|  | /* | 
|  | * Copyright (c) 2020, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "av1/common/filter.h" | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/encoder/interp_search.h" | 
|  | #include "av1/encoder/model_rd.h" | 
|  | #include "av1/encoder/rdopt_utils.h" | 
|  | #include "av1/encoder/reconinter_enc.h" | 
|  |  | 
|  | // return mv_diff | 
|  | static inline int is_interp_filter_good_match( | 
|  | const INTERPOLATION_FILTER_STATS *st, MB_MODE_INFO *const mi, | 
|  | int skip_level) { | 
|  | const int is_comp = has_second_ref(mi); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 1 + is_comp; ++i) { | 
|  | if (st->ref_frames[i] != mi->ref_frame[i]) return INT_MAX; | 
|  | } | 
|  |  | 
|  | if (skip_level == 1 && is_comp) { | 
|  | if (st->comp_type != mi->interinter_comp.type) return INT_MAX; | 
|  | if (st->compound_idx != mi->compound_idx) return INT_MAX; | 
|  | } | 
|  |  | 
|  | int mv_diff = 0; | 
|  | for (i = 0; i < 1 + is_comp; ++i) { | 
|  | mv_diff += abs(st->mv[i].as_mv.row - mi->mv[i].as_mv.row) + | 
|  | abs(st->mv[i].as_mv.col - mi->mv[i].as_mv.col); | 
|  | } | 
|  | return mv_diff; | 
|  | } | 
|  |  | 
|  | static inline int save_interp_filter_search_stat( | 
|  | MB_MODE_INFO *const mbmi, int64_t rd, unsigned int pred_sse, | 
|  | INTERPOLATION_FILTER_STATS *interp_filter_stats, | 
|  | int interp_filter_stats_idx) { | 
|  | if (interp_filter_stats_idx < MAX_INTERP_FILTER_STATS) { | 
|  | INTERPOLATION_FILTER_STATS stat = { mbmi->interp_filters, | 
|  | { mbmi->mv[0], mbmi->mv[1] }, | 
|  | { mbmi->ref_frame[0], | 
|  | mbmi->ref_frame[1] }, | 
|  | mbmi->interinter_comp.type, | 
|  | mbmi->compound_idx, | 
|  | rd, | 
|  | pred_sse }; | 
|  | interp_filter_stats[interp_filter_stats_idx] = stat; | 
|  | interp_filter_stats_idx++; | 
|  | } | 
|  | return interp_filter_stats_idx; | 
|  | } | 
|  |  | 
|  | static inline int find_interp_filter_in_stats( | 
|  | MB_MODE_INFO *const mbmi, INTERPOLATION_FILTER_STATS *interp_filter_stats, | 
|  | int interp_filter_stats_idx, int skip_level) { | 
|  | // [skip_levels][single or comp] | 
|  | const int thr[2][2] = { { 0, 0 }, { 3, 7 } }; | 
|  | const int is_comp = has_second_ref(mbmi); | 
|  |  | 
|  | // Find good enough match. | 
|  | // TODO(yunqing): Separate single-ref mode and comp mode stats for fast | 
|  | // search. | 
|  | int best = INT_MAX; | 
|  | int match = -1; | 
|  | for (int j = 0; j < interp_filter_stats_idx; ++j) { | 
|  | const INTERPOLATION_FILTER_STATS *st = &interp_filter_stats[j]; | 
|  | const int mv_diff = is_interp_filter_good_match(st, mbmi, skip_level); | 
|  | // Exact match is found. | 
|  | if (mv_diff == 0) { | 
|  | match = j; | 
|  | break; | 
|  | } else if (mv_diff < best && mv_diff <= thr[skip_level - 1][is_comp]) { | 
|  | best = mv_diff; | 
|  | match = j; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match != -1) { | 
|  | mbmi->interp_filters = interp_filter_stats[match].filters; | 
|  | return match; | 
|  | } | 
|  | return -1;  // no match result found | 
|  | } | 
|  |  | 
|  | static int find_interp_filter_match( | 
|  | MB_MODE_INFO *const mbmi, const AV1_COMP *const cpi, | 
|  | const InterpFilter assign_filter, const int need_search, | 
|  | INTERPOLATION_FILTER_STATS *interp_filter_stats, | 
|  | int interp_filter_stats_idx) { | 
|  | int match_found_idx = -1; | 
|  | if (cpi->sf.interp_sf.use_interp_filter && need_search) | 
|  | match_found_idx = find_interp_filter_in_stats( | 
|  | mbmi, interp_filter_stats, interp_filter_stats_idx, | 
|  | cpi->sf.interp_sf.use_interp_filter); | 
|  |  | 
|  | if (!need_search || match_found_idx == -1) | 
|  | set_default_interp_filters(mbmi, assign_filter); | 
|  | return match_found_idx; | 
|  | } | 
