| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include "test/av1_txfm_test.h" |
| #include "test/util.h" |
| #include "av1/common/av1_inv_txfm1d.h" |
| #include "av1/encoder/av1_fwd_txfm1d.h" |
| |
| typedef TX_SIZE TxSize; |
| |
| using libaom_test::ACMRandom; |
| using libaom_test::input_base; |
| |
| namespace { |
| const int txfm_type_num = 2; |
| const int txfm_size_ls[] = { 4, 8, 16, 32, 64 }; |
| |
| const TxfmFunc fwd_txfm_func_ls[][txfm_type_num] = { |
| { av1_fdct4, av1_fadst4 }, { av1_fdct8, av1_fadst8 }, |
| { av1_fdct16, av1_fadst16 }, { av1_fdct32, nullptr }, |
| { av1_fdct64, nullptr }, |
| }; |
| |
| const TxfmFunc inv_txfm_func_ls[][txfm_type_num] = { |
| { av1_idct4, av1_iadst4 }, { av1_idct8, av1_iadst8 }, |
| { av1_idct16, av1_iadst16 }, { av1_idct32, nullptr }, |
| { av1_idct64, nullptr }, |
| }; |
| |
| // the maximum stage number of fwd/inv 1d dct/adst txfm is 12 |
| const int8_t cos_bit = 13; |
| const int8_t range_bit[12] = { 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 }; |
| |
| void reference_idct_1d_int(const int32_t *in, int32_t *out, int size) { |
| double input[64]; |
| for (int i = 0; i < size; ++i) input[i] = in[i]; |
| |
| double output[64]; |
| libaom_test::reference_idct_1d(input, output, size); |
| |
| for (int i = 0; i < size; ++i) { |
| ASSERT_GE(output[i], INT32_MIN); |
| ASSERT_LE(output[i], INT32_MAX); |
| out[i] = static_cast<int32_t>(round(output[i])); |
| } |
| } |
| |
| void random_matrix(int32_t *dst, int len, ACMRandom *rnd) { |
| const int bits = 16; |
| const int maxVal = (1 << (bits - 1)) - 1; |
| const int minVal = -(1 << (bits - 1)); |
| for (int i = 0; i < len; ++i) { |
| if (rnd->Rand8() % 10) |
| dst[i] = minVal + rnd->Rand16() % (1 << bits); |
| else |
| dst[i] = rnd->Rand8() % 2 ? minVal : maxVal; |
| } |
| } |
| |
| TEST(av1_inv_txfm1d, InvAccuracyCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 20000; |
| const int max_error[] = { 6, 10, 19, 31, 40 }; |
| ASSERT_EQ(NELEMENTS(max_error), TX_SIZES); |
| ASSERT_EQ(NELEMENTS(inv_txfm_func_ls), TX_SIZES); |
| for (int i = 0; i < count_test_block; ++i) { |
| // choose a random transform to test |
| const TxSize tx_size = static_cast<TxSize>(rnd.Rand8() % TX_SIZES); |
| const int txfm_size = txfm_size_ls[tx_size]; |
| const TxfmFunc inv_txfm_func = inv_txfm_func_ls[tx_size][0]; |
| |
| int32_t input[64]; |
| random_matrix(input, txfm_size, &rnd); |
| |
| // 64x64 transform assumes last 32 values are zero. |
| memset(input + 32, 0, 32 * sizeof(input[0])); |
| |
| int32_t ref_output[64]; |
| memset(ref_output, 0, sizeof(ref_output)); |
| reference_idct_1d_int(input, ref_output, txfm_size); |
| |
| int32_t output[64]; |
| memset(output, 0, sizeof(output)); |
| inv_txfm_func(input, output, cos_bit, range_bit); |
| |
| for (int ni = 0; ni < txfm_size; ++ni) { |
| EXPECT_LE(abs(output[ni] - ref_output[ni]), max_error[tx_size]) |
| << "tx_size = " << tx_size << ", ni = " << ni |
| << ", output[ni] = " << output[ni] |
| << ", ref_output[ni] = " << ref_output[ni]; |
| } |
| } |
| } |
| |
| static inline int get_max_bit(int x) { |
| int max_bit = -1; |
| while (x) { |
| x = x >> 1; |
| max_bit++; |
| } |
| return max_bit; |
| } |
| |
| TEST(av1_inv_txfm1d, get_max_bit) { |
| int max_bit = get_max_bit(8); |
| EXPECT_EQ(max_bit, 3); |
| } |
| |
| TEST(av1_inv_txfm1d, round_trip) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| for (int si = 0; si < NELEMENTS(fwd_txfm_func_ls); ++si) { |
| int txfm_size = txfm_size_ls[si]; |
| |
| for (int ti = 0; ti < txfm_type_num; ++ti) { |
| TxfmFunc fwd_txfm_func = fwd_txfm_func_ls[si][ti]; |
| TxfmFunc inv_txfm_func = inv_txfm_func_ls[si][ti]; |
| int max_error = 2; |
| |
| if (!fwd_txfm_func) continue; |
| |
| const int count_test_block = 5000; |
| for (int i = 0; i < count_test_block; ++i) { |
| int32_t input[64]; |
| int32_t output[64]; |
| int32_t round_trip_output[64]; |
| |
| ASSERT_LE(txfm_size, NELEMENTS(input)); |
| |
| for (int ni = 0; ni < txfm_size; ++ni) { |
| input[ni] = rnd.Rand16() % input_base - rnd.Rand16() % input_base; |
| } |
| |
| fwd_txfm_func(input, output, cos_bit, range_bit); |
| inv_txfm_func(output, round_trip_output, cos_bit, range_bit); |
| |
| for (int ni = 0; ni < txfm_size; ++ni) { |
| int node_err = |
| abs(input[ni] - round_shift(round_trip_output[ni], |
| get_max_bit(txfm_size) - 1)); |
| EXPECT_LE(node_err, max_error); |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace |