTRA
// The inter modes' rate costs are not calculated precisely in some cases.
// Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and
// ZEROMV. Here, checks are added for those cases, and the mode decisions
// are corrected.
if (best_mbmode.mode == NEWMV
#if CONFIG_EXT_INTER
|| best_mbmode.mode == NEWFROMNEARMV || best_mbmode.mode == NEW_NEWMV
#endif // CONFIG_EXT_INTER
) {
const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0],
best_mbmode.ref_frame[1] };
int comp_pred_mode = refs[1] > INTRA_FRAME;
int_mv zeromv[2];
#if CONFIG_REF_MV
const uint8_t rf_type = av1_ref_frame_type(best_mbmode.ref_frame);
#endif // CONFIG_REF_MV
#if CONFIG_GLOBAL_MOTION
zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[refs[0]],
cm->allow_high_precision_mv)
.as_int;
zeromv[1].as_int = comp_pred_mode
? gm_get_motion_vector(&cm->global_motion[refs[1]],
cm->allow_high_precision_mv)
.as_int
: 0;
#else
zeromv[0].as_int = 0;
zeromv[1].as_int = 0;
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_REF_MV
if (!comp_pred_mode) {
int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2)
? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2)
: INT_MAX;
for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) {
int_mv cur_mv = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv;
if (cur_mv.as_int == best_mbmode.mv[0].as_int) {
best_mbmode.mode = NEARMV;
best_mbmode.ref_mv_idx = i;
}
}
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int)
best_mbmode.mode = NEARESTMV;
else if (best_mbmode.mv[0].as_int == zeromv[0].as_int)
best_mbmode.mode = ZEROMV;
} else {
int_mv nearestmv[2];
int_mv nearmv[2];
#if CONFIG_EXT_INTER
if (mbmi_ext->ref_mv_count[rf_type] > 1) {
nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][1].this_mv;
nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][1].comp_mv;
} else {
nearmv[0] = frame_mv[NEARMV][refs[0]];
nearmv[1] = frame_mv[NEARMV][refs[1]];
}
#else
int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2)
? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2)
: INT_MAX;
for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) {
nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv;
nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][i + 1].comp_mv;
if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
nearmv[1].as_int == best_mbmode.mv[1].as_int) {
best_mbmode.mode = NEARMV;
best_mbmode.ref_mv_idx = i;
}
}
#endif
if (mbmi_ext->ref_mv_count[rf_type] >= 1) {
nearestmv[0] = mbmi_ext->ref_mv_stack[rf_type][0].this_mv;
nearestmv[1] = mbmi_ext->ref_mv_stack[rf_type][0].comp_mv;
} else {
nearestmv[0] = frame_mv[NEARESTMV][refs[0]];
nearestmv[1] = frame_mv[NEARESTMV][refs[1]];
}
if (nearestmv[0].as_int == best_mbmode.mv[0].as_int &&
nearestmv[1].as_int == best_mbmode.mv[1].as_int)
#if CONFIG_EXT_INTER
best_mbmode.mode = NEAREST_NEARESTMV;
else if (nearestmv[0].as_int == best_mbmode.mv[0].as_int &&
nearmv[1].as_int == best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAREST_NEARMV;
else if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
nearestmv[1].as_int == best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAR_NEARESTMV;
else if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
nearmv[1].as_int == best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAR_NEARMV;
else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0)
best_mbmode.mode = ZERO_ZEROMV;
#else
best_mbmode.mode = NEARESTMV;
else if (best_mbmode.mv[0].as_int == zeromv[0].as_int &&
best_mbmode.mv[1].as_int == zeromv[1].as_int)
best_mbmode.mode = ZEROMV;
#endif // CONFIG_EXT_INTER
}
#else
#if CONFIG_EXT_INTER
if (!comp_pred_mode) {
#endif // CONFIG_EXT_INTER
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
((comp_pred_mode &&
frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) ||
!comp_pred_mode))
best_mbmode.mode = NEARESTMV;
else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
((comp_pred_mode &&
frame_mv[NEARMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int) ||
!comp_pred_mode))
best_mbmode.mode = NEARMV;
else if (best_mbmode.mv[0].as_int == zeromv[0].as_int &&
((comp_pred_mode &&
best_mbmode.mv[1].as_int == zeromv[1].as_int) ||
!comp_pred_mode))
best_mbmode.mode = ZEROMV;
#if CONFIG_EXT_INTER
} else {
if (frame_mv[NEAREST_NEARESTMV][refs[0]].as_int ==
best_mbmode.mv[0].as_int &&
frame_mv[NEAREST_NEARESTMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAREST_NEARESTMV;
else if (frame_mv[NEAREST_NEARMV][refs[0]].as_int ==
best_mbmode.mv[0].as_int &&
