|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <tmmintrin.h> | 
|  |  | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_filter.h" | 
|  | #include "aom_dsp/x86/convolve.h" | 
|  | #include "aom_dsp/x86/convolve_sse2.h" | 
|  | #include "aom_dsp/x86/convolve_ssse3.h" | 
|  | #include "aom_dsp/x86/mem_sse2.h" | 
|  | #include "aom_dsp/x86/transpose_sse2.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/emmintrin_compat.h" | 
|  |  | 
|  | DECLARE_ALIGNED(32, static const uint8_t, filt_h4[]) = { | 
|  | 0,  1,  1,  2,  2, 3,  3,  4,  4,  5,  5,  6,  6,  7,  7,  8,  0,  1,  1, | 
|  | 2,  2,  3,  3,  4, 4,  5,  5,  6,  6,  7,  7,  8,  2,  3,  3,  4,  4,  5, | 
|  | 5,  6,  6,  7,  7, 8,  8,  9,  9,  10, 2,  3,  3,  4,  4,  5,  5,  6,  6, | 
|  | 7,  7,  8,  8,  9, 9,  10, 4,  5,  5,  6,  6,  7,  7,  8,  8,  9,  9,  10, | 
|  | 10, 11, 11, 12, 4, 5,  5,  6,  6,  7,  7,  8,  8,  9,  9,  10, 10, 11, 11, | 
|  | 12, 6,  7,  7,  8, 8,  9,  9,  10, 10, 11, 11, 12, 12, 13, 13, 14, 6,  7, | 
|  | 7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 13, 13, 14 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(32, static const uint8_t, filtd4[]) = { | 
|  | 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, | 
|  | 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, | 
|  | }; | 
|  |  | 
|  | static void aom_filter_block1d4_h4_ssse3( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, | 
|  | ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i filtersReg; | 
|  | __m128i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1; | 
|  | unsigned int i; | 
|  | src_ptr -= 3; | 
|  | addFilterReg32 = _mm_set1_epi16(32); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | filtersReg = _mm_srai_epi16(filtersReg, 1); | 
|  | // converting the 16 bit (short) to 8 bit (byte) and have the same data | 
|  | // in both lanes of 128 bit register. | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  |  | 
|  | firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u)); | 
|  | filt1Reg = _mm_load_si128((__m128i const *)(filtd4)); | 
|  |  | 
|  | for (i = output_height; i > 0; i -= 1) { | 
|  | // load the 2 strides of source | 
|  | srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt32b1_1 = _mm_shuffle_epi8(srcReg32b1, filt1Reg); | 
|  |  | 
|  | // multiply 4 adjacent elements with the filter and add the result | 
|  | srcRegFilt32b1_1 = _mm_maddubs_epi16(srcRegFilt32b1_1, firstFilters); | 
|  |  | 
|  | srcRegFilt32b1_1 = _mm_hadds_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); | 
|  |  | 
|  | // shift by 6 bit each 16 bit | 
|  | srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); | 
|  | srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve result | 
|  | srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); | 
|  |  | 
|  | src_ptr += src_pixels_per_line; | 
|  |  | 
|  | *((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt32b1_1); | 
|  | output_ptr += output_pitch; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aom_filter_block1d4_v4_ssse3( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, | 
|  | ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i filtersReg; | 
|  | __m128i addFilterReg32; | 
|  | __m128i srcReg2, srcReg3, srcReg23, srcReg4, srcReg34, srcReg5, srcReg45, | 
|  | srcReg6, srcReg56; | 
|  | __m128i srcReg23_34_lo, srcReg45_56_lo; | 
|  | __m128i srcReg2345_3456_lo, srcReg2345_3456_hi; | 
|  | __m128i resReglo, resReghi; | 
|  | __m128i firstFilters; | 
|  | unsigned int i; | 
|  | ptrdiff_t src_stride, dst_stride; | 
|  |  | 
|  | addFilterReg32 = _mm_set1_epi16(32); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | // converting the 16 bit (short) to  8 bit (byte) and have the | 
|  | // same data in both lanes of 128 bit register. | 
|  | filtersReg = _mm_srai_epi16(filtersReg, 1); | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  |  | 
|  | firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u)); | 
|  |  | 
|  | // multiple the size of the source and destination stride by two | 
|  | src_stride = src_pitch << 1; | 
|  | dst_stride = out_pitch << 1; | 
|  |  | 
|  | srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); | 
