blob: 835308d5066b9f90dea34aeaa5fc44dcb485e78b [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This is an example demonstrating how to implement a multi-layer AOM
// encoding scheme for RTC video applications.
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "aom/aom_encoder.h"
#include "aom/aomcx.h"
#include "av1/common/enums.h"
#include "common/tools_common.h"
#include "common/video_writer.h"
#include "aom_ports/aom_timer.h"
#define zero(Dest) memset(&(Dest), 0, sizeof(Dest));
static const char *exec_name;
void usage_exit(void) { exit(EXIT_FAILURE); }
static int mode_to_num_temporal_layers[10] = { 1, 2, 3, 3, 2, 1, 1, 3, 3, 3 };
static int mode_to_num_spatial_layers[10] = { 1, 1, 1, 1, 1, 2, 3, 3, 3, 3 };
static int mode_to_num_layers[10] = { 1, 2, 3, 3, 2, 2, 3, 9, 9, 9 };
// For rate control encoding stats.
struct RateControlMetrics {
// Number of input frames per layer.
int layer_input_frames[AOM_MAX_TS_LAYERS];
// Number of encoded non-key frames per layer.
int layer_enc_frames[AOM_MAX_TS_LAYERS];
// Framerate per layer layer (cumulative).
double layer_framerate[AOM_MAX_TS_LAYERS];
// Target average frame size per layer (per-frame-bandwidth per layer).
double layer_pfb[AOM_MAX_LAYERS];
// Actual average frame size per layer.
double layer_avg_frame_size[AOM_MAX_LAYERS];
// Average rate mismatch per layer (|target - actual| / target).
double layer_avg_rate_mismatch[AOM_MAX_LAYERS];
// Actual encoding bitrate per layer (cumulative across temporal layers).
double layer_encoding_bitrate[AOM_MAX_LAYERS];
// Average of the short-time encoder actual bitrate.
// TODO(marpan): Should we add these short-time stats for each layer?
double avg_st_encoding_bitrate;
// Variance of the short-time encoder actual bitrate.
double variance_st_encoding_bitrate;
// Window (number of frames) for computing short-timee encoding bitrate.
int window_size;
// Number of window measurements.
int window_count;
int layer_target_bitrate[AOM_MAX_LAYERS];
};
static int read_frame(struct AvxInputContext *input_ctx, aom_image_t *img) {
FILE *f = input_ctx->file;
y4m_input *y4m = &input_ctx->y4m;
int shortread = 0;
if (input_ctx->file_type == FILE_TYPE_Y4M) {
if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0;
} else {
shortread = read_yuv_frame(input_ctx, img);
}
return !shortread;
}
static int file_is_y4m(const char detect[4]) {
if (memcmp(detect, "YUV4", 4) == 0) {
return 1;
}
return 0;
}
static int fourcc_is_ivf(const char detect[4]) {
if (memcmp(detect, "DKIF", 4) == 0) {
return 1;
}
return 0;
}
static void close_input_file(struct AvxInputContext *input) {
fclose(input->file);
if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m);
}
static void open_input_file(struct AvxInputContext *input,
aom_chroma_sample_position_t csp) {
/* Parse certain options from the input file, if possible */
input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb")
: set_binary_mode(stdin);
if (!input->file) fatal("Failed to open input file");
if (!fseeko(input->file, 0, SEEK_END)) {
/* Input file is seekable. Figure out how long it is, so we can get
* progress info.
*/
input->length = ftello(input->file);
rewind(input->file);
}
/* Default to 1:1 pixel aspect ratio. */
input->pixel_aspect_ratio.numerator = 1;
input->pixel_aspect_ratio.denominator = 1;
/* For RAW input sources, these bytes will applied on the first frame
* in read_frame().
*/
input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file);
input->detect.position = 0;
if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) {
if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4, csp,
input->only_i420) >= 0) {
input->file_type = FILE_TYPE_Y4M;
input->width = input->y4m.pic_w;
input->height = input->y4m.pic_h;
input->pixel_aspect_ratio.numerator = input->y4m.par_n;
input->pixel_aspect_ratio.denominator = input->y4m.par_d;
input->framerate.numerator = input->y4m.fps_n;
input->framerate.denominator = input->y4m.fps_d;
input->fmt = input->y4m.aom_fmt;
input->bit_depth = input->y4m.bit_depth;
} else {
fatal("Unsupported Y4M stream.");
}
} else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) {
fatal("IVF is not supported as input.");
} else {
input->file_type = FILE_TYPE_RAW;
}
}
// Note: these rate control metrics assume only 1 key frame in the
// sequence (i.e., first frame only). So for temporal pattern# 7
// (which has key frame for every frame on base layer), the metrics
// computation will be off/wrong.
// TODO(marpan): Update these metrics to account for multiple key frames
// in the stream.
static void set_rate_control_metrics(struct RateControlMetrics *rc,
double framerate,
unsigned int ss_number_layers,
unsigned int ts_number_layers) {
int ts_rate_decimator[AOM_MAX_TS_LAYERS] = { 1 };
ts_rate_decimator[0] = 1;
if (ts_number_layers == 2) {
ts_rate_decimator[0] = 2;
ts_rate_decimator[1] = 1;
}
if (ts_number_layers == 3) {
ts_rate_decimator[0] = 4;
ts_rate_decimator[1] = 2;
ts_rate_decimator[2] = 1;
}
// Set the layer (cumulative) framerate and the target layer (non-cumulative)
// per-frame-bandwidth, for the rate control encoding stats below.
for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
unsigned int i = sl * ts_number_layers;
rc->layer_framerate[0] = framerate / ts_rate_decimator[0];
rc->layer_pfb[i] =
1000.0 * rc->layer_target_bitrate[i] / rc->layer_framerate[0];
for (unsigned int tl = 0; tl < ts_number_layers; ++tl) {
i = sl * ts_number_layers + tl;
if (tl > 0) {
rc->layer_framerate[tl] = framerate / ts_rate_decimator[tl];
rc->layer_pfb[i] =
1000.0 *
(rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) /
(rc->layer_framerate[tl] - rc->layer_framerate[tl - 1]);
}
rc->layer_input_frames[tl] = 0;
rc->layer_enc_frames[tl] = 0;
rc->layer_encoding_bitrate[i] = 0.0;
rc->layer_avg_frame_size[i] = 0.0;
rc->layer_avg_rate_mismatch[i] = 0.0;
}
}
rc->window_count = 0;
rc->window_size = 15;
rc->avg_st_encoding_bitrate = 0.0;
rc->variance_st_encoding_bitrate = 0.0;
}
static void printout_rate_control_summary(struct RateControlMetrics *rc,
int frame_cnt,
unsigned int ss_number_layers,
unsigned int ts_number_layers) {
int tot_num_frames = 0;
double perc_fluctuation = 0.0;
printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
printf("Rate control layer stats for %d layer(s):\n\n", ts_number_layers);
for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
tot_num_frames = 0;
for (unsigned int tl = 0; tl < ts_number_layers; ++tl) {
unsigned int i = sl * ts_number_layers + tl;
const int num_dropped =
tl > 0 ? rc->layer_input_frames[tl] - rc->layer_enc_frames[tl]
: rc->layer_input_frames[tl] - rc->layer_enc_frames[tl] - 1;
tot_num_frames += rc->layer_input_frames[tl];
rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[tl] *
rc->layer_encoding_bitrate[i] /
tot_num_frames;
rc->layer_avg_frame_size[i] =
rc->layer_avg_frame_size[i] / rc->layer_enc_frames[tl];
rc->layer_avg_rate_mismatch[i] =
100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[tl];
printf("For layer#: %d %d \n", sl, tl);
printf("Bitrate (target vs actual): %d %f\n", rc->layer_target_bitrate[i],
rc->layer_encoding_bitrate[i]);
printf("Average frame size (target vs actual): %f %f\n", rc->layer_pfb[i],
rc->layer_avg_frame_size[i]);
printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[i]);
printf(
"Number of input frames, encoded (non-key) frames, "
"and perc dropped frames: %d %d %f\n",
rc->layer_input_frames[tl], rc->layer_enc_frames[tl],
100.0 * num_dropped / rc->layer_input_frames[tl]);
printf("\n");
}
}
rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
rc->variance_st_encoding_bitrate =
rc->variance_st_encoding_bitrate / rc->window_count -
(rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
rc->avg_st_encoding_bitrate;
printf("Short-time stats, for window of %d frames:\n", rc->window_size);
printf("Average, rms-variance, and percent-fluct: %f %f %f\n",
rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
perc_fluctuation);
if (frame_cnt - 1 != tot_num_frames)
die("Error: Number of input frames not equal to output!\n");
}
// Layer pattern configuration.
