blob: d067a7616a88b4acbeb9e9198ab0b7d2a6e5c0f2 [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include <stdint.h>
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/sum_neon.h"
#include "av1/encoder/arm/pickrst_neon.h"
#include "av1/encoder/pickrst.h"
static INLINE void highbd_calc_proj_params_r0_r1_neon(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
assert(width % 8 == 0);
const int size = width * height;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
int64x2_t h00_lo = vdupq_n_s64(0);
int64x2_t h00_hi = vdupq_n_s64(0);
int64x2_t h11_lo = vdupq_n_s64(0);
int64x2_t h11_hi = vdupq_n_s64(0);
int64x2_t h01_lo = vdupq_n_s64(0);
int64x2_t h01_hi = vdupq_n_s64(0);
int64x2_t c0_lo = vdupq_n_s64(0);
int64x2_t c0_hi = vdupq_n_s64(0);
int64x2_t c1_lo = vdupq_n_s64(0);
int64x2_t c1_hi = vdupq_n_s64(0);
do {
const uint16_t *src_ptr = src;
const uint16_t *dat_ptr = dat;
int32_t *flt0_ptr = flt0;
int32_t *flt1_ptr = flt1;
int w = width;
do {
uint16x8_t s = vld1q_u16(src_ptr);
uint16x8_t d = vld1q_u16(dat_ptr);
int32x4_t f0_lo = vld1q_s32(flt0_ptr);
int32x4_t f0_hi = vld1q_s32(flt0_ptr + 4);
int32x4_t f1_lo = vld1q_s32(flt1_ptr);
int32x4_t f1_hi = vld1q_s32(flt1_ptr + 4);
int32x4_t u_lo =
vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(d), SGRPROJ_RST_BITS));
int32x4_t u_hi = vreinterpretq_s32_u32(
vshll_n_u16(vget_high_u16(d), SGRPROJ_RST_BITS));
int32x4_t s_lo =
vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(s), SGRPROJ_RST_BITS));
int32x4_t s_hi = vreinterpretq_s32_u32(
vshll_n_u16(vget_high_u16(s), SGRPROJ_RST_BITS));
s_lo = vsubq_s32(s_lo, u_lo);
s_hi = vsubq_s32(s_hi, u_hi);
f0_lo = vsubq_s32(f0_lo, u_lo);
f0_hi = vsubq_s32(f0_hi, u_hi);
f1_lo = vsubq_s32(f1_lo, u_lo);
f1_hi = vsubq_s32(f1_hi, u_hi);
h00_lo = vmlal_s32(h00_lo, vget_low_s32(f0_lo), vget_low_s32(f0_lo));
h00_lo = vmlal_s32(h00_lo, vget_high_s32(f0_lo), vget_high_s32(f0_lo));
h00_hi = vmlal_s32(h00_hi, vget_low_s32(f0_hi), vget_low_s32(f0_hi));
h00_hi = vmlal_s32(h00_hi, vget_high_s32(f0_hi), vget_high_s32(f0_hi));
h11_lo = vmlal_s32(h11_lo, vget_low_s32(f1_lo), vget_low_s32(f1_lo));
h11_lo = vmlal_s32(h11_lo, vget_high_s32(f1_lo), vget_high_s32(f1_lo));
h11_hi = vmlal_s32(h11_hi, vget_low_s32(f1_hi), vget_low_s32(f1_hi));
h11_hi = vmlal_s32(h11_hi, vget_high_s32(f1_hi), vget_high_s32(f1_hi));
h01_lo = vmlal_s32(h01_lo, vget_low_s32(f0_lo), vget_low_s32(f1_lo));
h01_lo = vmlal_s32(h01_lo, vget_high_s32(f0_lo), vget_high_s32(f1_lo));
h01_hi = vmlal_s32(h01_hi, vget_low_s32(f0_hi), vget_low_s32(f1_hi));
h01_hi = vmlal_s32(h01_hi, vget_high_s32(f0_hi), vget_high_s32(f1_hi));
c0_lo = vmlal_s32(c0_lo, vget_low_s32(f0_lo), vget_low_s32(s_lo));
c0_lo = vmlal_s32(c0_lo, vget_high_s32(f0_lo), vget_high_s32(s_lo));
c0_hi = vmlal_s32(c0_hi, vget_low_s32(f0_hi), vget_low_s32(s_hi));
c0_hi = vmlal_s32(c0_hi, vget_high_s32(f0_hi), vget_high_s32(s_hi));
c1_lo = vmlal_s32(c1_lo, vget_low_s32(f1_lo), vget_low_s32(s_lo));
c1_lo = vmlal_s32(c1_lo, vget_high_s32(f1_lo), vget_high_s32(s_lo));
c1_hi = vmlal_s32(c1_hi, vget_low_s32(f1_hi), vget_low_s32(s_hi));
c1_hi = vmlal_s32(c1_hi, vget_high_s32(f1_hi), vget_high_s32(s_hi));
src_ptr += 8;
dat_ptr += 8;
flt0_ptr += 8;
flt1_ptr += 8;
w -= 8;
} while (w != 0);
src += src_stride;
dat += dat_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
} while (--height != 0);
H[0][0] = horizontal_add_s64x2(vaddq_s64(h00_lo, h00_hi)) / size;
H[0][1] = horizontal_add_s64x2(vaddq_s64(h01_lo, h01_hi)) / size;
H[1][1] = horizontal_add_s64x2(vaddq_s64(h11_lo, h11_hi)) / size;
H[1][0] = H[0][1];
C[0] = horizontal_add_s64x2(vaddq_s64(c0_lo, c0_hi)) / size;
C[1] = horizontal_add_s64x2(vaddq_s64(c1_lo, c1_hi)) / size;
}
static INLINE void highbd_calc_proj_params_r0_neon(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int64_t H[2][2], int64_t C[2]) {
assert(width % 8 == 0);
const int size = width * height;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
int64x2_t h00_lo = vdupq_n_s64(0);
int64x2_t h00_hi = vdupq_n_s64(0);
int64x2_t c0_lo = vdupq_n_s64(0);
int64x2_t c0_hi = vdupq_n_s64(0);
do {
const uint16_t *src_ptr = src;
const uint16_t *dat_ptr = dat;
int32_t *flt0_ptr = flt0;
int w = width;
do {
uint16x8_t s = vld1q_u16(src_ptr);
uint16x8_t d = vld1q_u16(dat_ptr);
int32x4_t f0_lo = vld1q_s32(flt0_ptr);
int32x4_t f0_hi = vld1q_s32(flt0_ptr + 4);
int32x4_t u_lo =
vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(d), SGRPROJ_RST_BITS));
int32x4_t u_hi = vreinterpretq_s32_u32(
vshll_n_u16(vget_high_u16(d), SGRPROJ_RST_BITS));
int32x4_t s_lo =
vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(s), SGRPROJ_RST_BITS));
int32x4_t s_hi = vreinterpretq_s32_u32(
vshll_n_u16(vget_high_u16(s), SGRPROJ_RST_BITS));
s_lo = vsubq_s32(s_lo, u_lo);
s_hi = vsubq_s32(s_hi, u_hi);
f0_lo = vsubq_s32(f0_lo, u_lo);
f0_hi = vsubq_s32(f0_hi, u_hi);
h00_lo = vmlal_s32(h00_lo, vget_low_s32(f0_lo), vget_low_s32(f0_lo));
h00_lo = vmlal_s32(h00_lo, vget_high_s32(f0_lo), vget_high_s32(f0_lo));
h00_hi = vmlal_s32(h00_hi, vget_low_s32(f0_hi), vget_low_s32(f0_hi));
h00_hi = vmlal_s32(h00_hi, vget_high_s32(f0_hi), vget_high_s32(f0_hi));