|  | srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); | 
|  | srcReg23 = _mm_unpacklo_epi32(srcReg2, srcReg3); | 
|  |  | 
|  | srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); | 
|  |  | 
|  | // have consecutive loads on the same 256 register | 
|  | srcReg34 = _mm_unpacklo_epi32(srcReg3, srcReg4); | 
|  |  | 
|  | srcReg23_34_lo = _mm_unpacklo_epi8(srcReg23, srcReg34); | 
|  |  | 
|  | for (i = output_height; i > 1; i -= 2) { | 
|  | srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); | 
|  | srcReg45 = _mm_unpacklo_epi32(srcReg4, srcReg5); | 
|  |  | 
|  | srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); | 
|  | srcReg56 = _mm_unpacklo_epi32(srcReg5, srcReg6); | 
|  |  | 
|  | // merge every two consecutive registers | 
|  | srcReg45_56_lo = _mm_unpacklo_epi8(srcReg45, srcReg56); | 
|  |  | 
|  | srcReg2345_3456_lo = _mm_unpacklo_epi16(srcReg23_34_lo, srcReg45_56_lo); | 
|  | srcReg2345_3456_hi = _mm_unpackhi_epi16(srcReg23_34_lo, srcReg45_56_lo); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | resReglo = _mm_maddubs_epi16(srcReg2345_3456_lo, firstFilters); | 
|  | resReghi = _mm_maddubs_epi16(srcReg2345_3456_hi, firstFilters); | 
|  |  | 
|  | resReglo = _mm_hadds_epi16(resReglo, _mm_setzero_si128()); | 
|  | resReghi = _mm_hadds_epi16(resReghi, _mm_setzero_si128()); | 
|  |  | 
|  | // shift by 6 bit each 16 bit | 
|  | resReglo = _mm_adds_epi16(resReglo, addFilterReg32); | 
|  | resReghi = _mm_adds_epi16(resReghi, addFilterReg32); | 
|  | resReglo = _mm_srai_epi16(resReglo, 6); | 
|  | resReghi = _mm_srai_epi16(resReghi, 6); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve | 
|  | // result | 
|  | resReglo = _mm_packus_epi16(resReglo, resReglo); | 
|  | resReghi = _mm_packus_epi16(resReghi, resReghi); | 
|  |  | 
|  | src_ptr += src_stride; | 
|  |  | 
|  | *((int *)(output_ptr)) = _mm_cvtsi128_si32(resReglo); | 
|  | *((int *)(output_ptr + out_pitch)) = _mm_cvtsi128_si32(resReghi); | 
|  |  | 
|  | output_ptr += dst_stride; | 
|  |  | 
|  | // save part of the registers for next strides | 
|  | srcReg23_34_lo = srcReg45_56_lo; | 
|  | srcReg4 = srcReg6; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aom_filter_block1d8_h4_ssse3( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, | 
|  | ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i filtersReg; | 
|  | __m128i addFilterReg32, filt2Reg, filt3Reg; | 
|  | __m128i secondFilters, thirdFilters; | 
|  | __m128i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3; | 
|  | __m128i srcReg32b1; | 
|  | unsigned int i; | 
|  | src_ptr -= 3; | 
|  | addFilterReg32 = _mm_set1_epi16(32); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | filtersReg = _mm_srai_epi16(filtersReg, 1); | 
|  | // converting the 16 bit (short) to 8 bit (byte) and have the same data | 
|  | // in both lanes of 128 bit register. | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  |  | 
|  | // duplicate only the second 16 bits (third and forth byte) | 
|  | // across 256 bit register | 
|  | secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); | 
|  | // duplicate only the third 16 bits (fifth and sixth byte) | 
|  | // across 256 bit register | 
|  | thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); | 
|  |  | 
|  | filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32)); | 
|  | filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2)); | 
|  |  | 
|  | for (i = output_height; i > 0; i -= 1) { | 
|  | srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg); | 
|  | srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); | 
|  | srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); | 
|  |  | 
|  | srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); | 
|  |  | 
|  | // shift by 6 bit each 16 bit | 
|  | srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); | 
|  | srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits | 
|  | srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); | 
|  |  | 
|  | src_ptr += src_pixels_per_line; | 
|  |  | 
|  | _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt32b1_1); | 
|  |  | 
