| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "tools/txfm_analyzer/txfm_graph.h" |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <math.h> |
| |
| typedef struct Node Node; |
| |
| void get_fun_name(char *str_fun_name, int str_buf_size, const TYPE_TXFM type, |
| const int txfm_size) { |
| if (type == TYPE_DCT) |
| snprintf(str_fun_name, str_buf_size, "fdct%d_new", txfm_size); |
| else if (type == TYPE_ADST) |
| snprintf(str_fun_name, str_buf_size, "fadst%d_new", txfm_size); |
| else if (type == TYPE_IDCT) |
| snprintf(str_fun_name, str_buf_size, "idct%d_new", txfm_size); |
| else if (type == TYPE_IADST) |
| snprintf(str_fun_name, str_buf_size, "iadst%d_new", txfm_size); |
| } |
| |
| void get_txfm_type_name(char *str_fun_name, int str_buf_size, |
| const TYPE_TXFM type, const int txfm_size) { |
| if (type == TYPE_DCT) |
| snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_DCT%d", txfm_size); |
| else if (type == TYPE_ADST) |
| snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_ADST%d", txfm_size); |
| else if (type == TYPE_IDCT) |
| snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_DCT%d", txfm_size); |
| else if (type == TYPE_IADST) |
| snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_ADST%d", txfm_size); |
| } |
| |
| void get_hybrid_2d_type_name(char *buf, int buf_size, const TYPE_TXFM type0, |
| const TYPE_TXFM type1, const int txfm_size0, |
| const int txfm_size1) { |
| if (type0 == TYPE_DCT && type1 == TYPE_DCT) |
| snprintf(buf, buf_size, "_dct_dct_%dx%d", txfm_size1, txfm_size0); |
| else if (type0 == TYPE_DCT && type1 == TYPE_ADST) |
| snprintf(buf, buf_size, "_dct_adst_%dx%d", txfm_size1, txfm_size0); |
| else if (type0 == TYPE_ADST && type1 == TYPE_ADST) |
| snprintf(buf, buf_size, "_adst_adst_%dx%d", txfm_size1, txfm_size0); |
| else if (type0 == TYPE_ADST && type1 == TYPE_DCT) |
| snprintf(buf, buf_size, "_adst_dct_%dx%d", txfm_size1, txfm_size0); |
| } |
| |
| TYPE_TXFM get_inv_type(TYPE_TXFM type) { |
| if (type == TYPE_DCT) |
| return TYPE_IDCT; |
| else if (type == TYPE_ADST) |
| return TYPE_IADST; |
| else if (type == TYPE_IDCT) |
| return TYPE_DCT; |
| else if (type == TYPE_IADST) |
| return TYPE_ADST; |
| else |
| return TYPE_LAST; |
| } |
| |
| void reference_dct_1d(double *in, double *out, int size) { |
| const double kInvSqrt2 = 0.707106781186547524400844362104; |
| for (int k = 0; k < size; k++) { |
| out[k] = 0; // initialize out[k] |
| for (int n = 0; n < size; n++) { |
| out[k] += in[n] * cos(PI * (2 * n + 1) * k / (2 * size)); |
| } |
| if (k == 0) out[k] = out[k] * kInvSqrt2; |
| } |
| } |
| |
| void reference_dct_2d(double *in, double *out, int size) { |
| double *tempOut = new double[size * size]; |
| // dct each row: in -> out |
| for (int r = 0; r < size; r++) { |
| reference_dct_1d(in + r * size, out + r * size, size); |
| } |
| |
| for (int r = 0; r < size; r++) { |
| // out ->tempOut |
| for (int c = 0; c < size; c++) { |
| tempOut[r * size + c] = out[c * size + r]; |
| } |
| } |
| for (int r = 0; r < size; r++) { |
| reference_dct_1d(tempOut + r * size, out + r * size, size); |
| } |
| delete[] tempOut; |
| } |
| |
| void reference_adst_1d(double *in, double *out, int size) { |
| for (int k = 0; k < size; k++) { |
| out[k] = 0; // initialize out[k] |
| for (int n = 0; n < size; n++) { |
| out[k] += in[n] * sin(PI * (2 * n + 1) * (2 * k + 1) / (4 * size)); |
| } |
| } |
| } |
| |
| void reference_hybrid_2d(double *in, double *out, int size, int type0, |
| int type1) { |
| double *tempOut = new double[size * size]; |
| // dct each row: in -> out |
| for (int r = 0; r < size; r++) { |
| if (type0 == TYPE_DCT) |
| reference_dct_1d(in + r * size, out + r * size, size); |
| else |
| reference_adst_1d(in + r * size, out + r * size, size); |
| } |
| |