|  |  | 
|  | static inline int get_switchable_rate(MACROBLOCK *const x, | 
|  | const int_interpfilters filters, | 
|  | const int ctx[2], int dual_filter) { | 
|  | const InterpFilter filter0 = filters.as_filters.y_filter; | 
|  | int inter_filter_cost = | 
|  | x->mode_costs.switchable_interp_costs[ctx[0]][filter0]; | 
|  | if (dual_filter) { | 
|  | const InterpFilter filter1 = filters.as_filters.x_filter; | 
|  | inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx[1]][filter1]; | 
|  | } | 
|  | return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; | 
|  | } | 
|  |  | 
|  | // Build inter predictor and calculate model rd | 
|  | // for a given plane. | 
|  | static inline void interp_model_rd_eval( | 
|  | MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
|  | const BUFFER_SET *const orig_dst, int plane_from, int plane_to, | 
|  | RD_STATS *rd_stats, int is_skip_build_pred) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | RD_STATS tmp_rd_stats; | 
|  | av1_init_rd_stats(&tmp_rd_stats); | 
|  |  | 
|  | // Skip inter predictor if the predictor is already available. | 
|  | if (!is_skip_build_pred) { | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, | 
|  | plane_from, plane_to); | 
|  | } | 
|  |  | 
|  | model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model | 
|  | ? MODELRD_LEGACY | 
|  | : MODELRD_TYPE_INTERP_FILTER]( | 
|  | cpi, bsize, x, xd, plane_from, plane_to, &tmp_rd_stats.rate, | 
|  | &tmp_rd_stats.dist, &tmp_rd_stats.skip_txfm, &tmp_rd_stats.sse, NULL, | 
|  | NULL, NULL); | 
|  |  | 
|  | av1_merge_rd_stats(rd_stats, &tmp_rd_stats); | 
|  | } | 
|  |  | 
|  | // calculate the rdcost of given interpolation_filter | 
|  | static inline int64_t interpolation_filter_rd( | 
|  | MACROBLOCK *const x, const AV1_COMP *const cpi, | 
|  | const TileDataEnc *tile_data, BLOCK_SIZE bsize, | 
|  | const BUFFER_SET *const orig_dst, int64_t *const rd, | 
|  | RD_STATS *rd_stats_luma, RD_STATS *rd_stats, int *const switchable_rate, | 
|  | const BUFFER_SET *dst_bufs[2], int filter_idx, const int switchable_ctx[2], | 
|  | const int skip_pred) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | RD_STATS this_rd_stats_luma, this_rd_stats; | 
|  |  | 
|  | // Initialize rd_stats structures to default values. | 
|  | av1_init_rd_stats(&this_rd_stats_luma); | 
|  | this_rd_stats = *rd_stats_luma; | 
|  | const int_interpfilters last_best = mbmi->interp_filters; | 
|  | mbmi->interp_filters = filter_sets[filter_idx]; | 
|  | const int tmp_rs = | 
|  | get_switchable_rate(x, mbmi->interp_filters, switchable_ctx, | 
|  | cm->seq_params->enable_dual_filter); | 
|  |  | 
|  | int64_t min_rd = RDCOST(x->rdmult, tmp_rs, 0); | 
|  | if (min_rd > *rd) { | 
|  | mbmi->interp_filters = last_best; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | (void)tile_data; | 
|  |  | 
|  | assert(skip_pred != 2); | 
|  | assert((rd_stats_luma->rate >= 0) && (rd_stats->rate >= 0)); | 
|  | assert((rd_stats_luma->dist >= 0) && (rd_stats->dist >= 0)); | 
|  | assert((rd_stats_luma->sse >= 0) && (rd_stats->sse >= 0)); | 
|  | assert((rd_stats_luma->skip_txfm == 0) || (rd_stats_luma->skip_txfm == 1)); | 
|  | assert((rd_stats->skip_txfm == 0) || (rd_stats->skip_txfm == 1)); | 
|  | assert((skip_pred >= 0) && | 
|  | (skip_pred <= interp_search_flags->default_interp_skip_flags)); | 
|  |  | 
|  | // When skip_txfm pred is equal to default_interp_skip_flags, | 
|  | // skip both luma and chroma MC. | 
|  | // For mono-chrome images: | 
|  | // num_planes = 1 and cpi->default_interp_skip_flags = 1, | 
|  | // skip_pred = 1: skip both luma and chroma | 
|  | // skip_pred = 0: Evaluate luma and as num_planes=1, | 
|  | // skip chroma evaluation | 
|  | int tmp_skip_pred = | 