|  | output_ptr += output_pitch; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aom_filter_block1d8_v4_ssse3( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, | 
|  | ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i filtersReg; | 
|  | __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6; | 
|  | __m128i srcReg23, srcReg34, srcReg45, srcReg56; | 
|  | __m128i resReg23, resReg34, resReg45, resReg56; | 
|  | __m128i resReg23_45, resReg34_56; | 
|  | __m128i addFilterReg32, secondFilters, thirdFilters; | 
|  | unsigned int i; | 
|  | ptrdiff_t src_stride, dst_stride; | 
|  |  | 
|  | addFilterReg32 = _mm_set1_epi16(32); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | // converting the 16 bit (short) to  8 bit (byte) and have the | 
|  | // same data in both lanes of 128 bit register. | 
|  | filtersReg = _mm_srai_epi16(filtersReg, 1); | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  |  | 
|  | // duplicate only the second 16 bits (third and forth byte) | 
|  | // across 128 bit register | 
|  | secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); | 
|  | // duplicate only the third 16 bits (fifth and sixth byte) | 
|  | // across 128 bit register | 
|  | thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); | 
|  |  | 
|  | // multiple the size of the source and destination stride by two | 
|  | src_stride = src_pitch << 1; | 
|  | dst_stride = out_pitch << 1; | 
|  |  | 
|  | srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); | 
|  | srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); | 
|  | srcReg23 = _mm_unpacklo_epi8(srcReg2, srcReg3); | 
|  |  | 
|  | srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); | 
|  |  | 
|  | // have consecutive loads on the same 256 register | 
|  | srcReg34 = _mm_unpacklo_epi8(srcReg3, srcReg4); | 
|  |  | 
|  | for (i = output_height; i > 1; i -= 2) { | 
|  | srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); | 
|  |  | 
|  | srcReg45 = _mm_unpacklo_epi8(srcReg4, srcReg5); | 
|  |  | 
|  | srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); | 
|  |  | 
|  | srcReg56 = _mm_unpacklo_epi8(srcReg5, srcReg6); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | resReg23 = _mm_maddubs_epi16(srcReg23, secondFilters); | 
|  | resReg34 = _mm_maddubs_epi16(srcReg34, secondFilters); | 
|  | resReg45 = _mm_maddubs_epi16(srcReg45, thirdFilters); | 
|  | resReg56 = _mm_maddubs_epi16(srcReg56, thirdFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | resReg23_45 = _mm_adds_epi16(resReg23, resReg45); | 
|  | resReg34_56 = _mm_adds_epi16(resReg34, resReg56); | 
|  |  | 
|  | // shift by 6 bit each 16 bit | 
|  | resReg23_45 = _mm_adds_epi16(resReg23_45, addFilterReg32); | 
|  | resReg34_56 = _mm_adds_epi16(resReg34_56, addFilterReg32); | 
|  | resReg23_45 = _mm_srai_epi16(resReg23_45, 6); | 
|  | resReg34_56 = _mm_srai_epi16(resReg34_56, 6); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve | 
|  | // result | 
|  | resReg23_45 = _mm_packus_epi16(resReg23_45, _mm_setzero_si128()); | 
|  | resReg34_56 = _mm_packus_epi16(resReg34_56, _mm_setzero_si128()); | 
|  |  | 
|  | src_ptr += src_stride; | 
|  |  | 
|  | _mm_storel_epi64((__m128i *)output_ptr, (resReg23_45)); | 
|  | _mm_storel_epi64((__m128i *)(output_ptr + out_pitch), (resReg34_56)); | 
|  |  | 
|  | output_ptr += dst_stride; | 
|  |  | 
|  | // save part of the registers for next strides | 
|  | srcReg23 = srcReg45; | 
|  | srcReg34 = srcReg56; | 
|  | srcReg4 = srcReg6; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aom_filter_block1d16_h4_ssse3( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, | 
|  | ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i filtersReg; | 
|  | __m128i addFilterReg32, filt2Reg, filt3Reg; | 
|  | __m128i secondFilters, thirdFilters; | 
|  | __m128i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; | 
|  | __m128i srcReg32b1, srcReg32b2; | 
|  | unsigned int i; | 
|  | src_ptr -= 3; | 
|  | addFilterReg32 = _mm_set1_epi16(32); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | filtersReg = _mm_srai_epi16(filtersReg, 1); | 
|  | // converting the 16 bit (short) to 8 bit (byte) and have the same data | 
|  | // in both lanes of 128 bit register. | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  |  | 
|  | // duplicate only the second 16 bits (third and forth byte) | 
|  | // across 256 bit register | 
|  | secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); | 
|  | // duplicate only the third 16 bits (fifth and sixth byte) | 
|  | // across 256 bit register | 
|  | thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); | 
|  |  | 
|  | filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32)); | 
|  | filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2)); | 
|  |  | 
|  | for (i = output_height; i > 0; i -= 1) { | 
|  | srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg); | 
|  | srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); | 
|  | srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); | 
|  |  | 
|  | srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); | 
|  |  | 
|  | // reading stride of the next 16 bytes | 
|  | // (part of it was being read by earlier read) | 
|  | srcReg32b2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8)); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b2, filt2Reg); | 
|  | srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b2, filt3Reg); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); | 
|  | srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); | 
|  |  | 
|  | // shift by 6 bit each 16 bit | 
|  | srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); | 
|  | srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b2_1, addFilterReg32); | 
|  | srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); | 
|  | srcRegFilt32b2_1 = _mm_srai_epi16(srcRegFilt32b2_1, 6); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve result | 
|  | srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); | 
|  |  | 
|  | src_ptr += src_pixels_per_line; | 
|  |  | 
|  | _mm_store_si128((__m128i *)output_ptr, srcRegFilt32b1_1); | 
|  |  | 
|  | output_ptr += output_pitch; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aom_filter_block1d16_v4_ssse3( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, | 
|  | ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i filtersReg; | 
|  | __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6; | 
|  | __m128i srcReg23_lo, srcReg23_hi, srcReg34_lo, srcReg34_hi; | 
|  | __m128i srcReg45_lo, srcReg45_hi, srcReg56_lo, srcReg56_hi; | 
|  | __m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo; | 
|  | __m128i resReg23_hi, resReg34_hi, resReg45_hi, resReg56_hi; | 
|  | __m128i resReg23_45_lo, resReg34_56_lo, resReg23_45_hi, resReg34_56_hi; | 
|  | __m128i resReg23_45, resReg34_56; | 
|  | __m128i addFilterReg32, secondFilters, thirdFilters; | 
|  | unsigned int i; | 
|  | ptrdiff_t src_stride, dst_stride; | 
|  |  | 
|  | addFilterReg32 = _mm_set1_epi16(32); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | // converting the 16 bit (short) to  8 bit (byte) and have the | 
|  | // same data in both lanes of 128 bit register. | 
|  | filtersReg = _mm_srai_epi16(filtersReg, 1); | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  |  | 
|  | // duplicate only the second 16 bits (third and forth byte) | 
|  | // across 128 bit register | 
|  | secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); | 
|  | // duplicate only the third 16 bits (fifth and sixth byte) | 
|  | // across 128 bit register | 
|  | thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); | 
|  |  | 
|  | // multiple the size of the source and destination stride by two | 
|  | src_stride = src_pitch << 1; | 
|  | dst_stride = out_pitch << 1; | 
|  |  | 
|  | srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)); | 
|  | srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)); | 
|  | srcReg23_lo = _mm_unpacklo_epi8(srcReg2, srcReg3); | 
|  | srcReg23_hi = _mm_unpackhi_epi8(srcReg2, srcReg3); | 
|  |  | 
|  | srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)); | 
|  |  | 
|  | // have consecutive loads on the same 256 register | 
|  | srcReg34_lo = _mm_unpacklo_epi8(srcReg3, srcReg4); | 
|  | srcReg34_hi = _mm_unpackhi_epi8(srcReg3, srcReg4); | 
|  |  | 
|  | for (i = output_height; i > 1; i -= 2) { | 
|  | srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)); | 
|  |  | 