frame_mv[NEAREST_NEARMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAREST_NEARMV;
else if (frame_mv[NEAR_NEARESTMV][refs[0]].as_int ==
best_mbmode.mv[0].as_int &&
frame_mv[NEAR_NEARESTMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAR_NEARESTMV;
else if (frame_mv[NEAR_NEARMV][refs[0]].as_int ==
best_mbmode.mv[0].as_int &&
frame_mv[NEAR_NEARMV][refs[1]].as_int ==
best_mbmode.mv[1].as_int)
best_mbmode.mode = NEAR_NEARMV;
else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0)
best_mbmode.mode = ZERO_ZEROMV;
}
#endif // CONFIG_EXT_INTER
#endif
}
#if CONFIG_REF_MV
{
int8_t ref_frame_type = av1_ref_frame_type(best_mbmode.ref_frame);
int16_t mode_ctx = mbmi_ext->mode_context[ref_frame_type];
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) {
int_mv zeromv[2];
#if CONFIG_GLOBAL_MOTION
const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0],
best_mbmode.ref_frame[1] };
zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[refs[0]],
cm->allow_high_precision_mv)
.as_int;
zeromv[1].as_int = gm_get_motion_vector(&cm->global_motion[refs[1]],
cm->allow_high_precision_mv)
.as_int;
lower_mv_precision(&zeromv[0].as_mv, cm->allow_high_precision_mv);
lower_mv_precision(&zeromv[1].as_mv, cm->allow_high_precision_mv);
#else
zeromv[0].as_int = zeromv[1].as_int = 0;
#endif // CONFIG_GLOBAL_MOTION
if (best_mbmode.ref_frame[0] > INTRA_FRAME &&
best_mbmode.mv[0].as_int == zeromv[0].as_int &&
#if CONFIG_EXT_INTER
(best_mbmode.ref_frame[1] <= INTRA_FRAME)
#else
(best_mbmode.ref_frame[1] == NONE ||
best_mbmode.mv[1].as_int == zeromv[1].as_int)
#endif // CONFIG_EXT_INTER
) {
best_mbmode.mode = ZEROMV;
}
}
}
#endif
if (best_mode_index < 0 || best_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
#if CONFIG_DUAL_FILTER
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[0]) ||
!is_inter_block(&best_mbmode));
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[1]) ||
!is_inter_block(&best_mbmode));
if (best_mbmode.ref_frame[1] > INTRA_FRAME) {
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[2]) ||
!is_inter_block(&best_mbmode));
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[3]) ||
!is_inter_block(&best_mbmode));
}
#else
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter) ||
!is_inter_block(&best_mbmode));
#endif
if (!cpi->rc.is_src_frame_alt_ref)
av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
sf->adaptive_rd_thresh, bsize, best_mode_index);
// macroblock modes
*mbmi = best_mbmode;
x->skip |= best_skip2;
#if CONFIG_REF_MV
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
if (mbmi->mode != NEWMV)
mbmi->pred_mv[i].as_int = mbmi->mv[i].as_int;
else
mbmi->pred_mv[i].as_int = mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_int;
}
#endif
for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
x->skip |= best_mode_skippable;
assert(best_mode_index >= 0);
store_coding_context(x, ctx, best_mode_index, best_pred_diff,
best_mode_skippable);
#if CONFIG_PALETTE
if (cm->allow_screen_content_tools && pmi->palette_size[1] > 0) {
restore_uv_color_map(cpi, x);
}
#endif // CONFIG_PALETTE
}
void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi,
TileDataEnc *tile_data, MACROBLOCK *x,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
unsigned char segment_id = mbmi->segment_id;
const int comp_pred = 0;
int i;
int64_t best_pred_diff[REFERENCE_MODES];
unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME];
unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME];
aom_prob comp_mode_p;
InterpFilter best_filter = SWITCHABLE;
int64_t this_rd = INT64_MAX;
int rate2 = 0;
const int64_t distortion2 = 0;
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX;
for (i = LAST_FRAME; i < TOTAL_REFS_PER_FRAME; ++i)
x->pred_mv_sad[i] = INT_MAX;
rd_cost->rate = INT_MAX;
assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
#if CONFIG_PALETTE
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
#endif // CONFIG_FILTER_INTRA
mbmi->mode = ZEROMV;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE;
#if CONFIG_GLOBAL_MOTION
mbmi->mv[0].as_int =
gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]],
cm->allow_high_precision_mv)
.as_int;
#else // CONFIG_GLOBAL_MOTION
mbmi->mv[0].as_int = 0;
#endif // CONFIG_GLOBAL_MOTION
mbmi->tx_size = max_txsize_lookup[bsize];
x->skip = 1;
#if CONFIG_REF_MV
mbmi->ref_mv_idx = 0;
mbmi->pred_mv[0].as_int = 0;
#endif
if (cm->interp_filter != BILINEAR) {
best_filter = EIGHTTAP_REGULAR;
if (cm->interp_filter == SWITCHABLE &&
#if CONFIG_EXT_INTERP
av1_is_interp_needed(xd) &&
#endif // CONFIG_EXT_INTERP