c0_lo = vmlal_s32(c0_lo, vget_low_s32(f0_lo), vget_low_s32(s_lo));
c0_lo = vmlal_s32(c0_lo, vget_high_s32(f0_lo), vget_high_s32(s_lo));
c0_hi = vmlal_s32(c0_hi, vget_low_s32(f0_hi), vget_low_s32(s_hi));
c0_hi = vmlal_s32(c0_hi, vget_high_s32(f0_hi), vget_high_s32(s_hi));
src_ptr += 8;
dat_ptr += 8;
flt0_ptr += 8;
w -= 8;
} while (w != 0);
src += src_stride;
dat += dat_stride;
flt0 += flt0_stride;
} while (--height != 0);
H[0][0] = horizontal_add_s64x2(vaddq_s64(h00_lo, h00_hi)) / size;
C[0] = horizontal_add_s64x2(vaddq_s64(c0_lo, c0_hi)) / size;
}
static INLINE void highbd_calc_proj_params_r1_neon(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2]) {
assert(width % 8 == 0);
const int size = width * height;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
int64x2_t h11_lo = vdupq_n_s64(0);
int64x2_t h11_hi = vdupq_n_s64(0);
int64x2_t c1_lo = vdupq_n_s64(0);
int64x2_t c1_hi = vdupq_n_s64(0);
do {
const uint16_t *src_ptr = src;
const uint16_t *dat_ptr = dat;
int32_t *flt1_ptr = flt1;
int w = width;
do {
uint16x8_t s = vld1q_u16(src_ptr);
uint16x8_t d = vld1q_u16(dat_ptr);
int32x4_t f1_lo = vld1q_s32(flt1_ptr);
int32x4_t f1_hi = vld1q_s32(flt1_ptr + 4);
int32x4_t u_lo =
vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(d), SGRPROJ_RST_BITS));
int32x4_t u_hi = vreinterpretq_s32_u32(
vshll_n_u16(vget_high_u16(d), SGRPROJ_RST_BITS));
int32x4_t s_lo =
vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(s), SGRPROJ_RST_BITS));
int32x4_t s_hi = vreinterpretq_s32_u32(
vshll_n_u16(vget_high_u16(s), SGRPROJ_RST_BITS));
s_lo = vsubq_s32(s_lo, u_lo);
s_hi = vsubq_s32(s_hi, u_hi);
f1_lo = vsubq_s32(f1_lo, u_lo);
f1_hi = vsubq_s32(f1_hi, u_hi);
h11_lo = vmlal_s32(h11_lo, vget_low_s32(f1_lo), vget_low_s32(f1_lo));
h11_lo = vmlal_s32(h11_lo, vget_high_s32(f1_lo), vget_high_s32(f1_lo));
h11_hi = vmlal_s32(h11_hi, vget_low_s32(f1_hi), vget_low_s32(f1_hi));
h11_hi = vmlal_s32(h11_hi, vget_high_s32(f1_hi), vget_high_s32(f1_hi));
c1_lo = vmlal_s32(c1_lo, vget_low_s32(f1_lo), vget_low_s32(s_lo));
c1_lo = vmlal_s32(c1_lo, vget_high_s32(f1_lo), vget_high_s32(s_lo));
c1_hi = vmlal_s32(c1_hi, vget_low_s32(f1_hi), vget_low_s32(s_hi));
c1_hi = vmlal_s32(c1_hi, vget_high_s32(f1_hi), vget_high_s32(s_hi));
src_ptr += 8;
dat_ptr += 8;
flt1_ptr += 8;
w -= 8;
} while (w != 0);
src += src_stride;
dat += dat_stride;
flt1 += flt1_stride;
} while (--height != 0);
H[1][1] = horizontal_add_s64x2(vaddq_s64(h11_lo, h11_hi)) / size;
C[1] = horizontal_add_s64x2(vaddq_s64(c1_lo, c1_hi)) / size;
}
// The function calls 3 subfunctions for the following cases :
// 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements
// of C and H need to be computed.
// 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are
// non-zero and need to be computed.
// 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are
// non-zero and need to be computed.
void av1_calc_proj_params_high_bd_neon(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2],
const sgr_params_type *params) {
if ((params->r[0] > 0) && (params->r[1] > 0)) {
highbd_calc_proj_params_r0_r1_neon(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C);
} else if (params->r[0] > 0) {
highbd_calc_proj_params_r0_neon(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, H, C);
} else if (params->r[1] > 0) {
highbd_calc_proj_params_r1_neon(src8, width, height, src_stride, dat8,
dat_stride, flt1, flt1_stride, H, C);
}
}
static INLINE int16x8_t tbl2q(int16x8_t a, int16x8_t b, uint8x16_t idx) {
#if AOM_ARCH_AARCH64
uint8x16x2_t table = { { vreinterpretq_u8_s16(a), vreinterpretq_u8_s16(b) } };
return vreinterpretq_s16_u8(vqtbl2q_u8(table, idx));
#else
uint8x8x4_t table = { { vreinterpret_u8_s16(vget_low_s16(a)),
vreinterpret_u8_s16(vget_high_s16(a)),
vreinterpret_u8_s16(vget_low_s16(b)),
vreinterpret_u8_s16(vget_high_s16(b)) } };
return vreinterpretq_s16_u8(vcombine_u8(vtbl4_u8(table, vget_low_u8(idx)),
vtbl4_u8(table, vget_high_u8(idx))));
#endif
}
static INLINE int16x8_t tbl3q(int16x8_t a, int16x8_t b, int16x8_t c,
uint8x16_t idx) {
#if AOM_ARCH_AARCH64
uint8x16x3_t table = { { vreinterpretq_u8_s16(a), vreinterpretq_u8_s16(b),
vreinterpretq_u8_s16(c) } };
return vreinterpretq_s16_u8(vqtbl3q_u8(table, idx));
#else
// This is a specific implementation working only for compute stats with
// wiener_win == 5.
uint8x8x3_t table_lo = { { vreinterpret_u8_s16(vget_low_s16(a)),
vreinterpret_u8_s16(vget_high_s16(a)),
vreinterpret_u8_s16(vget_low_s16(b)) } };
uint8x8x3_t table_hi = { { vreinterpret_u8_s16(vget_low_s16(b)),
vreinterpret_u8_s16(vget_high_s16(b)),
vreinterpret_u8_s16(vget_low_s16(c)) } };
return vreinterpretq_s16_u8(vcombine_u8(
vtbl3_u8(table_lo, vget_low_u8(idx)),
vtbl3_u8(table_hi, vsub_u8(vget_high_u8(idx), vdup_n_u8(16)))));
#endif
}
static INLINE int64_t div_shift_s64(int64_t x, int power) {
return (x < 0 ? x + (1ll << power) - 1 : x) >> power;
}
// The M matrix is accumulated in a bitdepth-dependent number of steps to
// speed up the computation. This function computes the final M from the
// accumulated (src_s64) and the residual parts (src_s32). It also transposes
// the result as the output needs to be column-major.