|  | srcReg45_lo = _mm_unpacklo_epi8(srcReg4, srcReg5); | 
|  | srcReg45_hi = _mm_unpackhi_epi8(srcReg4, srcReg5); | 
|  |  | 
|  | srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)); | 
|  |  | 
|  | srcReg56_lo = _mm_unpacklo_epi8(srcReg5, srcReg6); | 
|  | srcReg56_hi = _mm_unpackhi_epi8(srcReg5, srcReg6); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | resReg23_lo = _mm_maddubs_epi16(srcReg23_lo, secondFilters); | 
|  | resReg34_lo = _mm_maddubs_epi16(srcReg34_lo, secondFilters); | 
|  | resReg45_lo = _mm_maddubs_epi16(srcReg45_lo, thirdFilters); | 
|  | resReg56_lo = _mm_maddubs_epi16(srcReg56_lo, thirdFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | resReg23_45_lo = _mm_adds_epi16(resReg23_lo, resReg45_lo); | 
|  | resReg34_56_lo = _mm_adds_epi16(resReg34_lo, resReg56_lo); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  |  | 
|  | resReg23_hi = _mm_maddubs_epi16(srcReg23_hi, secondFilters); | 
|  | resReg34_hi = _mm_maddubs_epi16(srcReg34_hi, secondFilters); | 
|  | resReg45_hi = _mm_maddubs_epi16(srcReg45_hi, thirdFilters); | 
|  | resReg56_hi = _mm_maddubs_epi16(srcReg56_hi, thirdFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | resReg23_45_hi = _mm_adds_epi16(resReg23_hi, resReg45_hi); | 
|  | resReg34_56_hi = _mm_adds_epi16(resReg34_hi, resReg56_hi); | 
|  |  | 
|  | // shift by 6 bit each 16 bit | 
|  | resReg23_45_lo = _mm_adds_epi16(resReg23_45_lo, addFilterReg32); | 
|  | resReg34_56_lo = _mm_adds_epi16(resReg34_56_lo, addFilterReg32); | 
|  | resReg23_45_hi = _mm_adds_epi16(resReg23_45_hi, addFilterReg32); | 
|  | resReg34_56_hi = _mm_adds_epi16(resReg34_56_hi, addFilterReg32); | 
|  | resReg23_45_lo = _mm_srai_epi16(resReg23_45_lo, 6); | 
|  | resReg34_56_lo = _mm_srai_epi16(resReg34_56_lo, 6); | 
|  | resReg23_45_hi = _mm_srai_epi16(resReg23_45_hi, 6); | 
|  | resReg34_56_hi = _mm_srai_epi16(resReg34_56_hi, 6); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve | 
|  | // result | 
|  | resReg23_45 = _mm_packus_epi16(resReg23_45_lo, resReg23_45_hi); | 
|  | resReg34_56 = _mm_packus_epi16(resReg34_56_lo, resReg34_56_hi); | 
|  |  | 
|  | src_ptr += src_stride; | 
|  |  | 
|  | _mm_store_si128((__m128i *)output_ptr, (resReg23_45)); | 
|  | _mm_store_si128((__m128i *)(output_ptr + out_pitch), (resReg34_56)); | 
|  |  | 
|  | output_ptr += dst_stride; | 
|  |  | 
|  | // save part of the registers for next strides | 
|  | srcReg23_lo = srcReg45_lo; | 
|  | srcReg34_lo = srcReg56_lo; | 
|  | srcReg23_hi = srcReg45_hi; | 
|  | srcReg34_hi = srcReg56_hi; | 
|  | srcReg4 = srcReg6; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline __m128i shuffle_filter_convolve8_8_ssse3( | 
|  | const __m128i *const s, const int16_t *const filter) { | 
|  | __m128i f[4]; | 
|  | shuffle_filter_ssse3(filter, f); | 
|  | return convolve8_8_ssse3(s, f); | 
|  | } | 
|  |  | 
|  | static void filter_horiz_w8_ssse3(const uint8_t *const src, | 
|  | const ptrdiff_t src_stride, | 
|  | uint8_t *const dst, | 
|  | const int16_t *const x_filter) { | 
|  | __m128i s[8], ss[4], temp; | 
|  |  | 
|  | load_8bit_8x8(src, src_stride, s); | 
|  | // 00 01 10 11 20 21 30 31  40 41 50 51 60 61 70 71 | 
|  | // 02 03 12 13 22 23 32 33  42 43 52 53 62 63 72 73 | 
|  | // 04 05 14 15 24 25 34 35  44 45 54 55 64 65 74 75 | 
|  | // 06 07 16 17 26 27 36 37  46 47 56 57 66 67 76 77 | 
|  | transpose_16bit_4x8(s, ss); | 
|  | temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter); | 
|  | // shrink to 8 bit each 16 bits | 
|  | temp = _mm_packus_epi16(temp, temp); | 
|  | // save only 8 bytes convolve result | 
|  | _mm_storel_epi64((__m128i *)dst, temp); | 
|  | } | 
|  |  | 
|  | static void transpose8x8_to_dst(const uint8_t *const src, | 
|  | const ptrdiff_t src_stride, uint8_t *const dst, | 
|  | const ptrdiff_t dst_stride) { | 
|  | __m128i s[8]; | 
|  |  | 
|  | load_8bit_8x8(src, src_stride, s); | 
|  | transpose_8bit_8x8(s, s); | 
|  | store_8bit_8x8(s, dst, dst_stride); | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_horiz_w8(const uint8_t *src, | 
|  | const ptrdiff_t src_stride, uint8_t *dst, | 
|  | const ptrdiff_t dst_stride, | 
|  | const InterpKernel *const x_filters, | 