x->source_variance >= cpi->sf.disable_filter_search_var_thresh) {
int rs;
int best_rs = INT_MAX;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
#if CONFIG_DUAL_FILTER
int k;
for (k = 0; k < 4; ++k) mbmi->interp_filter[k] = i;
#else
mbmi->interp_filter = i;
#endif
rs = av1_get_switchable_rate(cpi, xd);
if (rs < best_rs) {
best_rs = rs;
#if CONFIG_DUAL_FILTER
best_filter = mbmi->interp_filter[0];
#else
best_filter = mbmi->interp_filter;
#endif
}
}
}
}
// Set the appropriate filter
if (cm->interp_filter == SWITCHABLE) {
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = best_filter;
#else
mbmi->interp_filter = best_filter;
#endif
rate2 += av1_get_switchable_rate(cpi, xd);
} else {
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i) mbmi->interp_filter[0] = cm->interp_filter;
#else
mbmi->interp_filter = cm->interp_filter;
#endif
}
if (cm->reference_mode == REFERENCE_MODE_SELECT)
rate2 += av1_cost_bit(comp_mode_p, comp_pred);
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs_single[LAST_FRAME];
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
if (this_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
#if CONFIG_DUAL_FILTER
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == mbmi->interp_filter[0]));
#else
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == mbmi->interp_filter));
#endif
av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV);
av1_zero(best_pred_diff);
store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, 0);
}
void av1_rd_pick_inter_mode_sub8x8(const struct AV1_COMP *cpi,
TileDataEnc *tile_data, struct macroblock *x,
int mi_row, int mi_col,
struct RD_COST *rd_cost,
#if CONFIG_SUPERTX
int *returnrate_nocoef,
#endif // CONFIG_SUPERTX
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
const AV1_COMMON *const cm = &cpi->common;
const RD_OPT *const rd_opt = &cpi->rd;
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const struct segmentation *const seg = &cm->seg;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mbmi->segment_id;
int comp_pred, i;
int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE];
static const int flag_list[TOTAL_REFS_PER_FRAME] = {
0,
AOM_LAST_FLAG,
#if CONFIG_EXT_REFS
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
#endif // CONFIG_EXT_REFS
AOM_GOLD_FLAG,
#if CONFIG_EXT_REFS
AOM_BWD_FLAG,
#endif // CONFIG_EXT_REFS
AOM_ALT_FLAG
};
int64_t best_rd = best_rd_so_far;
int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise
int64_t best_pred_diff[REFERENCE_MODES];
int64_t best_pred_rd[REFERENCE_MODES];
MB_MODE_INFO best_mbmode;
int ref_index, best_ref_index = 0;
unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME];
unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME];
aom_prob comp_mode_p;
#if CONFIG_DUAL_FILTER
InterpFilter tmp_best_filter[4] = { 0 };
#else
InterpFilter tmp_best_filter = SWITCHABLE;
#endif
int rate_uv_intra, rate_uv_tokenonly = INT_MAX;
int64_t dist_uv = INT64_MAX;
int skip_uv;
PREDICTION_MODE mode_uv = DC_PRED;
const int intra_cost_penalty = av1_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
#if CONFIG_EXT_INTER
int_mv seg_mvs[4][2][TOTAL_REFS_PER_FRAME];
#else
int_mv seg_mvs[4][TOTAL_REFS_PER_FRAME];
#endif // CONFIG_EXT_INTER
b_mode_info best_bmodes[4];
int best_skip2 = 0;
int ref_frame_skip_mask[2] = { 0 };
int internal_active_edge =
av1_active_edge_sb(cpi, mi_row, mi_col) && av1_internal_image_edge(cpi);
#if CONFIG_PVQ
od_rollback_buffer pre_buf;
od_encode_checkpoint(&x->daala_enc, &pre_buf);
#endif
#if CONFIG_SUPERTX
best_rd_so_far = INT64_MAX;
best_rd = best_rd_so_far;
best_yrd = best_rd_so_far;
#endif // CONFIG_SUPERTX
av1_zero(best_mbmode);
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
#endif // CONFIG_FILTER_INTRA
mbmi->motion_mode = SIMPLE_TRANSLATION;
#if CONFIG_EXT_INTER
mbmi->interinter_compound_data.type = COMPOUND_AVERAGE;
mbmi->use_wedge_interintra = 0;
#endif // CONFIG_EXT_INTER
#if CONFIG_WARPED_MOTION
mbmi->num_proj_ref[0] = 0;
mbmi->num_proj_ref[1] = 0;
#endif // CONFIG_WARPED_MOTION
for (i = 0; i < 4; i++) {
int j;
#if CONFIG_EXT_INTER
int k;
for (k = 0; k < 2; k++)
for (j = 0; j < TOTAL_REFS_PER_FRAME; j++)
seg_mvs[i][k][j].as_int = INVALID_MV;
#else
for (j = 0; j < TOTAL_REFS_PER_FRAME; j++)
seg_mvs[i][j].as_int = INVALID_MV;
#endif // CONFIG_EXT_INTER
}
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
rate_uv_intra = INT_MAX;
rd_cost->rate = INT_MAX;
#if CONFIG_SUPERTX
*returnrate_nocoef = INT_MAX;
#endif
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
x->mbmi_ext->mode_context[ref_frame] = 0;