| for (int r = 0; r < size; r++) { |
| // out ->tempOut |
| for (int c = 0; c < size; c++) { |
| tempOut[r * size + c] = out[c * size + r]; |
| } |
| } |
| for (int r = 0; r < size; r++) { |
| if (type1 == TYPE_DCT) |
| reference_dct_1d(tempOut + r * size, out + r * size, size); |
| else |
| reference_adst_1d(tempOut + r * size, out + r * size, size); |
| } |
| delete[] tempOut; |
| } |
| |
| void reference_hybrid_2d_new(double *in, double *out, int size0, int size1, |
| int type0, int type1) { |
| double *tempOut = new double[size0 * size1]; |
| // dct each row: in -> out |
| for (int r = 0; r < size1; r++) { |
| if (type0 == TYPE_DCT) |
| reference_dct_1d(in + r * size0, out + r * size0, size0); |
| else |
| reference_adst_1d(in + r * size0, out + r * size0, size0); |
| } |
| |
| for (int r = 0; r < size1; r++) { |
| // out ->tempOut |
| for (int c = 0; c < size0; c++) { |
| tempOut[c * size1 + r] = out[r * size0 + c]; |
| } |
| } |
| for (int r = 0; r < size0; r++) { |
| if (type1 == TYPE_DCT) |
| reference_dct_1d(tempOut + r * size1, out + r * size1, size1); |
| else |
| reference_adst_1d(tempOut + r * size1, out + r * size1, size1); |
| } |
| delete[] tempOut; |
| } |
| |
| unsigned int get_max_bit(unsigned int x) { |
| int max_bit = -1; |
| while (x) { |
| x = x >> 1; |
| max_bit++; |
| } |
| return max_bit; |
| } |
| |
| unsigned int bitwise_reverse(unsigned int x, int max_bit) { |
| x = ((x >> 16) & 0x0000ffff) | ((x & 0x0000ffff) << 16); |
| x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); |
| x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); |
| x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); |
| x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); |
| x = x >> (31 - max_bit); |
| return x; |
| } |
| |
| int get_idx(int ri, int ci, int cSize) { return ri * cSize + ci; } |
| |
| void add_node(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int in, double w) { |
| int outIdx = get_idx(stage_idx, node_idx, node_num); |
| int inIdx = get_idx(stage_idx - 1, in, node_num); |
| int idx = node[outIdx].inNodeNum; |
| if (idx < 2) { |
| node[outIdx].inNode[idx] = &node[inIdx]; |
| node[outIdx].inNodeIdx[idx] = in; |
| node[outIdx].inWeight[idx] = w; |
| idx++; |
| node[outIdx].inNodeNum = idx; |
| } else { |
| printf("Error: inNode is full"); |
| } |
| } |
| |
| void connect_node(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int in0, double w0, int in1, double w1) { |
| int outIdx = get_idx(stage_idx, node_idx, node_num); |
| int inIdx0 = get_idx(stage_idx - 1, in0, node_num); |
| int inIdx1 = get_idx(stage_idx - 1, in1, node_num); |
| |
| int idx = 0; |
| // if(w0 != 0) { |
| node[outIdx].inNode[idx] = &node[inIdx0]; |
| node[outIdx].inNodeIdx[idx] = in0; |
| node[outIdx].inWeight[idx] = w0; |
| idx++; |
| //} |
| |
| // if(w1 != 0) { |
| node[outIdx].inNode[idx] = &node[inIdx1]; |
| node[outIdx].inNodeIdx[idx] = in1; |
| node[outIdx].inWeight[idx] = w1; |
| idx++; |
| //} |
| |
| node[outIdx].inNodeNum = idx; |
| } |
| |
| void propagate(Node *node, int stage_num, int node_num, int stage_idx) { |
| for (int ni = 0; ni < node_num; ni++) { |
| int outIdx = get_idx(stage_idx, ni, node_num); |
| node[outIdx].value = 0; |
| for (int k = 0; k < node[outIdx].inNodeNum; k++) { |
| node[outIdx].value += |
| node[outIdx].inNode[k]->value * node[outIdx].inWeight[k]; |
| } |
| } |
| } |
| |
| int64_t round_shift(int64_t value, int bit) { |
| if (bit > 0) { |
| if (value < 0) { |
| return -round_shift(-value, bit); |
| } else { |
| return (value + (1 << (bit - 1))) >> bit; |
| } |
| } else { |
| return value << (-bit); |
| } |
| } |
| |
| void round_shift_array(int32_t *arr, int size, int bit) { |
| if (bit == 0) { |
| return; |
| } else { |
| for (int i = 0; i < size; i++) { |
| arr[i] = round_shift(arr[i], bit); |