|  | const int x0_q4, const int x_step_q4, | 
|  | const int w, const int h) { | 
|  | DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); | 
|  | int x, y, z; | 
|  | src -= SUBPEL_TAPS / 2 - 1; | 
|  |  | 
|  | // This function processes 8x8 areas. The intermediate height is not always | 
|  | // a multiple of 8, so force it to be a multiple of 8 here. | 
|  | y = h + (8 - (h & 0x7)); | 
|  |  | 
|  | do { | 
|  | int x_q4 = x0_q4; | 
|  | for (x = 0; x < w; x += 8) { | 
|  | // process 8 src_x steps | 
|  | for (z = 0; z < 8; ++z) { | 
|  | const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; | 
|  | const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; | 
|  | if (x_q4 & SUBPEL_MASK) { | 
|  | filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter); | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < 8; ++i) { | 
|  | temp[z * 8 + i] = src_x[i * src_stride + 3]; | 
|  | } | 
|  | } | 
|  | x_q4 += x_step_q4; | 
|  | } | 
|  |  | 
|  | // transpose the 8x8 filters values back to dst | 
|  | transpose8x8_to_dst(temp, 8, dst + x, dst_stride); | 
|  | } | 
|  |  | 
|  | src += src_stride * 8; | 
|  | dst += dst_stride * 8; | 
|  | } while (y -= 8); | 
|  | } | 
|  |  | 
|  | static void filter_horiz_w4_ssse3(const uint8_t *const src, | 
|  | const ptrdiff_t src_stride, | 
|  | uint8_t *const dst, | 
|  | const int16_t *const filter) { | 
|  | __m128i s[4]; | 
|  | __m128i temp; | 
|  |  | 
|  | load_8bit_8x4(src, src_stride, s); | 
|  | transpose_16bit_4x4(s, s); | 
|  |  | 
|  | temp = shuffle_filter_convolve8_8_ssse3(s, filter); | 
|  | // shrink to 8 bit each 16 bits | 
|  | temp = _mm_packus_epi16(temp, temp); | 
|  | // save only 4 bytes | 
|  | *(int *)dst = _mm_cvtsi128_si32(temp); | 
|  | } | 
|  |  | 
|  | static void transpose4x4_to_dst(const uint8_t *const src, | 
|  | const ptrdiff_t src_stride, uint8_t *const dst, | 
|  | const ptrdiff_t dst_stride) { | 
|  | __m128i s[4]; | 
|  |  | 
|  | load_8bit_4x4(src, src_stride, s); | 
|  | s[0] = transpose_8bit_4x4(s); | 
|  | s[1] = _mm_srli_si128(s[0], 4); | 
|  | s[2] = _mm_srli_si128(s[0], 8); | 
|  | s[3] = _mm_srli_si128(s[0], 12); | 
|  | store_8bit_4x4(s, dst, dst_stride); | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_horiz_w4(const uint8_t *src, | 
|  | const ptrdiff_t src_stride, uint8_t *dst, | 
|  | const ptrdiff_t dst_stride, | 
|  | const InterpKernel *const x_filters, | 
|  | const int x0_q4, const int x_step_q4, | 
|  | const int w, const int h) { | 
|  | DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); | 
|  | int x, y, z; | 
|  | src -= SUBPEL_TAPS / 2 - 1; | 
|  |  | 
|  | for (y = 0; y < h; y += 4) { | 
|  | int x_q4 = x0_q4; | 
|  | for (x = 0; x < w; x += 4) { | 
|  | // process 4 src_x steps | 
|  | for (z = 0; z < 4; ++z) { | 
|  | const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; | 
|  | const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; | 
|  | if (x_q4 & SUBPEL_MASK) { | 
|  | filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter); | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < 4; ++i) { | 
|  | temp[z * 4 + i] = src_x[i * src_stride + 3]; | 
|  | } | 
|  | } | 
|  | x_q4 += x_step_q4; | 
|  | } | 
|  |  | 
|  | // transpose the 4x4 filters values back to dst | 
|  | transpose4x4_to_dst(temp, 4, dst + x, dst_stride); | 
|  | } | 
|  |  | 
|  | src += src_stride * 4; | 
|  | dst += dst_stride * 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static __m128i filter_vert_kernel(const __m128i *const s, | 
|  | const int16_t *const filter) { | 
|  | __m128i ss[4]; | 
|  | __m128i temp; | 
|  |  | 
|  | // 00 10 01 11 02 12 03 13 | 
|  | ss[0] = _mm_unpacklo_epi8(s[0], s[1]); | 
|  | // 20 30 21 31 22 32 23 33 | 
|  | ss[1] = _mm_unpacklo_epi8(s[2], s[3]); | 
|  | // 40 50 41 51 42 52 43 53 | 
|  | ss[2] = _mm_unpacklo_epi8(s[4], s[5]); | 
|  | // 60 70 61 71 62 72 63 73 | 
|  | ss[3] = _mm_unpacklo_epi8(s[6], s[7]); | 
|  |  | 
|  | temp = shuffle_filter_convolve8_8_ssse3(ss, filter); | 
|  | // shrink to 8 bit each 16 bits | 
|  | return _mm_packus_epi16(temp, temp); | 
|  | } | 
|  |  | 
|  | static void filter_vert_w4_ssse3(const uint8_t *const src, | 
|  | const ptrdiff_t src_stride, uint8_t *const dst, | 