#if CONFIG_REF_MV && CONFIG_EXT_INTER
x->mbmi_ext->compound_mode_context[ref_frame] = 0;
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
} else {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
#if CONFIG_EXT_INTER
frame_mv[NEWFROMNEARMV][ref_frame].as_int = INVALID_MV;
#endif // CONFIG_EXT_INTER
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
#if CONFIG_PALETTE
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
#endif // CONFIG_PALETTE
for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable = 0;
int this_skip2 = 0;
int64_t total_sse = INT_MAX;
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, &pre_buf);
#endif
ref_frame = av1_ref_order[ref_index].ref_frame[0];
second_ref_frame = av1_ref_order[ref_index].ref_frame[1];
#if CONFIG_REF_MV
mbmi->ref_mv_idx = 0;
#endif
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) {
if (ref_index == 3) {
switch (best_mbmode.ref_frame[0]) {
case INTRA_FRAME: break;
case LAST_FRAME:
ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case LAST2_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST3_FRAME) |
(1 << GOLDEN_FRAME) |
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case LAST3_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) |
(1 << GOLDEN_FRAME) |
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#endif // CONFIG_EXT_REFS
case GOLDEN_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
#if CONFIG_EXT_REFS
case BWDREF_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) |
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) |
(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= (1 << ALTREF_FRAME) | 0x01;
break;
#endif // CONFIG_EXT_REFS
case ALTREF_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
#if CONFIG_EXT_REFS
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
(1 << BWDREF_FRAME) |
#endif // CONFIG_EXT_REFS
(1 << GOLDEN_FRAME);
#if CONFIG_EXT_REFS
ref_frame_skip_mask[1] |= (1 << BWDREF_FRAME) | 0x01;
#endif // CONFIG_EXT_REFS
break;
case NONE:
case TOTAL_REFS_PER_FRAME:
assert(0 && "Invalid Reference frame");
break;
}
}
}
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
(ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame))))
continue;
// Test best rd so far against threshold for trying this mode.
if (!internal_active_edge &&
rd_less_than_thresh(best_rd,
rd_opt->threshes[segment_id][bsize][ref_index],
tile_data->thresh_freq_fact[bsize][ref_index]))
continue;
comp_pred = second_ref_frame > INTRA_FRAME;
if (comp_pred) {
if (!cpi->allow_comp_inter_inter) continue;
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
best_mbmode.ref_frame[0] == INTRA_FRAME)
continue;
}
// TODO(jingning, jkoleszar): scaling reference frame not supported for
// sub8x8 blocks.
if (ref_frame > INTRA_FRAME &&
av1_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
continue;
if (second_ref_frame > INTRA_FRAME &&
av1_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf))
continue;
if (comp_pred)
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
else if (ref_frame != INTRA_FRAME)
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
continue;
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
} else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
continue;
}
mbmi->tx_size = TX_4X4;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = second_ref_frame;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i)
mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE
? EIGHTTAP_REGULAR
: cm->interp_filter;
#else
mbmi->interp_filter =
cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter;
#endif
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
#if CONFIG_VAR_TX
mbmi->inter_tx_size[0][0] = mbmi->tx_size;
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
#endif
if (ref_frame == INTRA_FRAME) {
int rate;
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y,
NULL, best_rd) >= best_rd)
continue;
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion_y;
if (rate_uv_intra == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra,
&rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv);
}
rate2 += rate_uv_intra;
rate_uv = rate_uv_tokenonly;
distortion2 += dist_uv;
distortion_uv = dist_uv;
mbmi->uv_mode = mode_uv;
} else {
int rate;
int64_t distortion;
int64_t this_rd_thresh;
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse;
int tmp_best_skippable = 0;
int switchable_filter_index;
int_mv *second_ref =
comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL;
b_mode_info tmp_best_bmodes[16]; // Should this be 4 ?