static INLINE void acc_transpose_M(int64_t *dst, const int64_t *src_s64,
const int32_t *src_s32, const int wiener_win,
int shift) {
for (int i = 0; i < wiener_win; ++i) {
for (int j = 0; j < wiener_win; ++j) {
int tr_idx = j * wiener_win + i;
*dst++ = div_shift_s64(src_s64[tr_idx] + src_s32[tr_idx], shift);
}
}
}
// The resulting H is a column-major matrix accumulated from the transposed
// (column-major) samples of the filter kernel (5x5 or 7x7) viewed as a single
// vector. For the 7x7 filter case: H(49x49) = [49 x 1] x [1 x 49]. This
// function transforms back to the originally expected format (double
// transpose). The H matrix is accumulated in a bitdepth-dependent number of
// steps to speed up the computation. This function computes the final H from
// the accumulated (src_s64) and the residual parts (src_s32). The computed H is
// only an upper triangle matrix, this function also fills the lower triangle of
// the resulting matrix.
static INLINE void update_H(int64_t *dst, const int64_t *src_s64,
const int32_t *src_s32, const int wiener_win,
int stride, int shift) {
// For a simplified theoretical 3x3 case where `wiener_win` is 3 and
// `wiener_win2` is 9, the M matrix is 3x3:
// 0, 3, 6
// 1, 4, 7
// 2, 5, 8
//
// This is viewed as a vector to compute H (9x9) by vector outer product:
// 0, 3, 6, 1, 4, 7, 2, 5, 8
//
// Double transpose and upper triangle remapping for 3x3 -> 9x9 case:
// 0, 3, 6, 1, 4, 7, 2, 5, 8,
// 3, 30, 33, 12, 31, 34, 21, 32, 35,
// 6, 33, 60, 15, 42, 61, 24, 51, 62,
// 1, 12, 15, 10, 13, 16, 11, 14, 17,
// 4, 31, 42, 13, 40, 43, 22, 41, 44,
// 7, 34, 61, 16, 43, 70, 25, 52, 71,
// 2, 21, 24, 11, 22, 25, 20, 23, 26,
// 5, 32, 51, 14, 41, 52, 23, 50, 53,
// 8, 35, 62, 17, 44, 71, 26, 53, 80,
const int wiener_win2 = wiener_win * wiener_win;
// Loop through the indices according to the remapping above, along the
// columns:
// 0, wiener_win, 2 * wiener_win, ..., 1, 1 + 2 * wiener_win, ...,
// wiener_win - 1, wiener_win - 1 + wiener_win, ...
// For the 3x3 case `j` will be: 0, 3, 6, 1, 4, 7, 2, 5, 8.
for (int i = 0; i < wiener_win; ++i) {
for (int j = i; j < wiener_win2; j += wiener_win) {
// These two inner loops are the same as the two outer loops, but running
// along rows instead of columns. For the 3x3 case `l` will be:
// 0, 3, 6, 1, 4, 7, 2, 5, 8.
for (int k = 0; k < wiener_win; ++k) {
for (int l = k; l < wiener_win2; l += wiener_win) {
// The nominal double transpose indexing would be:
// int idx = stride * j + l;
// However we need the upper-right triangle, it is easy with some
// min/max operations.
int tr_idx = stride * AOMMIN(j, l) + AOMMAX(j, l);
// Resulting matrix is filled by combining the 64-bit and the residual
// 32-bit matrices together with scaling.
*dst++ = div_shift_s64(src_s64[tr_idx] + src_s32[tr_idx], shift);
}
}
}
}
}
// Load 7x7 matrix into 7 128-bit vectors from consecutive rows, the last load
// address is offset to prevent out-of-bounds access.
static INLINE void load_and_pack_s16_8x7(int16x8_t dst[7], const int16_t *src,
ptrdiff_t stride) {
dst[0] = vld1q_s16(src);
src += stride;
dst[1] = vld1q_s16(src);
src += stride;
dst[2] = vld1q_s16(src);
src += stride;
dst[3] = vld1q_s16(src);
src += stride;
dst[4] = vld1q_s16(src);
src += stride;
dst[5] = vld1q_s16(src);
src += stride;
dst[6] = vld1q_s16(src - 1);
}
static INLINE void highbd_compute_stats_win7_neon(
const uint16_t *dgd, const uint16_t *src, int avg, int width, int height,
int dgd_stride, int src_stride, int64_t *M, int64_t *H,
aom_bit_depth_t bit_depth) {
// Matrix names are capitalized to help readability.
DECLARE_ALIGNED(64, int16_t, DGD_AVG0[WIENER_WIN2_ALIGN3]);
DECLARE_ALIGNED(64, int16_t, DGD_AVG1[WIENER_WIN2_ALIGN3]);
DECLARE_ALIGNED(64, int32_t, M_s32[WIENER_WIN2_ALIGN3]);
DECLARE_ALIGNED(64, int64_t, M_s64[WIENER_WIN2_ALIGN3]);
DECLARE_ALIGNED(64, int32_t, H_s32[WIENER_WIN2 * WIENER_WIN2_ALIGN2]);
DECLARE_ALIGNED(64, int64_t, H_s64[WIENER_WIN2 * WIENER_WIN2_ALIGN2]);
memset(M_s32, 0, sizeof(M_s32));
memset(M_s64, 0, sizeof(M_s64));
memset(H_s32, 0, sizeof(H_s32));
memset(H_s64, 0, sizeof(H_s64));
// Look-up tables to create 8x6 matrix with consecutive elements from two 7x7
// matrices.
// clang-format off
DECLARE_ALIGNED(16, static const uint8_t, shuffle_stats7_highbd[192]) = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21,
6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23,
8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
10, 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23,
8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25,
10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
};
// clang-format on
const uint8x16_t lut0 = vld1q_u8(shuffle_stats7_highbd + 0);
const uint8x16_t lut1 = vld1q_u8(shuffle_stats7_highbd + 16);
const uint8x16_t lut2 = vld1q_u8(shuffle_stats7_highbd + 32);
const uint8x16_t lut3 = vld1q_u8(shuffle_stats7_highbd + 48);
const uint8x16_t lut4 = vld1q_u8(shuffle_stats7_highbd + 64);
const uint8x16_t lut5 = vld1q_u8(shuffle_stats7_highbd + 80);
const uint8x16_t lut6 = vld1q_u8(shuffle_stats7_highbd + 96);
const uint8x16_t lut7 = vld1q_u8(shuffle_stats7_highbd + 112);
const uint8x16_t lut8 = vld1q_u8(shuffle_stats7_highbd + 128);
const uint8x16_t lut9 = vld1q_u8(shuffle_stats7_highbd + 144);
const uint8x16_t lut10 = vld1q_u8(shuffle_stats7_highbd + 160);
const uint8x16_t lut11 = vld1q_u8(shuffle_stats7_highbd + 176);
// We can accumulate up to 65536/4096/256 8/10/12-bit multiplication results
// in 32-bit. We are processing 2 pixels at a time, so the accumulator max can
// be as high as 32768/2048/128 for the compute stats.