| } |
| } |
| } |
| |
| void graph_reset_visited(Node *node, int stage_num, int node_num) { |
| for (int si = 0; si < stage_num; si++) { |
| for (int ni = 0; ni < node_num; ni++) { |
| int idx = get_idx(si, ni, node_num); |
| node[idx].visited = 0; |
| } |
| } |
| } |
| |
| void estimate_value(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int estimate_bit) { |
| if (stage_idx > 0) { |
| int outIdx = get_idx(stage_idx, node_idx, node_num); |
| int64_t out = 0; |
| node[outIdx].value = 0; |
| for (int k = 0; k < node[outIdx].inNodeNum; k++) { |
| int64_t w = round(node[outIdx].inWeight[k] * (1 << estimate_bit)); |
| int64_t v = round(node[outIdx].inNode[k]->value); |
| out += v * w; |
| } |
| node[outIdx].value = round_shift(out, estimate_bit); |
| } |
| } |
| |
| void amplify_value(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int amplify_bit) { |
| int outIdx = get_idx(stage_idx, node_idx, node_num); |
| node[outIdx].value = round_shift(round(node[outIdx].value), -amplify_bit); |
| } |
| |
| void propagate_estimate_amlify(Node *node, int stage_num, int node_num, |
| int stage_idx, int amplify_bit, |
| int estimate_bit) { |
| for (int ni = 0; ni < node_num; ni++) { |
| estimate_value(node, stage_num, node_num, stage_idx, ni, estimate_bit); |
| amplify_value(node, stage_num, node_num, stage_idx, ni, amplify_bit); |
| } |
| } |
| |
| void init_graph(Node *node, int stage_num, int node_num) { |
| for (int si = 0; si < stage_num; si++) { |
| for (int ni = 0; ni < node_num; ni++) { |
| int outIdx = get_idx(si, ni, node_num); |
| node[outIdx].stageIdx = si; |
| node[outIdx].nodeIdx = ni; |
| node[outIdx].value = 0; |
| node[outIdx].inNodeNum = 0; |
| if (si >= 1) { |
| connect_node(node, stage_num, node_num, si, ni, ni, 1, ni, 0); |
| } |
| } |
| } |
| } |
| |
| void gen_B_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int N, int star) { |
| for (int i = 0; i < N / 2; i++) { |
| int out = node_idx + i; |
| int in1 = node_idx + N - 1 - i; |
| if (star == 1) { |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, -1, in1, |
| 1); |
| } else { |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, in1, |
| 1); |
| } |
| } |
| for (int i = N / 2; i < N; i++) { |
| int out = node_idx + i; |
| int in1 = node_idx + N - 1 - i; |
| if (star == 1) { |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, in1, |
| 1); |
| } else { |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, -1, in1, |
| 1); |
| } |
| } |
| } |
| |
| void gen_P_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int N) { |
| int max_bit = get_max_bit(N - 1); |
| for (int i = 0; i < N; i++) { |
| int out = node_idx + bitwise_reverse(i, max_bit); |
| int in = node_idx + i; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } |
| } |
| |
| void gen_type1_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int N) { |
| int max_bit = get_max_bit(N); |
| for (int ni = 0; ni < N / 2; ni++) { |
| int ai = bitwise_reverse(N + ni, max_bit); |
| int out = node_idx + ni; |
| int in1 = node_idx + N - ni - 1; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, |
| sin(PI * ai / (2 * 2 * N)), in1, cos(PI * ai / (2 * 2 * N))); |
| } |
| for (int ni = N / 2; ni < N; ni++) { |
| int ai = bitwise_reverse(N + ni, max_bit); |
| int out = node_idx + ni; |
| int in1 = node_idx + N - ni - 1; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, |
| cos(PI * ai / (2 * 2 * N)), in1, -sin(PI * ai / (2 * 2 * N))); |
| } |
| } |
| |
| void gen_type2_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int N) { |
| for (int ni = 0; ni < N / 4; ni++) { |
| int out = node_idx + ni; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, 0); |
| } |
| |
| for (int ni = N / 4; ni < N / 2; ni++) { |
| int out = node_idx + ni; |
