| /* |
| * Copyright (c) 2014 The WebM project authors. All Rights Reserved. |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| #include <assert.h> |
| #include <string.h> |
| |
| #include "config/aom_config.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_dsp/arm/aom_convolve8_neon.h" |
| #include "aom_dsp/arm/aom_filter.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/transpose_neon.h" |
| #include "aom_ports/mem.h" |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kDotProdPermuteTbl[48]) = { |
| 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, |
| 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, |
| 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { |
| // Shift left and insert new last column in transposed 4x4 block. |
| 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, |
| // Shift left and insert two new columns in transposed 4x4 block. |
| 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, |
| // Shift left and insert three new columns in transposed 4x4 block. |
| 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 |
| }; |
| |
| static INLINE int16x4_t convolve8_4_h(const uint8x16_t samples, |
| const int8x8_t filters, |
| const uint8x16x2_t permute_tbl) { |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]) }; |
| |
| int32x4_t sum = |
| vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0); |
| sum = vusdotq_lane_s32(sum, permuted_samples[1], filters, 1); |
| |
| // Further narrowing and packing is performed by the caller. |
| return vqmovn_s32(sum); |
| } |
| |
| static INLINE uint8x8_t convolve8_8_h(const uint8x16_t samples, |
| const int8x8_t filters, |
| const uint8x16x3_t permute_tbl) { |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| uint8x16_t permuted_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]), |
| vqtbl1q_u8(samples, permute_tbl.val[2]) }; |
| |
| // First 4 output values. |
| int32x4_t sum0 = |
| vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0); |
| sum0 = vusdotq_lane_s32(sum0, permuted_samples[1], filters, 1); |
| // Second 4 output values. |
| int32x4_t sum1 = |
| vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filters, 0); |
| sum1 = vusdotq_lane_s32(sum1, permuted_samples[2], filters, 1); |
| |
| // Narrow and re-pack. |
| int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); |
| return vqrshrun_n_s16(sum, FILTER_BITS); |
| } |
| |
| static INLINE void convolve8_horiz_8tap_neon_i8mm( |
| const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, |
| ptrdiff_t dst_stride, const int16_t *filter_x, int w, int h) { |
| const int8x8_t filter = vmovn_s16(vld1q_s16(filter_x)); |
| |
| if (w == 4) { |
| const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl); |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t d0 = convolve8_4_h(s0, filter, perm_tbl); |
| int16x4_t d1 = convolve8_4_h(s1, filter, perm_tbl); |
| int16x4_t d2 = convolve8_4_h(s2, filter, perm_tbl); |
| int16x4_t d3 = convolve8_4_h(s3, filter, perm_tbl); |
| uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); |
| uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); |
| |
| store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| const uint8x16x3_t perm_tbl = vld1q_u8_x3(kDotProdPermuteTbl); |
| |
| do { |
| int width = w; |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint8x8_t d0 = convolve8_8_h(s0, filter, perm_tbl); |
| uint8x8_t d1 = convolve8_8_h(s1, filter, perm_tbl); |
| uint8x8_t d2 = convolve8_8_h(s2, filter, perm_tbl); |
| uint8x8_t d3 = convolve8_8_h(s3, filter, perm_tbl); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h > 0); |
| } |
| } |
| |
| static INLINE int16x4_t convolve4_4_h(const uint8x16_t samples, |
| const int8x8_t filters, |
| const uint8x16_t permute_tbl) { |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl); |
| |
| int32x4_t sum = |
| vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples, filters, 0); |
| |
| // Further narrowing and packing is performed by the caller. |
| return vmovn_s32(sum); |
| } |
| |
| static INLINE uint8x8_t convolve4_8_h(const uint8x16_t samples, |
| const int8x8_t filters, |
| const uint8x16x2_t permute_tbl) { |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]) }; |
| |
| // First 4 output values. |
| int32x4_t sum0 = |
| vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0); |
| // Second 4 output values. |
| int32x4_t sum1 = |
| vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filters, 0); |
| |
| // Narrow and re-pack. |
| int16x8_t sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1)); |
| // We halved the filter values so -1 from right shift. |
| return vqrshrun_n_s16(sum, FILTER_BITS - 1); |
| } |
| |
| static INLINE void convolve8_horiz_4tap_neon_i8mm( |
| const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, |
| ptrdiff_t dst_stride, const int16_t *filter_x, int width, int height) { |
| const int16x4_t x_filter = vld1_s16(filter_x + 2); |
| // All 4-tap and bilinear filter values are even, so halve them to reduce |
| // intermediate precision requirements. |
| const int8x8_t filter = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1); |
| |
| if (width == 4) { |
| const uint8x16_t perm_tbl = vld1q_u8(kDotProdPermuteTbl); |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t t0 = convolve4_4_h(s0, filter, perm_tbl); |
| int16x4_t t1 = convolve4_4_h(s1, filter, perm_tbl); |
| int16x4_t t2 = convolve4_4_h(s2, filter, perm_tbl); |
| int16x4_t t3 = convolve4_4_h(s3, filter, perm_tbl); |
| // We halved the filter values so -1 from right shift. |
| uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1); |
| uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1); |
| |
| store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| height -= 4; |
| } while (height > 0); |
| } else { |
| const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl); |
| |
| do { |
| int w = width; |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint8x8_t d0 = convolve4_8_h(s0, filter, perm_tbl); |
| uint8x8_t d1 = convolve4_8_h(s1, filter, perm_tbl); |
| uint8x8_t d2 = convolve4_8_h(s2, filter, perm_tbl); |
| uint8x8_t d3 = convolve4_8_h(s3, filter, perm_tbl); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| w -= 8; |
| } while (w != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| height -= 4; |
| } while (height > 0); |
| } |
| } |
| |
| void aom_convolve8_horiz_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const int16_t *filter_x, int x_step_q4, |
| const int16_t *filter_y, int y_step_q4, |
| int w, int h) { |
| assert((intptr_t)dst % 4 == 0); |
| assert(dst_stride % 4 == 0); |
| |
| (void)x_step_q4; |
| (void)filter_y; |
| (void)y_step_q4; |
| |
| src -= ((SUBPEL_TAPS / 2) - 1); |
| |
| int filter_taps = get_filter_taps_convolve8(filter_x); |
| |
| if (filter_taps == 2) { |
| convolve8_horiz_2tap_neon(src + 3, src_stride, dst, dst_stride, filter_x, w, |
| h); |
| } else if (filter_taps == 4) { |
| convolve8_horiz_4tap_neon_i8mm(src + 2, src_stride, dst, dst_stride, |
| filter_x, w, h); |
| } else { |
| convolve8_horiz_8tap_neon_i8mm(src, src_stride, dst, dst_stride, filter_x, |
| w, h); |
| } |
| } |
| |
| static INLINE void transpose_concat_4x4(uint8x8_t a0, uint8x8_t a1, |
| uint8x8_t a2, uint8x8_t a3, |
| uint8x16_t *b) { |
| // Transpose 8-bit elements and concatenate result rows as follows: |
| // a0: 00, 01, 02, 03, XX, XX, XX, XX |
| // a1: 10, 11, 12, 13, XX, XX, XX, XX |
| // a2: 20, 21, 22, 23, XX, XX, XX, XX |
| // a3: 30, 31, 32, 33, XX, XX, XX, XX |
| // |
| // b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 |
| |
| uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0)); |
| uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0)); |
| uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0)); |
| uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0)); |
| |
| uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0]; |
| uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0]; |
| |
| uint16x8_t a0123 = |
| vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)).val[0]; |
| |
| *b = vreinterpretq_u8_u16(a0123); |
| } |
| |
| static INLINE void transpose_concat_8x4(uint8x8_t a0, uint8x8_t a1, |
| uint8x8_t a2, uint8x8_t a3, |
| uint8x16_t *b0, uint8x16_t *b1) { |
| // Transpose 8-bit elements and concatenate result rows as follows: |
| // a0: 00, 01, 02, 03, 04, 05, 06, 07 |
| // a1: 10, 11, 12, 13, 14, 15, 16, 17 |
| // a2: 20, 21, 22, 23, 24, 25, 26, 27 |
| // a3: 30, 31, 32, 33, 34, 35, 36, 37 |
| // |
| // b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 |
| // b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37 |
| |
| uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0)); |
| uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0)); |
| uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0)); |
| uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0)); |
| |
| uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0]; |
| uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0]; |
| |
| uint16x8x2_t a0123 = |
| vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)); |
| |
| *b0 = vreinterpretq_u8_u16(a0123.val[0]); |
| *b1 = vreinterpretq_u8_u16(a0123.val[1]); |
| } |
| |
| static INLINE int16x4_t convolve8_4_v(const uint8x16_t samples_lo, |
| const uint8x16_t samples_hi, |
| const int8x8_t filters) { |
| // Sample permutation is performed by the caller. |
| int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), samples_lo, filters, 0); |
| sum = vusdotq_lane_s32(sum, samples_hi, filters, 1); |
| |
| // Further narrowing and packing is performed by the caller. |
| return vqmovn_s32(sum); |
| } |
| |
| static INLINE uint8x8_t convolve8_8_v(const uint8x16_t samples0_lo, |
| const uint8x16_t samples0_hi, |
| const uint8x16_t samples1_lo, |
| const uint8x16_t samples1_hi, |
| const int8x8_t filters) { |
| // Sample permutation is performed by the caller. |
| |
| // First 4 output values. |
| int32x4_t sum0 = vusdotq_lane_s32(vdupq_n_s32(0), samples0_lo, filters, 0); |