const int acc_cnt_max = (1 << (32 - 2 * bit_depth)) >> 1;
int acc_cnt = acc_cnt_max;
const int src_next = src_stride - width;
const int dgd_next = dgd_stride - width;
const int16x8_t avg_s16 = vdupq_n_s16(avg);
do {
int j = width;
while (j >= 2) {
// Load two adjacent, overlapping 7x7 matrices: a 8x7 matrix with the
// middle 6x7 elements being shared.
int16x8_t dgd_rows[7];
load_and_pack_s16_8x7(dgd_rows, (const int16_t *)dgd, dgd_stride);
const int16_t *dgd_ptr = (const int16_t *)dgd + dgd_stride * 6;
dgd += 2;
dgd_rows[0] = vsubq_s16(dgd_rows[0], avg_s16);
dgd_rows[1] = vsubq_s16(dgd_rows[1], avg_s16);
dgd_rows[2] = vsubq_s16(dgd_rows[2], avg_s16);
dgd_rows[3] = vsubq_s16(dgd_rows[3], avg_s16);
dgd_rows[4] = vsubq_s16(dgd_rows[4], avg_s16);
dgd_rows[5] = vsubq_s16(dgd_rows[5], avg_s16);
dgd_rows[6] = vsubq_s16(dgd_rows[6], avg_s16);
// Re-arrange the combined 8x7 matrix to have the 2 whole 7x7 matrices (1
// for each of the 2 pixels) separated into distinct int16x8_t[6] arrays.
// These arrays contain 48 elements of the 49 (7x7). Compute `dgd - avg`
// for both buffers. Each DGD_AVG buffer contains 49 consecutive elements.
int16x8_t dgd_avg0[6];
int16x8_t dgd_avg1[6];
dgd_avg0[0] = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
dgd_avg1[0] = tbl2q(dgd_rows[0], dgd_rows[1], lut6);
dgd_avg0[1] = tbl2q(dgd_rows[1], dgd_rows[2], lut1);
dgd_avg1[1] = tbl2q(dgd_rows[1], dgd_rows[2], lut7);
dgd_avg0[2] = tbl2q(dgd_rows[2], dgd_rows[3], lut2);
dgd_avg1[2] = tbl2q(dgd_rows[2], dgd_rows[3], lut8);
dgd_avg0[3] = tbl2q(dgd_rows[3], dgd_rows[4], lut3);
dgd_avg1[3] = tbl2q(dgd_rows[3], dgd_rows[4], lut9);
dgd_avg0[4] = tbl2q(dgd_rows[4], dgd_rows[5], lut4);
dgd_avg1[4] = tbl2q(dgd_rows[4], dgd_rows[5], lut10);
dgd_avg0[5] = tbl2q(dgd_rows[5], dgd_rows[6], lut5);
dgd_avg1[5] = tbl2q(dgd_rows[5], dgd_rows[6], lut11);
vst1q_s16(DGD_AVG0, dgd_avg0[0]);
vst1q_s16(DGD_AVG1, dgd_avg1[0]);
vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
vst1q_s16(DGD_AVG1 + 8, dgd_avg1[1]);
vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
vst1q_s16(DGD_AVG1 + 16, dgd_avg1[2]);
vst1q_s16(DGD_AVG0 + 24, dgd_avg0[3]);
vst1q_s16(DGD_AVG1 + 24, dgd_avg1[3]);
vst1q_s16(DGD_AVG0 + 32, dgd_avg0[4]);
vst1q_s16(DGD_AVG1 + 32, dgd_avg1[4]);
vst1q_s16(DGD_AVG0 + 40, dgd_avg0[5]);
vst1q_s16(DGD_AVG1 + 40, dgd_avg1[5]);
// The remaining last (49th) elements of `dgd - avg`.
DGD_AVG0[48] = dgd_ptr[6] - avg;
DGD_AVG1[48] = dgd_ptr[7] - avg;
// Accumulate into row-major variant of matrix M (cross-correlation) for 2
// output pixels at a time. M is of size 7 * 7. It needs to be filled such
// that multiplying one element from src with each element of a row of the
// wiener window will fill one column of M. However this is not very
// convenient in terms of memory access, as it means we do contiguous
// loads of dgd but strided stores to M. As a result, we use an
// intermediate matrix M_s32 which is instead filled such that one row of
// the wiener window gives one row of M_s32. Once fully computed, M_s32 is
// then transposed to return M.
int src_avg0 = *src++ - avg;
int src_avg1 = *src++ - avg;
int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
int16x4_t src_avg1_s16 = vdup_n_s16(src_avg1);
update_M_2pixels(M_s32 + 0, src_avg0_s16, src_avg1_s16, dgd_avg0[0],
dgd_avg1[0]);
update_M_2pixels(M_s32 + 8, src_avg0_s16, src_avg1_s16, dgd_avg0[1],
dgd_avg1[1]);
update_M_2pixels(M_s32 + 16, src_avg0_s16, src_avg1_s16, dgd_avg0[2],
dgd_avg1[2]);
update_M_2pixels(M_s32 + 24, src_avg0_s16, src_avg1_s16, dgd_avg0[3],
dgd_avg1[3]);
update_M_2pixels(M_s32 + 32, src_avg0_s16, src_avg1_s16, dgd_avg0[4],
dgd_avg1[4]);
update_M_2pixels(M_s32 + 40, src_avg0_s16, src_avg1_s16, dgd_avg0[5],
dgd_avg1[5]);
// Last (49th) element of M_s32 can be computed as scalar more efficiently
// for 2 output pixels.
M_s32[48] += DGD_AVG0[48] * src_avg0 + DGD_AVG1[48] * src_avg1;
// Start accumulating into row-major version of matrix H
// (auto-covariance), it expects the DGD_AVG[01] matrices to also be
// row-major. H is of size 49 * 49. It is filled by multiplying every pair
// of elements of the wiener window together (vector outer product). Since
// it is a symmetric matrix, we only compute the upper-right triangle, and
// then copy it down to the lower-left later. The upper triangle is
// covered by 4x4 tiles. The original algorithm assumes the M matrix is
// column-major and the resulting H matrix is also expected to be
// column-major. It is not efficient to work with column-major matrices,
// so we accumulate into a row-major matrix H_s32. At the end of the
// algorithm a double transpose transformation will convert H_s32 back to
// the expected output layout.
update_H_7x7_2pixels(H_s32, DGD_AVG0, DGD_AVG1);
// The last element of the triangle of H_s32 matrix can be computed as a
// scalar more efficiently.