|  | (skip_pred == interp_search_flags->default_interp_skip_flags) | 
|  | ? INTERP_SKIP_LUMA_SKIP_CHROMA | 
|  | : skip_pred; | 
|  |  | 
|  | switch (tmp_skip_pred) { | 
|  | case INTERP_EVAL_LUMA_EVAL_CHROMA: | 
|  | // skip_pred = 0: Evaluate both luma and chroma. | 
|  | // Luma MC | 
|  | interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_Y, AOM_PLANE_Y, | 
|  | &this_rd_stats_luma, 0); | 
|  | this_rd_stats = this_rd_stats_luma; | 
|  | #if CONFIG_COLLECT_RD_STATS == 3 | 
|  | RD_STATS rd_stats_y; | 
|  | av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, | 
|  | INT64_MAX); | 
|  | PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize); | 
|  | #endif  // CONFIG_COLLECT_RD_STATS == 3 | 
|  | AOM_FALLTHROUGH_INTENDED; | 
|  | case INTERP_SKIP_LUMA_EVAL_CHROMA: | 
|  | // skip_pred = 1: skip luma evaluation (retain previous best luma stats) | 
|  | // and do chroma evaluation. | 
|  | for (int plane = 1; plane < num_planes; ++plane) { | 
|  | int64_t tmp_rd = | 
|  | RDCOST(x->rdmult, tmp_rs + this_rd_stats.rate, this_rd_stats.dist); | 
|  | if (tmp_rd >= *rd) { | 
|  | mbmi->interp_filters = last_best; | 
|  | return 0; | 
|  | } | 
|  | interp_model_rd_eval(x, cpi, bsize, orig_dst, plane, plane, | 
|  | &this_rd_stats, 0); | 
|  | } | 
|  | break; | 
|  | case INTERP_SKIP_LUMA_SKIP_CHROMA: | 
|  | // both luma and chroma evaluation is skipped | 
|  | this_rd_stats = *rd_stats; | 
|  | break; | 
|  | case INTERP_EVAL_INVALID: | 
|  | default: assert(0); return 0; | 
|  | } | 
|  | int64_t tmp_rd = | 
|  | RDCOST(x->rdmult, tmp_rs + this_rd_stats.rate, this_rd_stats.dist); | 
|  |  | 
|  | if (tmp_rd < *rd) { | 
|  | *rd = tmp_rd; | 
|  | *switchable_rate = tmp_rs; | 
|  | if (skip_pred != interp_search_flags->default_interp_skip_flags) { | 
|  | if (skip_pred == INTERP_EVAL_LUMA_EVAL_CHROMA) { | 
|  | // Overwrite the data as current filter is the best one | 
|  | *rd_stats_luma = this_rd_stats_luma; | 
|  | *rd_stats = this_rd_stats; | 
|  | // As luma MC data is computed, no need to recompute after the search | 
|  | x->recalc_luma_mc_data = 0; | 
|  | } else if (skip_pred == INTERP_SKIP_LUMA_EVAL_CHROMA) { | 
|  | // As luma MC data is not computed, update of luma data can be skipped | 
|  | *rd_stats = this_rd_stats; | 
|  | // As luma MC data is not recomputed and current filter is the best, | 
|  | // indicate the possibility of recomputing MC data | 
|  | // If current buffer contains valid MC data, toggle to indicate that | 
|  | // luma MC data needs to be recomputed | 
|  | x->recalc_luma_mc_data ^= 1; | 
|  | } | 
|  | swap_dst_buf(xd, dst_bufs, num_planes); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | mbmi->interp_filters = last_best; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline INTERP_PRED_TYPE is_pred_filter_search_allowed( | 
|  | const AV1_COMP *const cpi, MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
|  | int_interpfilters *af, int_interpfilters *lf) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; | 
|  | const int bsl = mi_size_wide_log2[bsize]; | 
|  | int is_horiz_eq = 0, is_vert_eq = 0; | 
|  |  | 
|  | if (above_mbmi && is_inter_block(above_mbmi)) | 
|  | *af = above_mbmi->interp_filters; | 
|  |  | 
|  | if (left_mbmi && is_inter_block(left_mbmi)) *lf = left_mbmi->interp_filters; | 
|  |  | 
|  | if (af->as_filters.x_filter != INTERP_INVALID) | 
|  | is_horiz_eq = af->as_filters.x_filter == lf->as_filters.x_filter; | 
|  | if (af->as_filters.y_filter != INTERP_INVALID) | 
|  | is_vert_eq = af->as_filters.y_filter == lf->as_filters.y_filter; | 
|  |  | 
|  | INTERP_PRED_TYPE pred_filter_type = (is_vert_eq << 1) + is_horiz_eq; | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | int pred_filter_enable = | 
|  | cpi->sf.interp_sf.cb_pred_filter_search | 
|  | ? (((mi_row + mi_col) >> bsl) + | 
|  | get_chessboard_index(cm->current_frame.frame_number)) & | 
|  | 0x1 | 
|  | : 0; | 
|  | pred_filter_enable &= is_horiz_eq || is_vert_eq; | 
|  | // pred_filter_search = 0: pred_filter is disabled | 
|  | // pred_filter_search = 1: pred_filter is enabled and only horz pred matching | 
|  | // pred_filter_search = 2: pred_filter is enabled and only vert pred matching | 
|  | // pred_filter_search = 3: pred_filter is enabled and | 
|  | //                         both vert, horz pred matching | 
|  | return pred_filter_enable * pred_filter_type; | 
|  | } | 
|  |  | 
|  | static DUAL_FILTER_TYPE find_best_interp_rd_facade( | 
|  | MACROBLOCK *const x, const AV1_COMP *const cpi, | 
|  | const TileDataEnc *tile_data, BLOCK_SIZE bsize, | 
|  | const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y, | 
|  | RD_STATS *rd_stats, int *const switchable_rate, | 
|  | const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2], | 
|  | const int skip_pred, uint16_t allow_interp_mask, int is_w4_or_h4) { | 
|  | int tmp_skip_pred = skip_pred; | 
|  | DUAL_FILTER_TYPE best_filt_type = REG_REG; | 
|  |  | 
|  | // If no filter are set to be evaluated, return from function | 
|  | if (allow_interp_mask == 0x0) return best_filt_type; | 
|  | // For block width or height is 4, skip the pred evaluation of SHARP_SHARP | 
|  | tmp_skip_pred = is_w4_or_h4 | 
|  | ? cpi->interp_search_flags.default_interp_skip_flags | 
|  | : skip_pred; | 
|  |  | 
|  | // Loop over the all filter types and evaluate for only allowed filter types | 
|  | for (int filt_type = SHARP_SHARP; filt_type >= REG_REG; --filt_type) { | 
|  | const int is_filter_allowed = | 
|  | get_interp_filter_allowed_mask(allow_interp_mask, filt_type); | 
|  | if (is_filter_allowed) | 
|  | if (interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, | 
|  | rd_stats_y, rd_stats, switchable_rate, | 
|  | dst_bufs, filt_type, switchable_ctx, | 
|  | tmp_skip_pred)) | 
|  | best_filt_type = filt_type; | 
|  | tmp_skip_pred = skip_pred; | 
|  | } | 
|  | return best_filt_type; | 
|  | } | 
|  |  | 
|  | static inline void pred_dual_interp_filter_rd( | 
|  | MACROBLOCK *const x, const AV1_COMP *const cpi, | 
|  | const TileDataEnc *tile_data, BLOCK_SIZE bsize, | 
|  | const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y, | 
|  | RD_STATS *rd_stats, int *const switchable_rate, | 
|  | const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2], | 
|  | const int skip_pred, INTERP_PRED_TYPE pred_filt_type, int_interpfilters *af, | 
|  | int_interpfilters *lf) { | 
|  | (void)lf; | 
|  | assert(pred_filt_type > INTERP_HORZ_NEQ_VERT_NEQ); | 
|  | assert(pred_filt_type < INTERP_PRED_TYPE_ALL); | 
|  | uint16_t allowed_interp_mask = 0; | 
|  |  | 
|  | if (pred_filt_type == INTERP_HORZ_EQ_VERT_NEQ) { | 
|  | // pred_filter_search = 1: Only horizontal filter is matching | 
|  | allowed_interp_mask = | 
|  | av1_interp_dual_filt_mask[pred_filt_type - 1][af->as_filters.x_filter]; | 
|  | } else if (pred_filt_type == INTERP_HORZ_NEQ_VERT_EQ) { | 
|  | // pred_filter_search = 2: Only vertical filter is matching | 
|  | allowed_interp_mask = | 
|  | av1_interp_dual_filt_mask[pred_filt_type - 1][af->as_filters.y_filter]; | 
|  | } else { | 
|  | // pred_filter_search = 3: Both horizontal and vertical filter are matching | 
|  | int filt_type = | 
|  | af->as_filters.x_filter + af->as_filters.y_filter * SWITCHABLE_FILTERS; | 
|  | set_interp_filter_allowed_mask(&allowed_interp_mask, filt_type); | 
|  | } | 
|  | // REG_REG is already been evaluated in the beginning | 
|  | reset_interp_filter_allowed_mask(&allowed_interp_mask, REG_REG); | 
|  | find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y, | 