MB_MODE_INFO tmp_best_mbmode;
#if CONFIG_DUAL_FILTER
BEST_SEG_INFO bsi[DUAL_FILTER_SET_SIZE];
#else
BEST_SEG_INFO bsi[SWITCHABLE_FILTERS];
#endif
int pred_exists = 0;
int uv_skippable;
#if CONFIG_EXT_INTER
int_mv compound_seg_newmvs[4][2];
for (i = 0; i < 4; i++) {
compound_seg_newmvs[i][0].as_int = INVALID_MV;
compound_seg_newmvs[i][1].as_int = INVALID_MV;
}
#endif // CONFIG_EXT_INTER
this_rd_thresh = (ref_frame == LAST_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_LAST]
: rd_opt->threshes[segment_id][bsize][THR_ALTR];
#if CONFIG_EXT_REFS
this_rd_thresh = (ref_frame == LAST2_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_LAST2]
: this_rd_thresh;
this_rd_thresh = (ref_frame == LAST3_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_LAST3]
: this_rd_thresh;
this_rd_thresh = (ref_frame == BWDREF_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_BWDR]
: this_rd_thresh;
#endif // CONFIG_EXT_REFS
this_rd_thresh = (ref_frame == GOLDEN_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_GOLD]
: this_rd_thresh;
// TODO(any): Add search of the tx_type to improve rd performance at the
// expense of speed.
mbmi->tx_type = DCT_DCT;
if (cm->interp_filter != BILINEAR) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = EIGHTTAP_REGULAR;
tmp_best_filter[1] = EIGHTTAP_REGULAR;
tmp_best_filter[2] = EIGHTTAP_REGULAR;
tmp_best_filter[3] = EIGHTTAP_REGULAR;
#else
tmp_best_filter = EIGHTTAP_REGULAR;
#endif
if (x->source_variance < sf->disable_filter_search_var_thresh) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = EIGHTTAP_REGULAR;
#else
tmp_best_filter = EIGHTTAP_REGULAR;
#endif
} else if (sf->adaptive_pred_interp_filter == 1 &&
ctx->pred_interp_filter < SWITCHABLE) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = ctx->pred_interp_filter;
#else
tmp_best_filter = ctx->pred_interp_filter;
#endif
} else if (sf->adaptive_pred_interp_filter == 2) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = ctx->pred_interp_filter < SWITCHABLE
? ctx->pred_interp_filter
: 0;
#else
tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE
? ctx->pred_interp_filter
: 0;
#endif
} else {
#if CONFIG_DUAL_FILTER
const int filter_set_size = DUAL_FILTER_SET_SIZE;
#else
const int filter_set_size = SWITCHABLE_FILTERS;
#endif
for (switchable_filter_index = 0;
switchable_filter_index < filter_set_size;
++switchable_filter_index) {
int newbest, rs;
int64_t rs_rd;
MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext;
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] = filter_sets[switchable_filter_index][0];
mbmi->interp_filter[1] = filter_sets[switchable_filter_index][1];
mbmi->interp_filter[2] = filter_sets[switchable_filter_index][0];
mbmi->interp_filter[3] = filter_sets[switchable_filter_index][1];
#else
mbmi->interp_filter = switchable_filter_index;
#endif
tmp_rd = rd_pick_best_sub8x8_mode(
cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
&rate, &rate_y, &distortion, &skippable, &total_sse,
(int)this_rd_thresh, seg_mvs,
#if CONFIG_EXT_INTER
compound_seg_newmvs,
#endif // CONFIG_EXT_INTER
bsi, switchable_filter_index, mi_row, mi_col);
#if CONFIG_EXT_INTERP
#if CONFIG_DUAL_FILTER
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
(mbmi->interp_filter[0] != EIGHTTAP_REGULAR ||
mbmi->interp_filter[1] != EIGHTTAP_REGULAR)) // invalid config
continue;
#else
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
mbmi->interp_filter != EIGHTTAP_REGULAR) // invalid config
continue;
#endif
#endif // CONFIG_EXT_INTERP
if (tmp_rd == INT64_MAX) continue;
rs = av1_get_switchable_rate(cpi, xd);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
if (cm->interp_filter == SWITCHABLE) tmp_rd += rs_rd;
newbest = (tmp_rd < tmp_best_rd);
if (newbest) {
#if CONFIG_DUAL_FILTER
tmp_best_filter[0] = mbmi->interp_filter[0];
tmp_best_filter[1] = mbmi->interp_filter[1];
tmp_best_filter[2] = mbmi->interp_filter[2];
tmp_best_filter[3] = mbmi->interp_filter[3];
#else
tmp_best_filter = mbmi->interp_filter;
#endif
tmp_best_rd = tmp_rd;
}
if ((newbest && cm->interp_filter == SWITCHABLE) ||
(
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] == cm->interp_filter