| int in1 = node_idx + N - ni - 1; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, |
| -cos(PI / 4), in1, cos(-PI / 4)); |
| } |
| |
| for (int ni = N / 2; ni < N * 3 / 4; ni++) { |
| int out = node_idx + ni; |
| int in1 = node_idx + N - ni - 1; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, |
| cos(-PI / 4), in1, cos(PI / 4)); |
| } |
| |
| for (int ni = N * 3 / 4; ni < N; ni++) { |
| int out = node_idx + ni; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, 0); |
| } |
| } |
| |
| void gen_type3_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int idx, int N) { |
| // TODO(angiebird): Simplify and clarify this function |
| |
| int i = 2 * N / (1 << (idx / 2)); |
| int max_bit = |
| get_max_bit(i / 2) - 1; // the max_bit counts on i/2 instead of N here |
| int N_over_i = 2 << (idx / 2); |
| |
| for (int nj = 0; nj < N / 2; nj += N_over_i) { |
| int j = nj / (N_over_i); |
| int kj = bitwise_reverse(i / 4 + j, max_bit); |
| // printf("kj = %d\n", kj); |
| |
| // I_N/2i --- 0 |
| int offset = nj; |
| for (int ni = 0; ni < N_over_i / 4; ni++) { |
| int out = node_idx + offset + ni; |
| int in = out; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } |
| |
| // -C_Kj/i --- S_Kj/i |
| offset += N_over_i / 4; |
| for (int ni = 0; ni < N_over_i / 4; ni++) { |
| int out = node_idx + offset + ni; |
| int in0 = out; |
| double w0 = -cos(kj * PI / i); |
| int in1 = N - (offset + ni) - 1 + node_idx; |
| double w1 = sin(kj * PI / i); |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1, |
| w1); |
| } |
| |
| // S_kj/i --- -C_Kj/i |
| offset += N_over_i / 4; |
| for (int ni = 0; ni < N_over_i / 4; ni++) { |
| int out = node_idx + offset + ni; |
| int in0 = out; |
| double w0 = -sin(kj * PI / i); |
| int in1 = N - (offset + ni) - 1 + node_idx; |
| double w1 = -cos(kj * PI / i); |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1, |
| w1); |
| } |
| |
| // I_N/2i --- 0 |
| offset += N_over_i / 4; |
| for (int ni = 0; ni < N_over_i / 4; ni++) { |
| int out = node_idx + offset + ni; |
| int in = out; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } |
| } |
| |
| for (int nj = N / 2; nj < N; nj += N_over_i) { |
| int j = nj / N_over_i; |
| int kj = bitwise_reverse(i / 4 + j, max_bit); |
| |
| // I_N/2i --- 0 |
| int offset = nj; |
| for (int ni = 0; ni < N_over_i / 4; ni++) { |
| int out = node_idx + offset + ni; |
| int in = out; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } |
| |
| // C_kj/i --- -S_Kj/i |
| offset += N_over_i / 4; |
| for (int ni = 0; ni < N_over_i / 4; ni++) { |
| int out = node_idx + offset + ni; |
| int in0 = out; |
| double w0 = cos(kj * PI / i); |
| int in1 = N - (offset + ni) - 1 + node_idx; |
| double w1 = -sin(kj * PI / i); |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1, |
| w1); |
| } |
| |
| // S_kj/i --- C_Kj/i |
| offset += N_over_i / 4; |
| for (int ni = 0; ni < N_over_i / 4; ni++) { |
| int out = node_idx + offset + ni; |
| int in0 = out; |
| double w0 = sin(kj * PI / i); |
| int in1 = N - (offset + ni) - 1 + node_idx; |
| double w1 = cos(kj * PI / i); |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1, |
| w1); |
| } |
| |
| // I_N/2i --- 0 |
| offset += N_over_i / 4; |
| for (int ni = 0; ni < N_over_i / 4; ni++) { |
| int out = node_idx + offset + ni; |
| int in = out; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } |
| } |
| } |
| |
| void gen_type4_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int idx, int N) { |
| int B_size = 1 << ((idx + 1) / 2); |
| for (int ni = 0; ni < N; ni += B_size) { |
| gen_B_graph(node, stage_num, node_num, stage_idx, node_idx + ni, B_size, |
| (ni / B_size) % 2); |
| } |
| } |
| |
| void gen_R_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int N) { |
| int max_idx = 2 * (get_max_bit(N) + 1) - 3; |
| for (int idx = 0; idx < max_idx; idx++) { |
| int s = stage_idx + max_idx - idx - 1; |
| if (idx == 0) { |
| // type 1 |
| gen_type1_graph(node, stage_num, node_num, s, node_idx, N); |
| } else if (idx == max_idx - 1) { |
| // type 2 |
| gen_type2_graph(node, stage_num, node_num, s, node_idx, N); |
| } else if ((idx + 1) % 2 == 0) { |
| // type 4 |
| gen_type4_graph(node, stage_num, node_num, s, node_idx, idx, N); |
| } else if ((idx + 1) % 2 == 1) { |
| // type 3 |
| gen_type3_graph(node, stage_num, node_num, s, node_idx, idx, N); |
| } else { |
| printf("check gen_R_graph()\n"); |
| } |
| } |
| } |
| |
| void gen_DCT_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int N) { |
| if (N > 2) { |
| gen_B_graph(node, stage_num, node_num, stage_idx, node_idx, N, 0); |
| gen_DCT_graph(node, stage_num, node_num, stage_idx + 1, node_idx, N / 2); |
| gen_R_graph(node, stage_num, node_num, stage_idx + 1, node_idx + N / 2, |
| N / 2); |
| } else { |
| // generate dct_2 |
| connect_node(node, stage_num, node_num, stage_idx + 1, node_idx, node_idx, |
| cos(PI / 4), node_idx + 1, cos(PI / 4)); |
| connect_node(node, stage_num, node_num, stage_idx + 1, node_idx + 1, |
| node_idx + 1, -cos(PI / 4), node_idx, cos(PI / 4)); |
| } |
| } |
| |
| int get_dct_stage_num(int size) { return 2 * get_max_bit(size); } |
| |
| void gen_DCT_graph_1d(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int dct_node_num) { |
| gen_DCT_graph(node, stage_num, node_num, stage_idx, node_idx, dct_node_num); |
| int dct_stage_num = get_dct_stage_num(dct_node_num); |
| gen_P_graph(node, stage_num, node_num, stage_idx + dct_stage_num - 2, |
| node_idx, dct_node_num); |
| } |
| |
| void gen_adst_B_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_idx) { |
| int size = 1 << (adst_idx + 1); |
| for (int ni = 0; ni < size / 2; ni++) { |
| int nOut = node_idx + ni; |
| int nIn = nOut + size / 2; |
| connect_node(node, stage_num, node_num, stage_idx + 1, nOut, nOut, 1, nIn, |
| 1); |
| // printf("nOut: %d nIn: %d\n", nOut, nIn); |
| } |
| for (int ni = size / 2; ni < size; ni++) { |
| int nOut = node_idx + ni; |
| int nIn = nOut - size / 2; |
| connect_node(node, stage_num, node_num, stage_idx + 1, nOut, nOut, -1, nIn, |
| 1); |
| // printf("ndctOut: %d nIn: %d\n", nOut, nIn); |
| } |
| } |
| |
| void gen_adst_U_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_idx, int adst_node_num) { |
| int size = 1 << (adst_idx + 1); |
| for (int ni = 0; ni < adst_node_num; ni += size) { |
| gen_adst_B_graph(node, stage_num, node_num, stage_idx, node_idx + ni, |
| adst_idx); |
| } |
| } |
| |
| void gen_adst_T_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, double freq) { |
| connect_node(node, stage_num, node_num, stage_idx + 1, node_idx, node_idx, |
| cos(freq * PI), node_idx + 1, sin(freq * PI)); |
| connect_node(node, stage_num, node_num, stage_idx + 1, node_idx + 1, |
| node_idx + 1, -cos(freq * PI), node_idx, sin(freq * PI)); |
| } |
| |
| void gen_adst_E_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_idx) { |
| int size = 1 << (adst_idx); |
| for (int i = 0; i < size / 2; i++) { |
| int ni = i * 2; |
| double fi = (1 + 4 * i) * 1.0 / (1 << (adst_idx + 1)); |
| gen_adst_T_graph(node, stage_num, node_num, stage_idx, node_idx + ni, fi); |
| } |
| } |
| |
| void gen_adst_V_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_idx, int adst_node_num) { |
| int size = 1 << (adst_idx); |
| for (int i = 0; i < adst_node_num / size; i++) { |
| if (i % 2 == 1) { |
| int ni = i * size; |
| gen_adst_E_graph(node, stage_num, node_num, stage_idx, node_idx + ni, |
| adst_idx); |
| } |
| } |
| } |
| void gen_adst_VJ_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_node_num) { |
| for (int i = 0; i < adst_node_num / 2; i++) { |
| int ni = i * 2; |
| double fi = (1 + 4 * i) * 1.0 / (4 * adst_node_num); |
| gen_adst_T_graph(node, stage_num, node_num, stage_idx, node_idx + ni, fi); |
| } |
| } |
| void gen_adst_Q_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_node_num) { |
| // reverse order when idx is 1, 3, 5, 7 ... |
| // example of adst_node_num = 8: |
| // 0 1 2 3 4 5 6 7 |
| // --> 0 7 2 5 4 3 6 1 |
| for (int ni = 0; ni < adst_node_num; ni++) { |
| if (ni % 2 == 0) { |
| int out = node_idx + ni; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, |
| 0); |
| } else { |
| int out = node_idx + ni; |
| int in = node_idx + adst_node_num - ni; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } |
| } |
| } |
| void gen_adst_Ibar_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_node_num) { |
| // reverse order |
| // 0 1 2 3 --> 3 2 1 0 |
| for (int ni = 0; ni < adst_node_num; ni++) { |
| int out = node_idx + ni; |
| int in = node_idx + adst_node_num - ni - 1; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } |
| } |
| |
| int get_Q_out2in(int adst_node_num, int out) { |
| int in; |
| if (out % 2 == 0) { |
| in = out; |
| } else { |
| in = adst_node_num - out; |
| } |
| return in; |
| } |
| |
| int get_Ibar_out2in(int adst_node_num, int out) { |
| return adst_node_num - out - 1; |
| } |
| |
| void gen_adst_IbarQ_graph(Node *node, int stage_num, int node_num, |
| int stage_idx, int node_idx, int adst_node_num) { |
| // in -> Ibar -> Q -> out |
| for (int ni = 0; ni < adst_node_num; ni++) { |
| int out = node_idx + ni; |
| int in = node_idx + |
| get_Ibar_out2in(adst_node_num, get_Q_out2in(adst_node_num, ni)); |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } |
| } |
| |
| void gen_adst_D_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_node_num) { |
| // reverse order |
| for (int ni = 0; ni < adst_node_num; ni++) { |
| int out = node_idx + ni; |
| int in = out; |
| if (ni % 2 == 0) { |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } else { |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, -1, in, |
| 0); |
| } |
| } |
| } |
| |
| int get_hadamard_idx(int x, int adst_node_num) { |
| int max_bit = get_max_bit(adst_node_num - 1); |
| x = bitwise_reverse(x, max_bit); |
| |
| // gray code |
| int c = x & 1; |
| int p = x & 1; |
| int y = c; |
| |
| for (int i = 1; i <= max_bit; i++) { |
| p = c; |
| c = (x >> i) & 1; |
| y += (c ^ p) << i; |
| } |
| return y; |
| } |
| |
| void gen_adst_Ht_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_node_num) { |
| for (int ni = 0; ni < adst_node_num; ni++) { |
| int out = node_idx + ni; |
| int in = node_idx + get_hadamard_idx(ni, adst_node_num); |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); |
| } |
| } |
| |
| void gen_adst_HtD_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_node_num) { |
| for (int ni = 0; ni < adst_node_num; ni++) { |
| int out = node_idx + ni; |
| int in = node_idx + get_hadamard_idx(ni, adst_node_num); |
| double inW; |
| if (ni % 2 == 0) |
| inW = 1; |
| else |
| inW = -1; |
| connect_node(node, stage_num, node_num, stage_idx + 1, out, in, inW, in, 0); |
| } |
| } |
| |
| int get_adst_stage_num(int adst_node_num) { |
| return 2 * get_max_bit(adst_node_num) + 2; |
| } |
| |
| int gen_iadst_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_node_num) { |
| int max_bit = get_max_bit(adst_node_num); |
| int si = 0; |
| gen_adst_IbarQ_graph(node, stage_num, node_num, stage_idx + si, node_idx, |
| adst_node_num); |
| si++; |
| gen_adst_VJ_graph(node, stage_num, node_num, stage_idx + si, node_idx, |
| adst_node_num); |
| si++; |
| for (int adst_idx = max_bit - 1; adst_idx >= 1; adst_idx--) { |
| gen_adst_U_graph(node, stage_num, node_num, stage_idx + si, node_idx, |
| adst_idx, adst_node_num); |
| si++; |
| gen_adst_V_graph(node, stage_num, node_num, stage_idx + si, node_idx, |
| adst_idx, adst_node_num); |