H_s32[48 * WIENER_WIN2_ALIGN2 + 48] +=
DGD_AVG0[48] * DGD_AVG0[48] + DGD_AVG1[48] * DGD_AVG1[48];
// Accumulate into 64-bit after a bit depth dependent number of iterations
// to prevent overflow.
if (--acc_cnt == 0) {
acc_cnt = acc_cnt_max;
accumulate_and_clear(M_s64, M_s32, WIENER_WIN2_ALIGN2);
// The widening accumulation is only needed for the upper triangle part
// of the matrix.
int64_t *lh = H_s64;
int32_t *lh32 = H_s32;
for (int k = 0; k < WIENER_WIN2; ++k) {
// The widening accumulation is only run for the relevant parts
// (upper-right triangle) in a row 4-element aligned.
int k4 = k / 4 * 4;
accumulate_and_clear(lh + k4, lh32 + k4, 48 - k4);
// Last element of the row is computed separately.
lh[48] += lh32[48];
lh32[48] = 0;
lh += WIENER_WIN2_ALIGN2;
lh32 += WIENER_WIN2_ALIGN2;
}
}
j -= 2;
}
// Computations for odd pixel in the row.
if (width & 1) {
// Load two adjacent, overlapping 7x7 matrices: a 8x7 matrix with the
// middle 6x7 elements being shared.
int16x8_t dgd_rows[7];
load_and_pack_s16_8x7(dgd_rows, (const int16_t *)dgd, dgd_stride);
const int16_t *dgd_ptr = (const int16_t *)dgd + dgd_stride * 6;
++dgd;
// Re-arrange the combined 8x7 matrix to have a whole 7x7 matrix tightly
// packed into a int16x8_t[6] array. This array contains 48 elements of
// the 49 (7x7). Compute `dgd - avg` for the whole buffer. The DGD_AVG
// buffer contains 49 consecutive elements.
int16x8_t dgd_avg0[6];
dgd_avg0[0] = vsubq_s16(tbl2q(dgd_rows[0], dgd_rows[1], lut0), avg_s16);
dgd_avg0[1] = vsubq_s16(tbl2q(dgd_rows[1], dgd_rows[2], lut1), avg_s16);
dgd_avg0[2] = vsubq_s16(tbl2q(dgd_rows[2], dgd_rows[3], lut2), avg_s16);
dgd_avg0[3] = vsubq_s16(tbl2q(dgd_rows[3], dgd_rows[4], lut3), avg_s16);
dgd_avg0[4] = vsubq_s16(tbl2q(dgd_rows[4], dgd_rows[5], lut4), avg_s16);
dgd_avg0[5] = vsubq_s16(tbl2q(dgd_rows[5], dgd_rows[6], lut5), avg_s16);
vst1q_s16(DGD_AVG0, dgd_avg0[0]);
vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
vst1q_s16(DGD_AVG0 + 24, dgd_avg0[3]);
vst1q_s16(DGD_AVG0 + 32, dgd_avg0[4]);
vst1q_s16(DGD_AVG0 + 40, dgd_avg0[5]);
// The remaining last (49th) element of `dgd - avg`.
DGD_AVG0[48] = dgd_ptr[6] - avg;
// Accumulate into row-major order variant of matrix M (cross-correlation)
// for 1 output pixel at a time. M is of size 7 * 7. It needs to be filled
// such that multiplying one element from src with each element of a row
// of the wiener window will fill one column of M. However this is not
// very convenient in terms of memory access, as it means we do
// contiguous loads of dgd but strided stores to M. As a result, we use an
// intermediate matrix M_s32 which is instead filled such that one row of
// the wiener window gives one row of M_s32. Once fully computed, M_s32 is
// then transposed to return M.
int src_avg0 = *src++ - avg;
int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
update_M_1pixel(M_s32 + 0, src_avg0_s16, dgd_avg0[0]);
update_M_1pixel(M_s32 + 8, src_avg0_s16, dgd_avg0[1]);
update_M_1pixel(M_s32 + 16, src_avg0_s16, dgd_avg0[2]);
update_M_1pixel(M_s32 + 24, src_avg0_s16, dgd_avg0[3]);
update_M_1pixel(M_s32 + 32, src_avg0_s16, dgd_avg0[4]);
update_M_1pixel(M_s32 + 40, src_avg0_s16, dgd_avg0[5]);
// Last (49th) element of M_s32 can be computed as scalar more efficiently
// for 1 output pixel.
M_s32[48] += DGD_AVG0[48] * src_avg0;
// Start accumulating into row-major order version of matrix H
// (auto-covariance), it expects the DGD_AVG0 matrix to also be row-major.
// H is of size 49 * 49. It is filled by multiplying every pair of
// elements of the wiener window together (vector outer product). Since it
// is a symmetric matrix, we only compute the upper-right triangle, and
// then copy it down to the lower-left later. The upper triangle is
// covered by 4x4 tiles. The original algorithm assumes the M matrix is
// column-major and the resulting H matrix is also expected to be
// column-major. It is not efficient to work column-major matrices, so we
// accumulate into a row-major matrix H_s32. At the end of the algorithm a
// double transpose transformation will convert H_s32 back to the expected
// output layout.
update_H_1pixel(H_s32, DGD_AVG0, WIENER_WIN2_ALIGN2, 48);
// The last element of the triangle of H_s32 matrix can be computed as
// scalar more efficiently.
H_s32[48 * WIENER_WIN2_ALIGN2 + 48] += DGD_AVG0[48] * DGD_AVG0[48];
}
src += src_next;
dgd += dgd_next;
} while (--height != 0);
int bit_depth_shift = bit_depth - AOM_BITS_8;
acc_transpose_M(M, M_s64, M_s32, WIENER_WIN, bit_depth_shift);
update_H(H, H_s64, H_s32, WIENER_WIN, WIENER_WIN2_ALIGN2, bit_depth_shift);
}
// Load 5x5 matrix into 5 128-bit vectors from consecutive rows, the last load
// address is offset to prevent out-of-bounds access.
static INLINE void load_and_pack_s16_6x5(int16x8_t dst[5], const int16_t *src,
ptrdiff_t stride) {
dst[0] = vld1q_s16(src);
src += stride;
dst[1] = vld1q_s16(src);
src += stride;
dst[2] = vld1q_s16(src);
src += stride;
dst[3] = vld1q_s16(src);
src += stride;
dst[4] = vld1q_s16(src - 3);
}
static void highbd_compute_stats_win5_neon(const uint16_t *dgd,
const uint16_t *src, int avg,
int width, int height,
int dgd_stride, int src_stride,
int64_t *M, int64_t *H,
aom_bit_depth_t bit_depth) {
// Matrix names are capitalized to help readability.
DECLARE_ALIGNED(64, int16_t, DGD_AVG0[WIENER_WIN2_REDUCED_ALIGN3]);
DECLARE_ALIGNED(64, int16_t, DGD_AVG1[WIENER_WIN2_REDUCED_ALIGN3]);
DECLARE_ALIGNED(64, int32_t, M_s32[WIENER_WIN2_REDUCED_ALIGN3]);
DECLARE_ALIGNED(64, int64_t, M_s64[WIENER_WIN2_REDUCED_ALIGN3]);
DECLARE_ALIGNED(64, int32_t,
H_s32[WIENER_WIN2_REDUCED * WIENER_WIN2_REDUCED_ALIGN2]);
DECLARE_ALIGNED(64, int64_t,
H_s64[WIENER_WIN2_REDUCED * WIENER_WIN2_REDUCED_ALIGN2]);
memset(M_s32, 0, sizeof(M_s32));
memset(M_s64, 0, sizeof(M_s64));
memset(H_s32, 0, sizeof(H_s32));
memset(H_s64, 0, sizeof(H_s64));
// Look-up tables to create 8x3 matrix with consecutive elements from 5x5
// matrix.