#else
mbmi->interp_filter == cm->interp_filter
#endif
&& cm->interp_filter != SWITCHABLE)) {
tmp_best_rdu = tmp_rd;
tmp_best_rate = rate;
tmp_best_ratey = rate_y;
tmp_best_distortion = distortion;
tmp_best_sse = total_sse;
tmp_best_skippable = skippable;
tmp_best_mbmode = *mbmi;
for (i = 0; i < 4; i++) {
tmp_best_bmodes[i] = xd->mi[0]->bmi[i];
}
pred_exists = 1;
}
} // switchable_filter_index loop
}
}
if (tmp_best_rdu == INT64_MAX && pred_exists) continue;
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] =
(cm->interp_filter == SWITCHABLE ? tmp_best_filter[0]
: cm->interp_filter);
mbmi->interp_filter[1] =
(cm->interp_filter == SWITCHABLE ? tmp_best_filter[1]
: cm->interp_filter);
mbmi->interp_filter[2] =
(cm->interp_filter == SWITCHABLE ? tmp_best_filter[2]
: cm->interp_filter);
mbmi->interp_filter[3] =
(cm->interp_filter == SWITCHABLE ? tmp_best_filter[3]
: cm->interp_filter);
#else
mbmi->interp_filter =
(cm->interp_filter == SWITCHABLE ? tmp_best_filter
: cm->interp_filter);
#endif
if (!pred_exists) {
// Handles the special case when a filter that is not in the
// switchable list (bilinear) is indicated at the frame level
tmp_rd = rd_pick_best_sub8x8_mode(
cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
&rate, &rate_y, &distortion, &skippable, &total_sse,
(int)this_rd_thresh, seg_mvs,
#if CONFIG_EXT_INTER
compound_seg_newmvs,
#endif // CONFIG_EXT_INTER
bsi, 0, mi_row, mi_col);
#if CONFIG_EXT_INTERP
#if CONFIG_DUAL_FILTER
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
(mbmi->interp_filter[0] != EIGHTTAP_REGULAR ||
mbmi->interp_filter[1] != EIGHTTAP_REGULAR)) {
mbmi->interp_filter[0] = EIGHTTAP_REGULAR;
mbmi->interp_filter[1] = EIGHTTAP_REGULAR;
}
#else
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
mbmi->interp_filter != EIGHTTAP_REGULAR)
mbmi->interp_filter = EIGHTTAP_REGULAR;
#endif // CONFIG_DUAL_FILTER
#endif // CONFIG_EXT_INTERP
if (tmp_rd == INT64_MAX) continue;
} else {
total_sse = tmp_best_sse;
rate = tmp_best_rate;
rate_y = tmp_best_ratey;
distortion = tmp_best_distortion;
skippable = tmp_best_skippable;
*mbmi = tmp_best_mbmode;
for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i];
}
// Add in the cost of the transform type
if (!xd->lossless[mbmi->segment_id]) {
int rate_tx_type = 0;
#if CONFIG_EXT_TX
if (get_ext_tx_types(mbmi->tx_size, bsize, 1) > 1) {
const int eset = get_ext_tx_set(mbmi->tx_size, bsize, 1);
rate_tx_type =
cpi->inter_tx_type_costs[eset][mbmi->tx_size][mbmi->tx_type];
}
#else
if (mbmi->tx_size < TX_32X32) {
rate_tx_type = cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
}
#endif
rate += rate_tx_type;
rate_y += rate_tx_type;
}
rate2 += rate;
distortion2 += distortion;
if (cm->interp_filter == SWITCHABLE)
rate2 += av1_get_switchable_rate(cpi, xd);
if (!mode_excluded)
mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE
: cm->reference_mode == COMPOUND_REFERENCE;
compmode_cost = av1_cost_bit(comp_mode_p, comp_pred);
tmp_best_rdu =
best_rd - AOMMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
if (tmp_best_rdu > 0) {
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
int is_cost_valid_uv;
RD_STATS rd_stats_uv;
av1_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, NULL,
BLOCK_8X8);
#if CONFIG_VAR_TX
is_cost_valid_uv =
inter_block_uvrd(cpi, x, &rd_stats_uv, BLOCK_8X8, tmp_best_rdu);
#else
is_cost_valid_uv =
super_block_uvrd(cpi, x, &rd_stats_uv, BLOCK_8X8, tmp_best_rdu);
#endif
rate_uv = rd_stats_uv.rate;
distortion_uv = rd_stats_uv.dist;
uv_skippable = rd_stats_uv.skip;
uv_sse = rd_stats_uv.sse;
if (!is_cost_valid_uv) continue;
rate2 += rate_uv;
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
total_sse += uv_sse;
} else {
continue;
}
}
if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (second_ref_frame > INTRA_FRAME) {
rate2 += ref_costs_comp[ref_frame];
#if CONFIG_EXT_REFS
rate2 += ref_costs_comp[second_ref_frame];
#endif // CONFIG_EXT_REFS
} else {
rate2 += ref_costs_single[ref_frame];
}
if (!disable_skip) {
// Skip is never coded at the segment level for sub8x8 blocks and instead
// always coded in the bitstream at the mode info level.