| si++; |
| } |
| gen_adst_HtD_graph(node, stage_num, node_num, stage_idx + si, node_idx, |
| adst_node_num); |
| si++; |
| return si + 1; |
| } |
| |
| int gen_adst_graph(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int adst_node_num) { |
| int hybrid_stage_num = get_hybrid_stage_num(TYPE_ADST, adst_node_num); |
| // generate a adst tempNode |
| Node *tempNode = new Node[hybrid_stage_num * adst_node_num]; |
| init_graph(tempNode, hybrid_stage_num, adst_node_num); |
| int si = gen_iadst_graph(tempNode, hybrid_stage_num, adst_node_num, 0, 0, |
| adst_node_num); |
| |
| // tempNode's inverse graph to node[stage_idx][node_idx] |
| gen_inv_graph(tempNode, hybrid_stage_num, adst_node_num, node, stage_num, |
| node_num, stage_idx, node_idx); |
| delete[] tempNode; |
| return si; |
| } |
| |
| void connect_layer_2d(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int dct_node_num) { |
| for (int first = 0; first < dct_node_num; first++) { |
| for (int second = 0; second < dct_node_num; second++) { |
| // int sIn = stage_idx; |
| int sOut = stage_idx + 1; |
| int nIn = node_idx + first * dct_node_num + second; |
| int nOut = node_idx + second * dct_node_num + first; |
| |
| // printf("sIn: %d nIn: %d sOut: %d nOut: %d\n", sIn, nIn, sOut, nOut); |
| |
| connect_node(node, stage_num, node_num, sOut, nOut, nIn, 1, nIn, 0); |
| } |
| } |
| } |
| |
| void connect_layer_2d_new(Node *node, int stage_num, int node_num, |
| int stage_idx, int node_idx, int dct_node_num0, |
| int dct_node_num1) { |
| for (int i = 0; i < dct_node_num1; i++) { |
| for (int j = 0; j < dct_node_num0; j++) { |
| // int sIn = stage_idx; |
| int sOut = stage_idx + 1; |
| int nIn = node_idx + i * dct_node_num0 + j; |
| int nOut = node_idx + j * dct_node_num1 + i; |
| |
| // printf("sIn: %d nIn: %d sOut: %d nOut: %d\n", sIn, nIn, sOut, nOut); |
| |
| connect_node(node, stage_num, node_num, sOut, nOut, nIn, 1, nIn, 0); |
| } |
| } |
| } |
| |
| void gen_DCT_graph_2d(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int dct_node_num) { |
| int dct_stage_num = get_dct_stage_num(dct_node_num); |
| // put 2 layers of dct_node_num DCTs on the graph |
| for (int ni = 0; ni < dct_node_num; ni++) { |
| gen_DCT_graph_1d(node, stage_num, node_num, stage_idx, |
| node_idx + ni * dct_node_num, dct_node_num); |
| gen_DCT_graph_1d(node, stage_num, node_num, stage_idx + dct_stage_num, |
| node_idx + ni * dct_node_num, dct_node_num); |
| } |
| // connect first layer and second layer |
| connect_layer_2d(node, stage_num, node_num, stage_idx + dct_stage_num - 1, |
| node_idx, dct_node_num); |
| } |
| |
| int get_hybrid_stage_num(int type, int hybrid_node_num) { |
| if (type == TYPE_DCT || type == TYPE_IDCT) { |
| return get_dct_stage_num(hybrid_node_num); |
| } else if (type == TYPE_ADST || type == TYPE_IADST) { |
| return get_adst_stage_num(hybrid_node_num); |
| } |
| return 0; |
| } |
| |
| int get_hybrid_2d_stage_num(int type0, int type1, int hybrid_node_num) { |
| int stage_num = 0; |
| stage_num += get_hybrid_stage_num(type0, hybrid_node_num); |
| stage_num += get_hybrid_stage_num(type1, hybrid_node_num); |
| return stage_num; |
| } |
| |
| int get_hybrid_2d_stage_num_new(int type0, int type1, int hybrid_node_num0, |
| int hybrid_node_num1) { |
| int stage_num = 0; |
| stage_num += get_hybrid_stage_num(type0, hybrid_node_num0); |
| stage_num += get_hybrid_stage_num(type1, hybrid_node_num1); |
| return stage_num; |
| } |
| |
| int get_hybrid_amplify_factor(int type, int hybrid_node_num) { |
| return get_max_bit(hybrid_node_num) - 1; |
| } |
| |
| void gen_hybrid_graph_1d(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int hybrid_node_num, int type) { |
| if (type == TYPE_DCT) { |
| gen_DCT_graph_1d(node, stage_num, node_num, stage_idx, node_idx, |
| hybrid_node_num); |