|  | const int16_t *const filter) { | 
|  | __m128i s[8]; | 
|  | __m128i temp; | 
|  |  | 
|  | load_8bit_4x8(src, src_stride, s); | 
|  | temp = filter_vert_kernel(s, filter); | 
|  | // save only 4 bytes | 
|  | *(int *)dst = _mm_cvtsi128_si32(temp); | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_vert_w4( | 
|  | const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, | 
|  | const ptrdiff_t dst_stride, const InterpKernel *const y_filters, | 
|  | const int y0_q4, const int y_step_q4, const int w, const int h) { | 
|  | int y; | 
|  | int y_q4 = y0_q4; | 
|  |  | 
|  | src -= src_stride * (SUBPEL_TAPS / 2 - 1); | 
|  | for (y = 0; y < h; ++y) { | 
|  | const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; | 
|  | const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; | 
|  |  | 
|  | if (y_q4 & SUBPEL_MASK) { | 
|  | filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); | 
|  | } else { | 
|  | memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); | 
|  | } | 
|  |  | 
|  | y_q4 += y_step_q4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void filter_vert_w8_ssse3(const uint8_t *const src, | 
|  | const ptrdiff_t src_stride, uint8_t *const dst, | 
|  | const int16_t *const filter) { | 
|  | __m128i s[8], temp; | 
|  |  | 
|  | load_8bit_8x8(src, src_stride, s); | 
|  | temp = filter_vert_kernel(s, filter); | 
|  | // save only 8 bytes convolve result | 
|  | _mm_storel_epi64((__m128i *)dst, temp); | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_vert_w8( | 
|  | const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, | 
|  | const ptrdiff_t dst_stride, const InterpKernel *const y_filters, | 
|  | const int y0_q4, const int y_step_q4, const int w, const int h) { | 
|  | int y; | 
|  | int y_q4 = y0_q4; | 
|  |  | 
|  | src -= src_stride * (SUBPEL_TAPS / 2 - 1); | 
|  | for (y = 0; y < h; ++y) { | 
|  | const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; | 
|  | const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; | 
|  | if (y_q4 & SUBPEL_MASK) { | 
|  | filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); | 
|  | } else { | 
|  | memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); | 
|  | } | 
|  | y_q4 += y_step_q4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void filter_vert_w16_ssse3(const uint8_t *src, | 
|  | const ptrdiff_t src_stride, | 
|  | uint8_t *const dst, | 
|  | const int16_t *const filter, const int w) { | 
|  | int i; | 
|  | __m128i f[4]; | 
|  | shuffle_filter_ssse3(filter, f); | 
|  |  | 
|  | for (i = 0; i < w; i += 16) { | 
|  | __m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi; | 
|  |  | 
|  | loadu_8bit_16x8(src, src_stride, s); | 
|  |  | 
|  | // merge the result together | 
|  | s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]); | 
|  | s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]); | 
|  | s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]); | 
|  | s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]); | 
|  | s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]); | 
|  | s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]); | 
|  | s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]); | 
|  | s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]); | 
|  | temp_lo = convolve8_8_ssse3(s_lo, f); | 
|  | temp_hi = convolve8_8_ssse3(s_hi, f); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first convolve | 
|  | // result and the second lane contain the second convolve result | 
|  | temp_hi = _mm_packus_epi16(temp_lo, temp_hi); | 
|  | src += 16; | 
|  | // save 16 bytes convolve result | 
|  | _mm_store_si128((__m128i *)&dst[i], temp_hi); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scaledconvolve_vert_w16( | 
|  | const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, | 
|  | const ptrdiff_t dst_stride, const InterpKernel *const y_filters, | 
|  | const int y0_q4, const int y_step_q4, const int w, const int h) { | 
|  | int y; | 
|  | int y_q4 = y0_q4; | 
|  |  | 
|  | src -= src_stride * (SUBPEL_TAPS / 2 - 1); | 
|  | for (y = 0; y < h; ++y) { | 
|  | const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; | 