DECLARE_ALIGNED(16, static const uint8_t, shuffle_stats5_highbd[96]) = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21,
6, 7, 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 33,
2, 3, 4, 5, 6, 7, 8, 9, 22, 23, 24, 25, 26, 27, 28, 29,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, 23,
8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 34, 35,
4, 5, 6, 7, 8, 9, 10, 11, 24, 25, 26, 27, 28, 29, 30, 31,
};
const uint8x16_t lut0 = vld1q_u8(shuffle_stats5_highbd + 0);
const uint8x16_t lut1 = vld1q_u8(shuffle_stats5_highbd + 16);
const uint8x16_t lut2 = vld1q_u8(shuffle_stats5_highbd + 32);
const uint8x16_t lut3 = vld1q_u8(shuffle_stats5_highbd + 48);
const uint8x16_t lut4 = vld1q_u8(shuffle_stats5_highbd + 64);
const uint8x16_t lut5 = vld1q_u8(shuffle_stats5_highbd + 80);
// We can accumulate up to 65536/4096/256 8/10/12-bit multiplication results
// in 32-bit. We are processing 2 pixels at a time, so the accumulator max can
// be as high as 32768/2048/128 for the compute stats.
const int acc_cnt_max = (1 << (32 - 2 * bit_depth)) >> 1;
int acc_cnt = acc_cnt_max;
const int src_next = src_stride - width;
const int dgd_next = dgd_stride - width;
const int16x8_t avg_s16 = vdupq_n_s16(avg);
do {
int j = width;
while (j >= 2) {
// Load two adjacent, overlapping 5x5 matrices: a 6x5 matrix with the
// middle 4x5 elements being shared.
int16x8_t dgd_rows[5];
load_and_pack_s16_6x5(dgd_rows, (const int16_t *)dgd, dgd_stride);
const int16_t *dgd_ptr = (const int16_t *)dgd + dgd_stride * 4;
dgd += 2;
dgd_rows[0] = vsubq_s16(dgd_rows[0], avg_s16);
dgd_rows[1] = vsubq_s16(dgd_rows[1], avg_s16);
dgd_rows[2] = vsubq_s16(dgd_rows[2], avg_s16);
dgd_rows[3] = vsubq_s16(dgd_rows[3], avg_s16);
dgd_rows[4] = vsubq_s16(dgd_rows[4], avg_s16);
// Re-arrange the combined 6x5 matrix to have the 2 whole 5x5 matrices (1
// for each of the 2 pixels) separated into distinct int16x8_t[3] arrays.
// These arrays contain 24 elements of the 25 (5x5). Compute `dgd - avg`
// for both buffers. Each DGD_AVG buffer contains 25 consecutive elements.
int16x8_t dgd_avg0[3];
int16x8_t dgd_avg1[3];
dgd_avg0[0] = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
dgd_avg1[0] = tbl2q(dgd_rows[0], dgd_rows[1], lut3);
dgd_avg0[1] = tbl3q(dgd_rows[1], dgd_rows[2], dgd_rows[3], lut1);
dgd_avg1[1] = tbl3q(dgd_rows[1], dgd_rows[2], dgd_rows[3], lut4);
dgd_avg0[2] = tbl2q(dgd_rows[3], dgd_rows[4], lut2);
dgd_avg1[2] = tbl2q(dgd_rows[3], dgd_rows[4], lut5);
vst1q_s16(DGD_AVG0, dgd_avg0[0]);
vst1q_s16(DGD_AVG1, dgd_avg1[0]);
vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
vst1q_s16(DGD_AVG1 + 8, dgd_avg1[1]);
vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
vst1q_s16(DGD_AVG1 + 16, dgd_avg1[2]);
// The remaining last (25th) elements of `dgd - avg`.
DGD_AVG0[24] = dgd_ptr[4] - avg;
DGD_AVG1[24] = dgd_ptr[5] - avg;
// Accumulate into row-major variant of matrix M (cross-correlation) for 2
// output pixels at a time. M is of size 5 * 5. It needs to be filled such
// that multiplying one element from src with each element of a row of the
// wiener window will fill one column of M. However this is not very
// convenient in terms of memory access, as it means we do contiguous
// loads of dgd but strided stores to M. As a result, we use an
// intermediate matrix M_s32 which is instead filled such that one row of
// the wiener window gives one row of M_s32. Once fully computed, M_s32 is
// then transposed to return M.
int src_avg0 = *src++ - avg;
int src_avg1 = *src++ - avg;
int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
int16x4_t src_avg1_s16 = vdup_n_s16(src_avg1);
update_M_2pixels(M_s32 + 0, src_avg0_s16, src_avg1_s16, dgd_avg0[0],
dgd_avg1[0]);
update_M_2pixels(M_s32 + 8, src_avg0_s16, src_avg1_s16, dgd_avg0[1],
dgd_avg1[1]);
update_M_2pixels(M_s32 + 16, src_avg0_s16, src_avg1_s16, dgd_avg0[2],
dgd_avg1[2]);
// Last (25th) element of M_s32 can be computed as scalar more efficiently
// for 2 output pixels.
M_s32[24] += DGD_AVG0[24] * src_avg0 + DGD_AVG1[24] * src_avg1;
// Start accumulating into row-major version of matrix H
// (auto-covariance), it expects the DGD_AVG[01] matrices to also be
// row-major. H is of size 25 * 25. It is filled by multiplying every pair
// of elements of the wiener window together (vector outer product). Since
// it is a symmetric matrix, we only compute the upper-right triangle, and
// then copy it down to the lower-left later. The upper triangle is
// covered by 4x4 tiles. The original algorithm assumes the M matrix is
// column-major and the resulting H matrix is also expected to be
// column-major. It is not efficient to work with column-major matrices,
// so we accumulate into a row-major matrix H_s32. At the end of the
// algorithm a double transpose transformation will convert H_s32 back to
// the expected output layout.
update_H_5x5_2pixels(H_s32, DGD_AVG0, DGD_AVG1);
// The last element of the triangle of H_s32 matrix can be computed as a
// scalar more efficiently.
H_s32[24 * WIENER_WIN2_REDUCED_ALIGN2 + 24] +=
DGD_AVG0[24] * DGD_AVG0[24] + DGD_AVG1[24] * DGD_AVG1[24];
// Accumulate into 64-bit after a bit depth dependent number of iterations
// to prevent overflow.
if (--acc_cnt == 0) {
acc_cnt = acc_cnt_max;
accumulate_and_clear(M_s64, M_s32, WIENER_WIN2_REDUCED_ALIGN2);
// The widening accumulation is only needed for the upper triangle part
// of the matrix.
int64_t *lh = H_s64;
int32_t *lh32 = H_s32;
for (int k = 0; k < WIENER_WIN2_REDUCED; ++k) {
// The widening accumulation is only run for the relevant parts
// (upper-right triangle) in a row 4-element aligned.
int k4 = k / 4 * 4;
accumulate_and_clear(lh + k4, lh32 + k4, 24 - k4);
// Last element of the row is computed separately.
lh[24] += lh32[24];
lh32[24] = 0;
lh += WIENER_WIN2_REDUCED_ALIGN2;
lh32 += WIENER_WIN2_REDUCED_ALIGN2;
}
}
j -= 2;
}
// Computations for odd pixel in the row.
if (width & 1) {
// Load two adjacent, overlapping 5x5 matrices: a 6x5 matrix with the
// middle 4x5 elements being shared.
int16x8_t dgd_rows[5];
load_and_pack_s16_6x5(dgd_rows, (const int16_t *)dgd, dgd_stride);
const int16_t *dgd_ptr = (const int16_t *)dgd + dgd_stride * 4;
++dgd;
// Re-arrange (and widen) the combined 6x5 matrix to have a whole 5x5
// matrix tightly packed into a int16x8_t[3] array. This array contains
// 24 elements of the 25 (5x5). Compute `dgd - avg` for the whole buffer.
// The DGD_AVG buffer contains 25 consecutive elements.
int16x8_t dgd_avg0[3];
dgd_avg0[0] = vsubq_s16(tbl2q(dgd_rows[0], dgd_rows[1], lut0), avg_s16);
dgd_avg0[1] = vsubq_s16(
tbl3q(dgd_rows[1], dgd_rows[2], dgd_rows[3], lut1), avg_s16);
dgd_avg0[2] = vsubq_s16(tbl2q(dgd_rows[3], dgd_rows[4], lut2), avg_s16);
vst1q_s16(DGD_AVG0, dgd_avg0[0]);
vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
// The remaining last (25th) element of `dgd - avg`.
DGD_AVG0[24] = dgd_ptr[4] - avg;
DGD_AVG1[24] = dgd_ptr[5] - avg;
// Accumulate into row-major order variant of matrix M (cross-correlation)
// for 1 output pixel at a time. M is of size 5 * 5. It needs to be filled
// such that multiplying one element from src with each element of a row
// of the wiener window will fill one column of M. However this is not
// very convenient in terms of memory access, as it means we do
// contiguous loads of dgd but strided stores to M. As a result, we use an
// intermediate matrix M_s32 which is instead filled such that one row of
// the wiener window gives one row of M_s32. Once fully computed, M_s32 is
// then transposed to return M.
int src_avg0 = *src++ - avg;
int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
update_M_1pixel(M_s32 + 0, src_avg0_s16, dgd_avg0[0]);
update_M_1pixel(M_s32 + 8, src_avg0_s16, dgd_avg0[1]);
update_M_1pixel(M_s32 + 16, src_avg0_s16, dgd_avg0[2]);
// Last (25th) element of M_s32 can be computed as scalar more efficiently
// for 1 output pixel.
M_s32[24] += DGD_AVG0[24] * src_avg0;
// Start accumulating into row-major order version of matrix H
// (auto-covariance), it expects the DGD_AVG0 matrix to also be row-major.
// H is of size 25 * 25. It is filled by multiplying every pair of
// elements of the wiener window together (vector outer product). Since it
// is a symmetric matrix, we only compute the upper-right triangle, and
// then copy it down to the lower-left later. The upper triangle is
// covered by 4x4 tiles. The original algorithm assumes the M matrix is
// column-major and the resulting H matrix is also expected to be
// column-major. It is not efficient to work with column-major matrices,
// so we accumulate into a row-major matrix H_s32. At the end of the
// algorithm a double transpose transformation will convert H_s32 back to
// the expected output layout.
update_H_1pixel(H_s32, DGD_AVG0, WIENER_WIN2_REDUCED_ALIGN2, 24);
// The last element of the triangle of H_s32 matrix can be computed as a
// scalar more efficiently.
H_s32[24 * WIENER_WIN2_REDUCED_ALIGN2 + 24] +=
DGD_AVG0[24] * DGD_AVG0[24];
}
src += src_next;
dgd += dgd_next;
} while (--height != 0);
int bit_depth_shift = bit_depth - AOM_BITS_8;
acc_transpose_M(M, M_s64, M_s32, WIENER_WIN_REDUCED, bit_depth_shift);
update_H(H, H_s64, H_s32, WIENER_WIN_REDUCED, WIENER_WIN2_REDUCED_ALIGN2,
bit_depth_shift);
}
static uint16_t highbd_find_average_neon(const uint16_t *src, int src_stride,
int width, int height) {
assert(width > 0);
assert(height > 0);
uint64x2_t sum_u64 = vdupq_n_u64(0);
uint64_t sum = 0;
int h = height;
do {
uint32x4_t sum_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
int w = width;
const uint16_t *row = src;
while (w >= 32) {
uint16x8_t s0 = vld1q_u16(row + 0);
uint16x8_t s1 = vld1q_u16(row + 8);
uint16x8_t s2 = vld1q_u16(row + 16);
uint16x8_t s3 = vld1q_u16(row + 24);
s0 = vaddq_u16(s0, s1);
s2 = vaddq_u16(s2, s3);
sum_u32[0] = vpadalq_u16(sum_u32[0], s0);
sum_u32[1] = vpadalq_u16(sum_u32[1], s2);
row += 32;
w -= 32;
}
if (w >= 16) {
uint16x8_t s0 = vld1q_u16(row + 0);
uint16x8_t s1 = vld1q_u16(row + 8);
s0 = vaddq_u16(s0, s1);
sum_u32[0] = vpadalq_u16(sum_u32[0], s0);
row += 16;
w -= 16;
}
if (w >= 8) {
uint16x8_t s0 = vld1q_u16(row);
sum_u32[1] = vpadalq_u16(sum_u32[1], s0);
row += 8;
w -= 8;
}
if (w >= 4) {
uint16x8_t s0 = vcombine_u16(vld1_u16(row), vdup_n_u16(0));
sum_u32[0] = vpadalq_u16(sum_u32[0], s0);
row += 4;
w -= 4;
}
while (w-- > 0) {
sum += *row++;
}
sum_u64 = vpadalq_u32(sum_u64, vaddq_u32(sum_u32[0], sum_u32[1]));
src += src_stride;
} while (--h != 0);
return (uint16_t)((horizontal_add_u64x2(sum_u64) + sum) / (height * width));
}
void av1_compute_stats_highbd_neon(int wiener_win, const uint8_t *dgd8,
const uint8_t *src8, int16_t *dgd_avg,
int16_t *src_avg, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, int64_t *M, int64_t *H,
aom_bit_depth_t bit_depth) {
(void)dgd_avg;
(void)src_avg;
assert(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_REDUCED);
const int wiener_halfwin = wiener_win >> 1;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
const int height = v_end - v_start;
const int width = h_end - h_start;
const uint16_t *dgd_start = dgd + h_start + v_start * dgd_stride;
const uint16_t *src_start = src + h_start + v_start * src_stride;
// The wiener window will slide along the dgd frame, centered on each pixel.
// For the top left pixel and all the pixels on the side of the frame this
// means half of the window will be outside of the frame. As such the actual
// buffer that we need to subtract the avg from will be 2 * wiener_halfwin
// wider and 2 * wiener_halfwin higher than the original dgd buffer.
const int vert_offset = v_start - wiener_halfwin;
const int horiz_offset = h_start - wiener_halfwin;
const uint16_t *dgd_win = dgd + horiz_offset + vert_offset * dgd_stride;
uint16_t avg = highbd_find_average_neon(dgd_start, dgd_stride, width, height);
if (wiener_win == WIENER_WIN) {
highbd_compute_stats_win7_neon(dgd_win, src_start, avg, width, height,
dgd_stride, src_stride, M, H, bit_depth);
} else {
highbd_compute_stats_win5_neon(dgd_win, src_start, avg, width, height,
dgd_stride, src_stride, M, H, bit_depth);
}
}
int64_t av1_highbd_pixel_proj_error_neon(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
int64_t sse = 0;
int64x2_t sse_s64 = vdupq_n_s64(0);
if (params->r[0] > 0 && params->r[1] > 0) {
int32x2_t xq_v = vld1_s32(xq);
int32x2_t xq_sum_v = vshl_n_s32(vpadd_s32(xq_v, xq_v), 4);
do {
int j = 0;
int32x4_t sse_s32 = vdupq_n_s32(0);
do {
const uint16x8_t d = vld1q_u16(&dat[j]);
const uint16x8_t s = vld1q_u16(&src[j]);
int32x4_t flt0_0 = vld1q_s32(&flt0[j]);
int32x4_t flt0_1 = vld1q_s32(&flt0[j + 4]);
int32x4_t flt1_0 = vld1q_s32(&flt1[j]);
int32x4_t flt1_1 = vld1q_s32(&flt1[j + 4]);
int32x4_t d_s32_lo = vreinterpretq_s32_u32(
vmull_lane_u16(vget_low_u16(d), vreinterpret_u16_s32(xq_sum_v), 0));
int32x4_t d_s32_hi = vreinterpretq_s32_u32(vmull_lane_u16(
vget_high_u16(d), vreinterpret_u16_s32(xq_sum_v), 0));
int32x4_t v0 = vsubq_s32(
vdupq_n_s32(1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1)),
d_s32_lo);
int32x4_t v1 = vsubq_s32(
vdupq_n_s32(1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1)),
d_s32_hi);
v0 = vmlaq_lane_s32(v0, flt0_0, xq_v, 0);
v1 = vmlaq_lane_s32(v1, flt0_1, xq_v, 0);
v0 = vmlaq_lane_s32(v0, flt1_0, xq_v, 1);
v1 = vmlaq_lane_s32(v1, flt1_1, xq_v, 1);
int16x4_t vr0 = vshrn_n_s32(v0, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
int16x4_t vr1 = vshrn_n_s32(v1, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
int16x8_t e = vaddq_s16(vcombine_s16(vr0, vr1),
vreinterpretq_s16_u16(vsubq_u16(d, s)));
int16x4_t e_lo = vget_low_s16(e);
int16x4_t e_hi = vget_high_s16(e);
sse_s32 = vmlal_s16(sse_s32, e_lo, e_lo);
sse_s32 = vmlal_s16(sse_s32, e_hi, e_hi);
j += 8;
} while (j <= width - 8);
for (int k = j; k < width; ++k) {
int32_t v = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1);
v += xq[0] * (flt0[k]) + xq[1] * (flt1[k]);
v -= (xq[1] + xq[0]) * (int32_t)(dat[k] << 4);
int32_t e =
(v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + dat[k] - src[k];
sse += ((int64_t)e * e);
}
sse_s64 = vpadalq_s32(sse_s64, sse_s32);
dat += dat_stride;
src += src_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
} while (--height != 0);
} else if (params->r[0] > 0 || params->r[1] > 0) {
int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
int32x4_t xq_v = vdupq_n_s32(xq_active);
do {
int j = 0;
int32x4_t sse_s32 = vdupq_n_s32(0);
do {
const uint16x8_t d0 = vld1q_u16(&dat[j]);
const uint16x8_t s0 = vld1q_u16(&src[j]);
int32x4_t flt0_0 = vld1q_s32(&flt[j]);
int32x4_t flt0_1 = vld1q_s32(&flt[j + 4]);
uint16x8_t d_u16 = vshlq_n_u16(d0, 4);
int32x4_t sub0 = vreinterpretq_s32_u32(
vsubw_u16(vreinterpretq_u32_s32(flt0_0), vget_low_u16(d_u16)));
int32x4_t sub1 = vreinterpretq_s32_u32(
vsubw_u16(vreinterpretq_u32_s32(flt0_1), vget_high_u16(d_u16)));
int32x4_t v0 = vmlaq_s32(
vdupq_n_s32(1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1)), sub0,
xq_v);
int32x4_t v1 = vmlaq_s32(
vdupq_n_s32(1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1)), sub1,
xq_v);
int16x4_t vr0 = vshrn_n_s32(v0, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
int16x4_t vr1 = vshrn_n_s32(v1, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
int16x8_t e = vaddq_s16(vcombine_s16(vr0, vr1),
vreinterpretq_s16_u16(vsubq_u16(d0, s0)));
int16x4_t e_lo = vget_low_s16(e);
int16x4_t e_hi = vget_high_s16(e);
sse_s32 = vmlal_s16(sse_s32, e_lo, e_lo);
sse_s32 = vmlal_s16(sse_s32, e_hi, e_hi);
j += 8;
} while (j <= width - 8);
for (int k = j; k < width; ++k) {
int32_t v = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1);
v += xq_active * (int32_t)((uint32_t)flt[j] - (uint16_t)(dat[k] << 4));
const int32_t e =
(v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + dat[k] - src[k];
sse += ((int64_t)e * e);
}
sse_s64 = vpadalq_s32(sse_s64, sse_s32);
dat += dat_stride;
flt += flt_stride;
src += src_stride;
} while (--height != 0);
} else {
do {
int j = 0;
do {
const uint16x8_t d = vld1q_u16(&dat[j]);
const uint16x8_t s = vld1q_u16(&src[j]);
uint16x8_t diff = vabdq_u16(d, s);
uint16x4_t diff_lo = vget_low_u16(diff);
uint16x4_t diff_hi = vget_high_u16(diff);
uint32x4_t sqr_lo = vmull_u16(diff_lo, diff_lo);
uint32x4_t sqr_hi = vmull_u16(diff_hi, diff_hi);
sse_s64 = vpadalq_s32(sse_s64, vreinterpretq_s32_u32(sqr_lo));
sse_s64 = vpadalq_s32(sse_s64, vreinterpretq_s32_u32(sqr_hi));
j += 8;
} while (j <= width - 8);
for (int k = j; k < width; ++k) {
int32_t e = dat[k] - src[k];
sse += e * e;
}
dat += dat_stride;
src += src_stride;
} while (--height != 0);
}
sse += horizontal_add_s64x2(sse_s64);
return sse;
}