| sum0 = vusdotq_lane_s32(sum0, samples0_hi, filters, 1); |
| // Second 4 output values. |
| int32x4_t sum1 = vusdotq_lane_s32(vdupq_n_s32(0), samples1_lo, filters, 0); |
| sum1 = vusdotq_lane_s32(sum1, samples1_hi, filters, 1); |
| |
| // Narrow and re-pack. |
| int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1)); |
| return vqrshrun_n_s16(sum, FILTER_BITS); |
| } |
| |
| static INLINE void convolve8_vert_8tap_neon_i8mm( |
| const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, |
| ptrdiff_t dst_stride, const int16_t *filter_y, int w, int h) { |
| const int8x8_t filter = vmovn_s16(vld1q_s16(filter_y)); |
| const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); |
| uint8x16x2_t samples_LUT; |
| |
| if (w == 4) { |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(src, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| src += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // (see horizontal case) required before computing the dot product. |
| uint8x16_t s0123, s1234, s2345, s3456; |
| transpose_concat_4x4(s0, s1, s2, s3, &s0123); |
| transpose_concat_4x4(s1, s2, s3, s4, &s1234); |
| transpose_concat_4x4(s2, s3, s4, s5, &s2345); |
| transpose_concat_4x4(s3, s4, s5, s6, &s3456); |
| |
| do { |
| uint8x8_t s7, s8, s9, s10; |
| load_u8_8x4(src, src_stride, &s7, &s8, &s9, &s10); |
| |
| uint8x16_t s4567, s5678, s6789, s78910; |
| transpose_concat_4x4(s7, s8, s9, s10, &s78910); |
| |
| // Merge new data into block from previous iteration. |
| samples_LUT.val[0] = s3456; |
| samples_LUT.val[1] = s78910; |
| s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| int16x4_t d0 = convolve8_4_v(s0123, s4567, filter); |
| int16x4_t d1 = convolve8_4_v(s1234, s5678, filter); |
| int16x4_t d2 = convolve8_4_v(s2345, s6789, filter); |
| int16x4_t d3 = convolve8_4_v(s3456, s78910, filter); |
| uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); |
| uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); |
| |
| store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123 = s4567; |
| s1234 = s5678; |
| s2345 = s6789; |
| s3456 = s78910; |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| int height = h; |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| s += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // (see horizontal case) required before computing the dot product. |
| uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, |
| s3456_lo, s3456_hi; |
| transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); |
| transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); |
| transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); |
| transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); |
| |
| do { |
| uint8x8_t s7, s8, s9, s10; |
| load_u8_8x4(s, src_stride, &s7, &s8, &s9, &s10); |
| |
| uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, |
| s78910_lo, s78910_hi; |
| transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi); |
| |
| // Merge new data into block from previous iteration. |
| samples_LUT.val[0] = s3456_lo; |
| samples_LUT.val[1] = s78910_lo; |
| s4567_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| s5678_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| s6789_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| samples_LUT.val[0] = s3456_hi; |
| samples_LUT.val[1] = s78910_hi; |
| s4567_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| s5678_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| s6789_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| uint8x8_t d0 = |
| convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filter); |
| uint8x8_t d1 = |
| convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filter); |
| uint8x8_t d2 = |
| convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filter); |
| uint8x8_t d3 = |
| convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filter); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123_lo = s4567_lo; |
| s0123_hi = s4567_hi; |
| s1234_lo = s5678_lo; |
| s1234_hi = s5678_hi; |
| s2345_lo = s6789_lo; |
| s2345_hi = s6789_hi; |
| s3456_lo = s78910_lo; |
| s3456_hi = s78910_hi; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| src += 8; |
| dst += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| void aom_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const int16_t *filter_x, int x_step_q4, |
| const int16_t *filter_y, int y_step_q4, int w, |
| int h) { |
| assert((intptr_t)dst % 4 == 0); |
| assert(dst_stride % 4 == 0); |
| |
| (void)filter_x; |
| (void)x_step_q4; |
| (void)y_step_q4; |
| |
| src -= ((SUBPEL_TAPS / 2) - 1) * src_stride; |
| |
| int filter_taps = get_filter_taps_convolve8(filter_y); |
| |
| if (filter_taps == 2) { |
| convolve8_vert_2tap_neon(src + 3 * src_stride, src_stride, dst, dst_stride, |
| filter_y, w, h); |
| } else if (filter_taps == 4) { |
| convolve8_vert_4tap_neon(src + 2 * src_stride, src_stride, dst, dst_stride, |
| filter_y, w, h); |
| } else { |
| convolve8_vert_8tap_neon_i8mm(src, src_stride, dst, dst_stride, filter_y, w, |
| h); |
| } |
| } |