|  | const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; | 
|  | if (y_q4 & SUBPEL_MASK) { | 
|  | filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter, | 
|  | w); | 
|  | } else { | 
|  | memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); | 
|  | } | 
|  | y_q4 += y_step_q4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void aom_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, | 
|  | ptrdiff_t dst_stride, const InterpKernel *filter, | 
|  | int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, | 
|  | int w, int h) { | 
|  | // Note: Fixed size intermediate buffer, temp, places limits on parameters. | 
|  | // 2d filtering proceeds in 2 steps: | 
|  | //   (1) Interpolate horizontally into an intermediate buffer, temp. | 
|  | //   (2) Interpolate temp vertically to derive the sub-pixel result. | 
|  | // Deriving the maximum number of rows in the temp buffer (135): | 
|  | // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). | 
|  | // --Largest block size is 64x64 pixels. | 
|  | // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the | 
|  | //   original frame (in 1/16th pixel units). | 
|  | // --Must round-up because block may be located at sub-pixel position. | 
|  | // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. | 
|  | // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. | 
|  | // --Require an additional 8 rows for the horiz_w8 transpose tail. | 
|  | // When calling in frame scaling function, the smallest scaling factor is x1/4 | 
|  | // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still | 
|  | // big enough. | 
|  | DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); | 
|  | const int intermediate_height = | 
|  | (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; | 
|  |  | 
|  | assert(w <= 64); | 
|  | assert(h <= 64); | 
|  | assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); | 
|  | assert(x_step_q4 <= 64); | 
|  |  | 
|  | if (w >= 8) { | 
|  | scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), | 
|  | src_stride, temp, 64, filter, x0_q4, x_step_q4, w, | 
|  | intermediate_height); | 
|  | } else { | 
|  | scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), | 
|  | src_stride, temp, 64, filter, x0_q4, x_step_q4, w, | 
|  | intermediate_height); | 
|  | } | 
|  |  | 
|  | if (w >= 16) { | 
|  | scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, | 
|  | dst_stride, filter, y0_q4, y_step_q4, w, h); | 
|  | } else if (w == 8) { | 
|  | scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, | 
|  | dst_stride, filter, y0_q4, y_step_q4, w, h); | 
|  | } else { | 
|  | scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, | 
|  | dst_stride, filter, y0_q4, y_step_q4, w, h); | 
|  | } | 
|  | } | 
|  |  | 
|  | filter8_1dfunction aom_filter_block1d16_v8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_h8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_v8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_v8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h8_ssse3; | 
|  |  | 
|  | filter8_1dfunction aom_filter_block1d16_v2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_h2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_v2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_v2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h2_ssse3; | 
|  |  | 
|  | // void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                                uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                                const int16_t *filter_x, int x_step_q4, | 
|  | //                                const int16_t *filter_y, int y_step_q4, | 
|  | //                                int w, int h); | 
|  | // void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                               uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                               const int16_t *filter_x, int x_step_q4, | 
|  | //                               const int16_t *filter_y, int y_step_q4, | 
|  | //                               int w, int h); | 
|  | FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3) | 
|  | FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3) |