if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
// Add in the cost of the no skip flag.
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
} else {
// FIXME(rbultje) make this work for splitmv also
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
rate_y = 0;
rate_uv = 0;
this_skip2 = 1;
}
} else {
// Add in the cost of the no skip flag.
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd);
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
// Note index of best mode so far
best_ref_index = ref_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
}
rd_cost->rate = rate2;
#if CONFIG_SUPERTX
*returnrate_nocoef = rate2 - rate_y - rate_uv;
if (!disable_skip)
*returnrate_nocoef -=
av1_cost_bit(av1_get_skip_prob(cm, xd), this_skip2);
*returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd),
mbmi->ref_frame[0] != INTRA_FRAME);
assert(*returnrate_nocoef > 0);
#endif // CONFIG_SUPERTX
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_yrd =
best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
best_mbmode = *mbmi;
best_skip2 = this_skip2;
#if CONFIG_VAR_TX
for (i = 0; i < MAX_MB_PLANE; ++i)
memset(ctx->blk_skip[i], 0, sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i];
}
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE])
best_pred_rd[SINGLE_REFERENCE] = single_rd;
else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE])
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
if (x->skip && !comp_pred) break;
}
if (best_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
#if CONFIG_SUPERTX
*returnrate_nocoef = INT_MAX;
#endif // CONFIG_SUPERTX
return;
}
if (best_rd == INT64_MAX) {
rd_cost->rate = INT_MAX;
rd_cost->dist = INT64_MAX;
rd_cost->rdcost = INT64_MAX;
#if CONFIG_SUPERTX
*returnrate_nocoef = INT_MAX;
#endif // CONFIG_SUPERTX
return;
}
#if CONFIG_DUAL_FILTER
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter[0]) ||
!is_inter_block(&best_mbmode));
#else
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter) ||
!is_inter_block(&best_mbmode));
#endif
av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
sf->adaptive_rd_thresh, bsize, best_ref_index);
// macroblock modes
*mbmi = best_mbmode;
#if CONFIG_VAR_TX
mbmi->inter_tx_size[0][0] = mbmi->tx_size;
#endif
x->skip |= best_skip2;
if (!is_inter_block(&best_mbmode)) {
for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
} else {
for (i = 0; i < 4; ++i)
memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
#if CONFIG_REF_MV
mbmi->pred_mv[0].as_int = xd->mi[0]->bmi[3].pred_mv[0].as_int;
mbmi->pred_mv[1].as_int = xd->mi[0]->bmi[3].pred_mv[1].as_int;
#endif
mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int;
}
for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
store_coding_context(x, ctx, best_ref_index, best_pred_diff, 0);
}
#if CONFIG_MOTION_VAR
// This function has a structure similar to av1_build_obmc_inter_prediction
//
// The OBMC predictor is computed as:
//
// PObmc(x,y) =
// AOM_BLEND_A64(Mh(x),
// AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)),
// PLeft(x, y))
//
// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate
// rounding, this can be written as:
//
// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) =
// Mh(x) * Mv(y) * P(x,y) +
// Mh(x) * Cv(y) * Pabove(x,y) +
// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// Where :
//
// Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y)
// Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y)
//
// This function computes 'wsrc' and 'mask' as:
//
// wsrc(x, y) =
// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) -
// Mh(x) * Cv(y) * Pabove(x,y) +
// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// mask(x, y) = Mh(x) * Mv(y)
//
// These can then be used to efficiently approximate the error for any
// predictor P in the context of the provided neighbouring predictors by
// computing:
//
// error(x, y) =
// wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2)
//
static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x,
const MACROBLOCKD *xd, int mi_row,
int mi_col, const uint8_t *above,
int above_stride, const uint8_t *left,
int left_stride) {
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int row, col, i;
const int bw = xd->n8_w << MI_SIZE_LOG2;
const int bh = xd->n8_h << MI_SIZE_LOG2;
int32_t *mask_buf = x->mask_buf;