| } else if (type == TYPE_ADST) { |
| gen_adst_graph(node, stage_num, node_num, stage_idx, node_idx, |
| hybrid_node_num); |
| } else if (type == TYPE_IDCT) { |
| int hybrid_stage_num = get_hybrid_stage_num(type, hybrid_node_num); |
| // generate a dct tempNode |
| Node *tempNode = new Node[hybrid_stage_num * hybrid_node_num]; |
| init_graph(tempNode, hybrid_stage_num, hybrid_node_num); |
| gen_DCT_graph_1d(tempNode, hybrid_stage_num, hybrid_node_num, 0, 0, |
| hybrid_node_num); |
| |
| // tempNode's inverse graph to node[stage_idx][node_idx] |
| gen_inv_graph(tempNode, hybrid_stage_num, hybrid_node_num, node, stage_num, |
| node_num, stage_idx, node_idx); |
| delete[] tempNode; |
| } else if (type == TYPE_IADST) { |
| int hybrid_stage_num = get_hybrid_stage_num(type, hybrid_node_num); |
| // generate a adst tempNode |
| Node *tempNode = new Node[hybrid_stage_num * hybrid_node_num]; |
| init_graph(tempNode, hybrid_stage_num, hybrid_node_num); |
| gen_adst_graph(tempNode, hybrid_stage_num, hybrid_node_num, 0, 0, |
| hybrid_node_num); |
| |
| // tempNode's inverse graph to node[stage_idx][node_idx] |
| gen_inv_graph(tempNode, hybrid_stage_num, hybrid_node_num, node, stage_num, |
| node_num, stage_idx, node_idx); |
| delete[] tempNode; |
| } |
| } |
| |
| void gen_hybrid_graph_2d(Node *node, int stage_num, int node_num, int stage_idx, |
| int node_idx, int hybrid_node_num, int type0, |
| int type1) { |
| int hybrid_stage_num = get_hybrid_stage_num(type0, hybrid_node_num); |
| |
| for (int ni = 0; ni < hybrid_node_num; ni++) { |
| gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx, |
| node_idx + ni * hybrid_node_num, hybrid_node_num, |
| type0); |
| gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx + hybrid_stage_num, |
| node_idx + ni * hybrid_node_num, hybrid_node_num, |
| type1); |
| } |
| |
| // connect first layer and second layer |
| connect_layer_2d(node, stage_num, node_num, stage_idx + hybrid_stage_num - 1, |
| node_idx, hybrid_node_num); |
| } |
| |
| void gen_hybrid_graph_2d_new(Node *node, int stage_num, int node_num, |
| int stage_idx, int node_idx, int hybrid_node_num0, |
| int hybrid_node_num1, int type0, int type1) { |
| int hybrid_stage_num0 = get_hybrid_stage_num(type0, hybrid_node_num0); |
| |
| for (int ni = 0; ni < hybrid_node_num1; ni++) { |
| gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx, |
| node_idx + ni * hybrid_node_num0, hybrid_node_num0, |
| type0); |
| } |
| for (int ni = 0; ni < hybrid_node_num0; ni++) { |
| gen_hybrid_graph_1d( |
| node, stage_num, node_num, stage_idx + hybrid_stage_num0, |
| node_idx + ni * hybrid_node_num1, hybrid_node_num1, type1); |
| } |
| |
| // connect first layer and second layer |
| connect_layer_2d_new(node, stage_num, node_num, |
| stage_idx + hybrid_stage_num0 - 1, node_idx, |
| hybrid_node_num0, hybrid_node_num1); |
| } |
| |
| void gen_inv_graph(Node *node, int stage_num, int node_num, Node *invNode, |
| int inv_stage_num, int inv_node_num, int inv_stage_idx, |
| int inv_node_idx) { |
| // clean up inNodeNum in invNode because of add_node |
| for (int si = 1 + inv_stage_idx; si < inv_stage_idx + stage_num; si++) { |
| for (int ni = inv_node_idx; ni < inv_node_idx + node_num; ni++) { |
| int idx = get_idx(si, ni, inv_node_num); |
| invNode[idx].inNodeNum = 0; |
| } |
| } |
| // generate inverse graph of node on invNode |
| for (int si = 1; si < stage_num; si++) { |
| for (int ni = 0; ni < node_num; ni++) { |
| int invSi = stage_num - si; |
| int idx = get_idx(si, ni, node_num); |
| for (int k = 0; k < node[idx].inNodeNum; k++) { |
| int invNi = node[idx].inNodeIdx[k]; |
| add_node(invNode, inv_stage_num, inv_node_num, invSi + inv_stage_idx, |
| invNi + inv_node_idx, ni + inv_node_idx, |
| node[idx].inWeight[k]); |
| } |
| } |
| } |
| } |