static int set_layer_pattern(int layering_mode, int superframe_cnt,
aom_svc_layer_id_t *layer_id,
aom_svc_ref_frame_config_t *ref_frame_config,
int *use_svc_control, int spatial_layer_id,
int is_key_frame, int ksvc_mode) {
int i;
int shift = (layering_mode == 7) ? 2 : 0;
*use_svc_control = 1;
layer_id->spatial_layer_id = spatial_layer_id;
// Set the referende map buffer idx for the 7 references:
// LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3),
// BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6).
for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = i;
for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0;
// Note only use LAST and GF for prediction in non-rd mode (speed 8).
int layer_flags = AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 |
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_REF_BWD |
AOM_EFLAG_NO_REF_ARF2;
if (ksvc_mode) {
// Same pattern as case 8.
layering_mode = 8;
if (!is_key_frame)
// No inter-layer prediction on inter-frames.
layer_flags |= AOM_EFLAG_NO_REF_GF;
}
switch (layering_mode) {
case 0:
// 1-layer: update LAST on every frame, reference LAST and GF.
layer_id->temporal_layer_id = 0;
ref_frame_config->refresh[0] = 1;
break;
case 1:
// 2-temporal layer.
// 1 3 5
// 0 2 4
if (superframe_cnt % 2 == 0) {
layer_id->temporal_layer_id = 0;
// Update LAST on layer 0, reference LAST and GF.
ref_frame_config->refresh[0] = 1;
} else {
layer_id->temporal_layer_id = 1;
// No updates on layer 1, only reference LAST (TL0).
layer_flags |= AOM_EFLAG_NO_REF_GF;
}
break;
case 2:
// 3-temporal layer:
// 1 3 5 7
// 2 6
// 0 4 8
if (superframe_cnt % 4 == 0) {
// Base layer.
layer_id->temporal_layer_id = 0;
// Update LAST on layer 0, reference LAST and GF.
ref_frame_config->refresh[0] = 1;
} else if ((superframe_cnt - 1) % 4 == 0) {
layer_id->temporal_layer_id = 2;
// First top layer: no updates, only reference LAST (TL0).
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if ((superframe_cnt - 2) % 4 == 0) {
layer_id->temporal_layer_id = 1;
// Middle layer (TL1): update LAST2, only reference LAST (TL0).
ref_frame_config->refresh[1] = 1;
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if ((superframe_cnt - 3) % 4 == 0) {
layer_id->temporal_layer_id = 2;
// Second top layer: no updates, only reference LAST.
// Set buffer idx for LAST to slot 1, since that was the slot
// updated in previous frame. So LAST is TL1 frame.
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->ref_idx[1] = 0;
layer_flags |= AOM_EFLAG_NO_REF_GF;
}
break;
case 3:
// 3-temporal layer: but middle layer updates GF, so 2nd TL2 will
// only reference GF (not LAST). Other frames only reference LAST.
// 1 3 5 7
// 2 6
// 0 4 8
if (superframe_cnt % 4 == 0) {
// Base layer.
layer_id->temporal_layer_id = 0;
// Update LAST on layer 0, only reference LAST.
ref_frame_config->refresh[0] = 1;
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if ((superframe_cnt - 1) % 4 == 0) {
layer_id->temporal_layer_id = 2;
// First top layer: no updates, only reference LAST (TL0).
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if ((superframe_cnt - 2) % 4 == 0) {
layer_id->temporal_layer_id = 1;
// Middle layer (TL1): update GF, only reference LAST (TL0).
ref_frame_config->refresh[3] = 1;
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if ((superframe_cnt - 3) % 4 == 0) {
layer_id->temporal_layer_id = 2;
// Second top layer: no updates, only reference GF.
layer_flags |= AOM_EFLAG_NO_REF_LAST;
}
break;
case 4:
// 2-temporla layer with the old update flags, not with the new
// SVC control.
*use_svc_control = 0;
// 1 3 5
// 0 2 4
if (superframe_cnt % 2 == 0) {
layer_id->temporal_layer_id = 0;
// Update LAST on layer 0, reference LAST and GF.
layer_flags |= AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF;
} else {
layer_id->temporal_layer_id = 1;
// No updates on layer 1, only reference LAST (TL0).
layer_flags |= AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_REF_GF;
}
break;
case 5:
// 2 spatial layers, 1 temporal.
layer_id->temporal_layer_id = 0;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST, update LAST.
ref_frame_config->refresh[0] = 1;
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
// and GOLDEN to slot 0. Update slot 1 (LAST).
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->ref_idx[3] = 0;
ref_frame_config->refresh[1] = 1;
}
break;
case 6:
// 3 spatial layers, 1 temporal.
// Note for this case, we set the buffer idx for all references to be
// either LAST or GOLDEN, which are always valid references, since decoder
// will check if any of the 7 references is valid scale in
// valid_ref_frame_size().
layer_id->temporal_layer_id = 0;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST, update LAST. Set all buffer_idx to 0.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->refresh[0] = 1;
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
// and GOLDEN (and all other refs) to slot 0.
// Update slot 1 (LAST).
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->refresh[1] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2
// and GOLDEN (and all other refs) to slot 1.
// Update slot 2 (LAST).
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 1;
ref_frame_config->ref_idx[0] = 2;
ref_frame_config->refresh[2] = 1;
}
break;
case 7:
// 3 spatial and 3 temporal layer.
// Same as case 8 but overalap in the buffer slot updates.
// (shift = 2). The slots 3 and 4 updated by first TL2 are
// reused for update in TL1 superframe.
// Note for this case, frame order hint must be disabled for
// lower resolutios (operating points > 0) to be decoedable.
case 8:
// 3 spatial and 3 temporal layer.
// No overlap in buffer updates between TL2 and TL1.
// TL2 updates slot 3 and 4, TL1 updates 5, 6, 7.
if (superframe_cnt % 4 == 0) {
// Base temporal layer.
layer_id->temporal_layer_id = 0;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST, update LAST.
// Set all buffer_idx to 0.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->refresh[0] = 1;
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
// GOLDEN (and all other refs) to slot 0.
// Update slot 1 (LAST).
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->refresh[1] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
// GOLDEN (and all other refs) to slot 1.
// Update slot 2 (LAST).
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 1;
ref_frame_config->ref_idx[0] = 2;
ref_frame_config->refresh[2] = 1;
}
} else if ((superframe_cnt - 1) % 4 == 0) {
// First top temporal enhancement layer.
layer_id->temporal_layer_id = 2;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST (slot 0).
// Set GOLDEN to slot 3 and update slot 3.
// Set all other buffer_idx to slot 0.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[3] = 3;
ref_frame_config->refresh[3] = 1;
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
// GOLDEN (and all other refs) to slot 3.
// Set LAST2 to slot 4 and Update slot 4.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 3;
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->ref_idx[1] = 4;
ref_frame_config->refresh[4] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
// GOLDEN (and all other refs) to slot 4.
// No update.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 4;
ref_frame_config->ref_idx[0] = 2;
}
} else if ((superframe_cnt - 2) % 4 == 0) {
// Middle temporal enhancement layer.
layer_id->temporal_layer_id = 1;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST.
// Set all buffer_idx to 0.
// Set GOLDEN to slot 5 and update slot 5.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[3] = 5 - shift;
ref_frame_config->refresh[5 - shift] = 1;
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
// GOLDEN (and all other refs) to slot 5.
// Set LAST2 to slot 6 and update slot 6.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 5 - shift;
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->ref_idx[2] = 6 - shift;
ref_frame_config->refresh[6 - shift] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
// GOLDEN (and all other refs) to slot 6.
// Set LAST2 to slot 6 and update slot 7.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 6 - shift;
ref_frame_config->ref_idx[0] = 2;
ref_frame_config->ref_idx[2] = 7 - shift;
ref_frame_config->refresh[7 - shift] = 1;
}
} else if ((superframe_cnt - 3) % 4 == 0) {
// Second top temporal enhancement layer.
layer_id->temporal_layer_id = 2;
if (layer_id->spatial_layer_id == 0) {
// Set LAST to slot 5 and reference LAST.
// Set GOLDEN to slot 3 and update slot 3.
// Set all other buffer_idx to 0.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 5 - shift;
ref_frame_config->ref_idx[3] = 3;
ref_frame_config->refresh[3] = 1;
layer_flags |= AOM_EFLAG_NO_REF_GF;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6,
// GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 6 - shift;
ref_frame_config->ref_idx[3] = 3;
ref_frame_config->ref_idx[1] = 4;
ref_frame_config->refresh[4] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7,
// GOLDEN to slot 4. No update.
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 7 - shift;
ref_frame_config->ref_idx[3] = 4;
}
}
break;
default: assert(0); die("Error: Unsupported temporal layering mode!\n");
}
return layer_flags;
}
int main(int argc, char **argv) {
AvxVideoWriter *outfile[AOM_MAX_LAYERS] = { NULL };
aom_codec_ctx_t codec;
aom_codec_enc_cfg_t cfg;
int frame_cnt = 0;
aom_image_t raw;
aom_codec_err_t res;
unsigned int width;
unsigned int height;
uint32_t error_resilient = 0;
int speed;
int frame_avail;
int got_data = 0;
int flags = 0;
unsigned i;
int pts = 0; // PTS starts at 0.
int frame_duration = 1; // 1 timebase tick per frame.
int layering_mode = 0;
aom_svc_layer_id_t layer_id;
aom_svc_params_t svc_params;
aom_svc_ref_frame_config_t ref_frame_config;
const AvxInterface *encoder = NULL;
struct AvxInputContext input_ctx;
struct RateControlMetrics rc;
int64_t cx_time = 0;
const int min_args_base = 13;
const int min_args = min_args_base;
double sum_bitrate = 0.0;
double sum_bitrate2 = 0.0;
double framerate = 30.0;
int use_svc_control = 1;
zero(rc.layer_target_bitrate);
memset(&layer_id, 0, sizeof(aom_svc_layer_id_t));
memset(&input_ctx, 0, sizeof(input_ctx));
memset(&svc_params, 0, sizeof(svc_params));
/* Setup default input stream settings */
input_ctx.framerate.numerator = 30;
input_ctx.framerate.denominator = 1;
input_ctx.only_i420 = 1;
input_ctx.bit_depth = 0;
unsigned int ts_number_layers = 1;
unsigned int ss_number_layers = 1;
exec_name = argv[0];
// Check usage and arguments.
if (argc < min_args) {
die("Usage: %s <infile> <outfile> <codec_type(av1)> <width> <height> "
"<rate_num> <rate_den> <speed> <frame_drop_threshold> "
"<error_resilient> <threads> <mode> "
"<Rate_0> ... <Rate_nlayers-1>\n",
argv[0]);
}
encoder = get_aom_encoder_by_name(argv[3]);
width = (unsigned int)strtoul(argv[4], NULL, 0);
height = (unsigned int)strtoul(argv[5], NULL, 0);
if (width < 16 || width % 2 || height < 16 || height % 2) {
die("Invalid resolution: %d x %d", width, height);
}
layering_mode = (int)strtol(argv[12], NULL, 0);
if (layering_mode < 0 || layering_mode > 13) {
die("Invalid layering mode (0..12) %s", argv[12]);
}
if (argc != min_args + mode_to_num_layers[layering_mode]) {
die("Invalid number of arguments");
}
ts_number_layers = mode_to_num_temporal_layers[layering_mode];
ss_number_layers = mode_to_num_spatial_layers[layering_mode];
input_ctx.filename = argv[1];
open_input_file(&input_ctx, 0);
// Y4M reader has its own allocation.
if (input_ctx.file_type != FILE_TYPE_Y4M) {
if (!aom_img_alloc(&raw, AOM_IMG_FMT_I420, width, height, 32)) {
die("Failed to allocate image", width, height);
}
}
// Populate encoder configuration.
res = aom_codec_enc_config_default(encoder->codec_interface(), &cfg, 0);
if (res) {
printf("Failed to get config: %s\n", aom_codec_err_to_string(res));
return EXIT_FAILURE;
}
// Update the default configuration with our settings.
cfg.g_w = width;
cfg.g_h = height;
// Timebase format e.g. 30fps: numerator=1, demoninator = 30.
cfg.g_timebase.num = (int)strtol(argv[6], NULL, 0);
cfg.g_timebase.den = (int)strtol(argv[7], NULL, 0);
speed = (int)strtol(argv[8], NULL, 0);
if (speed < 0 || speed > 8) {
die("Invalid speed setting: must be positive");
}
for (i = min_args_base;
(int)i < min_args_base + mode_to_num_layers[layering_mode]; ++i) {
rc.layer_target_bitrate[i - 13] = (int)strtol(argv[i], NULL, 0);
svc_params.layer_target_bitrate[i - 13] = rc.layer_target_bitrate[i - 13];
}
cfg.rc_target_bitrate =
svc_params.layer_target_bitrate[ss_number_layers * ts_number_layers - 1];
svc_params.framerate_factor[0] = 1;
if (ts_number_layers == 2) {
svc_params.framerate_factor[0] = 2;
svc_params.framerate_factor[1] = 1;
} else if (ts_number_layers == 3) {
svc_params.framerate_factor[0] = 4;
svc_params.framerate_factor[1] = 2;
svc_params.framerate_factor[2] = 1;
}
// Real time parameters.
cfg.g_usage = AOM_USAGE_REALTIME;
cfg.rc_dropframe_thresh = (unsigned int)strtoul(argv[9], NULL, 0);
cfg.rc_end_usage = AOM_CBR;
cfg.rc_min_quantizer = 2;
cfg.rc_max_quantizer = 52;
cfg.rc_undershoot_pct = 50;
cfg.rc_overshoot_pct = 50;
cfg.rc_buf_initial_sz = 600;
cfg.rc_buf_optimal_sz = 600;
cfg.rc_buf_sz = 1000;
// Use 1 thread as default.
cfg.g_threads = (unsigned int)strtoul(argv[11], NULL, 0);
error_resilient = (uint32_t)strtoul(argv[10], NULL, 0);
if (error_resilient != 0 && error_resilient != 1) {
die("Invalid value for error resilient (0, 1): %d.", error_resilient);
}
// Enable error resilient mode.
cfg.g_error_resilient = error_resilient;
cfg.g_lag_in_frames = 0;
cfg.kf_mode = AOM_KF_AUTO;
// Disable automatic keyframe placement.
cfg.kf_min_dist = cfg.kf_max_dist = 3000;
framerate = cfg.g_timebase.den / cfg.g_timebase.num;
set_rate_control_metrics(&rc, framerate, ss_number_layers, ts_number_layers);
if (input_ctx.file_type == FILE_TYPE_Y4M) {
if (input_ctx.width != cfg.g_w || input_ctx.height != cfg.g_h) {
die("Incorrect width or height: %d x %d", cfg.g_w, cfg.g_h);
}
if (input_ctx.framerate.numerator != cfg.g_timebase.den ||
input_ctx.framerate.denominator != cfg.g_timebase.num) {
die("Incorrect framerate: numerator %d denominator %d",
cfg.g_timebase.num, cfg.g_timebase.den);
}
}
// Open an output file for each stream.
for (unsigned int sl = 0; sl < ss_number_layers; ++sl) {
for (unsigned tl = 0; tl < ts_number_layers; ++tl) {
i = sl * ts_number_layers + tl;
char file_name[PATH_MAX];
AvxVideoInfo info;
info.codec_fourcc = encoder->fourcc;
info.frame_width = cfg.g_w;
info.frame_height = cfg.g_h;
info.time_base.numerator = cfg.g_timebase.num;
info.time_base.denominator = cfg.g_timebase.den;
snprintf(file_name, sizeof(file_name), "%s_%d.av1", argv[2], i);
outfile[i] = aom_video_writer_open(file_name, kContainerIVF, &info);
if (!outfile[i]) die("Failed to open %s for writing", file_name);
assert(outfile[i] != NULL);
}
}
// Initialize codec.
if (aom_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0))
die_codec(&codec, "Failed to initialize encoder");
aom_codec_control(&codec, AOME_SET_CPUUSED, speed);
aom_codec_control(&codec, AV1E_SET_AQ_MODE, 3);
aom_codec_control(&codec, AV1E_SET_GF_CBR_BOOST_PCT, 0);
aom_codec_control(&codec, AV1E_SET_ENABLE_CDEF, 1);
aom_codec_control(&codec, AV1E_SET_ENABLE_ORDER_HINT, 0);
aom_codec_control(&codec, AV1E_SET_ENABLE_TPL_MODEL, 0);
aom_codec_control(&codec, AV1E_SET_DELTAQ_MODE, 0);
svc_params.number_spatial_layers = ss_number_layers;
svc_params.number_temporal_layers = ts_number_layers;
for (i = 0; i < ss_number_layers * ts_number_layers; ++i) {
svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
}
for (i = 0; i < ss_number_layers; ++i) {
svc_params.scaling_factor_num[i] = 1;
svc_params.scaling_factor_den[i] = 1;
}
if (ss_number_layers == 2) {
svc_params.scaling_factor_num[0] = 1;
svc_params.scaling_factor_den[0] = 2;
} else if (ss_number_layers == 3) {
svc_params.scaling_factor_num[0] = 1;
svc_params.scaling_factor_den[0] = 4;
svc_params.scaling_factor_num[1] = 1;
svc_params.scaling_factor_den[1] = 2;
}
aom_codec_control(&codec, AV1E_SET_SVC_PARAMS, &svc_params);
// This controls the maximum target size of the key frame.
// For generating smaller key frames, use a smaller max_intra_size_pct
// value, like 100 or 200.