int32_t *wsrc_buf = x->wsrc_buf;
const int wsrc_stride = bw;
const int mask_stride = bw;
const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA;
#if CONFIG_AOM_HIGHBITDEPTH
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#else
const int is_hbd = 0;
#endif // CONFIG_AOM_HIGHBITDEPTH
// plane 0 should not be subsampled
assert(xd->plane[0].subsampling_x == 0);
assert(xd->plane[0].subsampling_y == 0);
av1_zero_array(wsrc_buf, bw * bh);
for (i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA;
// handle above row
if (xd->up_available) {
const int overlap = num_4x4_blocks_high_lookup[bsize] * 2;
const int miw = AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
const int mi_row_offset = -1;
const uint8_t *const mask1d = av1_get_obmc_mask(overlap);
assert(miw > 0);
i = 0;
do { // for each mi in the above row
const int mi_col_offset = i;
const MB_MODE_INFO *const above_mbmi =
&xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
const int mi_step =
AOMMIN(xd->n8_w, num_8x8_blocks_wide_lookup[above_mbmi->sb_type]);
const int neighbor_bw = mi_step * MI_SIZE;
if (is_neighbor_overlappable(above_mbmi)) {
const int tmp_stride = above_stride;
int32_t *wsrc = wsrc_buf + (i * MI_SIZE);
int32_t *mask = mask_buf + (i * MI_SIZE);
if (!is_hbd) {
const uint8_t *tmp = above;
for (row = 0; row < overlap; ++row) {
const uint8_t m0 = mask1d[row];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
for (col = 0; col < neighbor_bw; ++col) {
wsrc[col] = m1 * tmp[col];
mask[col] = m0;
}
wsrc += wsrc_stride;
mask += mask_stride;
tmp += tmp_stride;
}
#if CONFIG_AOM_HIGHBITDEPTH
} else {
const uint16_t *tmp = CONVERT_TO_SHORTPTR(above);
for (row = 0; row < overlap; ++row) {
const uint8_t m0 = mask1d[row];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
for (col = 0; col < neighbor_bw; ++col) {
wsrc[col] = m1 * tmp[col];
mask[col] = m0;
}
wsrc += wsrc_stride;
mask += mask_stride;
tmp += tmp_stride;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
}
}
above += neighbor_bw;
i += mi_step;
} while (i < miw);
}
for (i = 0; i < bw * bh; ++i) {
wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
}
// handle left column
if (xd->left_available) {
const int overlap = num_4x4_blocks_wide_lookup[bsize] * 2;
const int mih = AOMMIN(xd->n8_h, cm->mi_rows - mi_row);
const int mi_col_offset = -1;
const uint8_t *const mask1d = av1_get_obmc_mask(overlap);
assert(mih > 0);
i = 0;
do { // for each mi in the left column
const int mi_row_offset = i;
const MB_MODE_INFO *const left_mbmi =
&xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
const int mi_step =
AOMMIN(xd->n8_h, num_8x8_blocks_high_lookup[left_mbmi->sb_type]);
const int neighbor_bh = mi_step * MI_SIZE;
if (is_neighbor_overlappable(left_mbmi)) {
const int tmp_stride = left_stride;
int32_t *wsrc = wsrc_buf + (i * MI_SIZE * wsrc_stride);
int32_t *mask = mask_buf + (i * MI_SIZE * mask_stride);
if (!is_hbd) {
const uint8_t *tmp = left;
for (row = 0; row < neighbor_bh; ++row) {
for (col = 0; col < overlap; ++col) {
const uint8_t m0 = mask1d[col];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
(tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
}
wsrc += wsrc_stride;
mask += mask_stride;
tmp += tmp_stride;
}
#if CONFIG_AOM_HIGHBITDEPTH
} else {
const uint16_t *tmp = CONVERT_TO_SHORTPTR(left);
for (row = 0; row < neighbor_bh; ++row) {
for (col = 0; col < overlap; ++col) {
const uint8_t m0 = mask1d[col];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
(tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
}
wsrc += wsrc_stride;
mask += mask_stride;
tmp += tmp_stride;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
}
}
left += neighbor_bh * left_stride;
i += mi_step;
} while (i < mih);
}
if (!is_hbd) {
const uint8_t *src = x->plane[0].src.buf;
for (row = 0; row < bh; ++row) {
for (col = 0; col < bw; ++col) {
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
}
wsrc_buf += wsrc_stride;
src += x->plane[0].src.stride;
}
#if CONFIG_AOM_HIGHBITDEPTH
} else {
const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);
for (row = 0; row < bh; ++row) {
for (col = 0; col < bw; ++col) {
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
}
wsrc_buf += wsrc_stride;
src += x->plane[0].src.stride;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
}
}
#endif // CONFIG_MOTION_VAR