{
const int max_intra_size_pct = 300;
aom_codec_control(&codec, AOME_SET_MAX_INTRA_BITRATE_PCT,
max_intra_size_pct);
}
frame_avail = 1;
while (frame_avail || got_data) {
struct aom_usec_timer timer;
frame_avail = read_frame(&input_ctx, &raw);
int is_key_frame = (frame_cnt % cfg.kf_max_dist) == 0;
// Loop over spatial layers.
for (unsigned int slx = 0; slx < ss_number_layers; slx++) {
aom_codec_iter_t iter = NULL;
const aom_codec_cx_pkt_t *pkt;
int layer = 0;
// Set the reference/update flags, layer_id, and reference_map
// buffer index.
flags = set_layer_pattern(layering_mode, frame_cnt, &layer_id,
&ref_frame_config, &use_svc_control, slx,
is_key_frame, (layering_mode == 9));
aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id);
if (use_svc_control)
aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_CONFIG,
&ref_frame_config);
layer = slx * ts_number_layers + layer_id.temporal_layer_id;
if (frame_avail && slx == 0) ++rc.layer_input_frames[layer];
// Do the layer encode.
aom_usec_timer_start(&timer);
if (aom_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags))
die_codec(&codec, "Failed to encode frame");
aom_usec_timer_mark(&timer);
cx_time += aom_usec_timer_elapsed(&timer);
got_data = 0;
while ((pkt = aom_codec_get_cx_data(&codec, &iter))) {
got_data = 1;
switch (pkt->kind) {
case AOM_CODEC_CX_FRAME_PKT:
for (unsigned int sl = layer_id.spatial_layer_id;
sl < ss_number_layers; ++sl) {
for (unsigned tl = layer_id.temporal_layer_id;
tl < ts_number_layers; ++tl) {
unsigned int j = sl * ts_number_layers + tl;
aom_video_writer_write_frame(outfile[j], pkt->data.frame.buf,
pkt->data.frame.sz, pts);
if (sl == (unsigned int)layer_id.spatial_layer_id)
rc.layer_encoding_bitrate[j] += 8.0 * pkt->data.frame.sz;
// Keep count of rate control stats per layer (for non-key).
if (tl == (unsigned int)layer_id.temporal_layer_id &&
sl == (unsigned int)layer_id.spatial_layer_id &&
!(pkt->data.frame.flags & AOM_FRAME_IS_KEY)) {
rc.layer_avg_frame_size[j] += 8.0 * pkt->data.frame.sz;
rc.layer_avg_rate_mismatch[j] +=
fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[j]) /
rc.layer_pfb[j];
if (slx == 0) ++rc.layer_enc_frames[tl];
}
}
}
// Update for short-time encoding bitrate states, for moving window
// of size rc->window, shifted by rc->window / 2.
// Ignore first window segment, due to key frame.
// For spatial layers: only do this for top/highest SL.
if (frame_cnt > rc.window_size && slx == ss_number_layers - 1) {
sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
rc.window_size = (rc.window_size <= 0) ? 1 : rc.window_size;
if (frame_cnt % rc.window_size == 0) {
rc.window_count += 1;
rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
rc.variance_st_encoding_bitrate +=
(sum_bitrate / rc.window_size) *
(sum_bitrate / rc.window_size);
sum_bitrate = 0.0;
}
}
// Second shifted window.
if (frame_cnt > rc.window_size + rc.window_size / 2 &&
slx == ss_number_layers - 1) {
sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
if (frame_cnt > 2 * rc.window_size &&
frame_cnt % rc.window_size == 0) {
rc.window_count += 1;
rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
rc.variance_st_encoding_bitrate +=
(sum_bitrate2 / rc.window_size) *
(sum_bitrate2 / rc.window_size);
sum_bitrate2 = 0.0;
}
}
break;
default: break;
}
}
} // loop over spatial layers
++frame_cnt;
pts += frame_duration;
}
close_input_file(&input_ctx);
printout_rate_control_summary(&rc, frame_cnt, ss_number_layers,
ts_number_layers);
printf("\n");
printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n",
frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
1000000 * (double)frame_cnt / (double)cx_time);
if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
// Try to rewrite the output file headers with the actual frame count.
for (i = 0; i < ss_number_layers * ts_number_layers; ++i)
aom_video_writer_close(outfile[i]);
if (input_ctx.file_type != FILE_TYPE_Y4M) {
aom_img_free(&raw);
}
return EXIT_SUCCESS;
}