|  | rd_stats, switchable_rate, dst_bufs, | 
|  | switchable_ctx, skip_pred, allowed_interp_mask, 0); | 
|  | } | 
|  | // Evaluate dual filter type | 
|  | // a) Using above, left block interp filter | 
|  | // b) Find the best horizontal filter and | 
|  | //    then evaluate corresponding vertical filters. | 
|  | static inline void fast_dual_interp_filter_rd( | 
|  | MACROBLOCK *const x, const AV1_COMP *const cpi, | 
|  | const TileDataEnc *tile_data, BLOCK_SIZE bsize, | 
|  | const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y, | 
|  | RD_STATS *rd_stats, int *const switchable_rate, | 
|  | const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2], | 
|  | const int skip_hor, const int skip_ver) { | 
|  | const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | INTERP_PRED_TYPE pred_filter_type = INTERP_HORZ_NEQ_VERT_NEQ; | 
|  | int_interpfilters af = av1_broadcast_interp_filter(INTERP_INVALID); | 
|  | int_interpfilters lf = af; | 
|  |  | 
|  | if (!have_newmv_in_inter_mode(mbmi->mode)) { | 
|  | pred_filter_type = is_pred_filter_search_allowed(cpi, xd, bsize, &af, &lf); | 
|  | } | 
|  |  | 
|  | if (pred_filter_type) { | 
|  | pred_dual_interp_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, | 
|  | rd_stats_y, rd_stats, switchable_rate, dst_bufs, | 
|  | switchable_ctx, (skip_hor & skip_ver), | 
|  | pred_filter_type, &af, &lf); | 
|  | } else { | 
|  | const int bw = block_size_wide[bsize]; | 
|  | const int bh = block_size_high[bsize]; | 
|  | int best_dual_mode = 0; | 
|  | int skip_pred = | 
|  | bw <= 4 ? interp_search_flags->default_interp_skip_flags : skip_hor; | 
|  | // TODO(any): Make use of find_best_interp_rd_facade() | 
|  | // if speed impact is negligible | 
|  | for (int i = (SWITCHABLE_FILTERS - 1); i >= 1; --i) { | 
|  | if (interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, | 
|  | rd_stats_y, rd_stats, switchable_rate, | 
|  | dst_bufs, i, switchable_ctx, skip_pred)) { | 
|  | best_dual_mode = i; | 
|  | } | 
|  | skip_pred = skip_hor; | 
|  | } | 
|  | // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes | 
|  | skip_pred = | 
|  | bh <= 4 ? interp_search_flags->default_interp_skip_flags : skip_ver; | 
|  | for (int i = (best_dual_mode + (SWITCHABLE_FILTERS * 2)); | 
|  | i >= (best_dual_mode + SWITCHABLE_FILTERS); i -= SWITCHABLE_FILTERS) { | 
|  | interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, | 
|  | rd_stats_y, rd_stats, switchable_rate, dst_bufs, | 
|  | i, switchable_ctx, skip_pred); | 
|  | skip_pred = skip_ver; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find the best interp filter if dual_interp_filter = 0 | 
|  | static inline void find_best_non_dual_interp_filter( | 
|  | MACROBLOCK *const x, const AV1_COMP *const cpi, | 
|  | const TileDataEnc *tile_data, BLOCK_SIZE bsize, | 
|  | const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y, | 
|  | RD_STATS *rd_stats, int *const switchable_rate, | 
|  | const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2], | 
|  | const int skip_ver, const int skip_hor) { | 
|  | const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags; | 
|  | int8_t i; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  |  | 
|  | uint16_t interp_filter_search_mask = | 
|  | interp_search_flags->interp_filter_search_mask; | 
|  |  | 
|  | if (cpi->sf.interp_sf.adaptive_interp_filter_search == 2) { | 
|  | const FRAME_UPDATE_TYPE update_type = | 
|  | get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  | const int ctx0 = av1_get_pred_context_switchable_interp(xd, 0); | 
|  | const int ctx1 = av1_get_pred_context_switchable_interp(xd, 1); | 
|  | int use_actual_frame_probs = 1; | 
|  | const int *switchable_interp_p0; | 
|  | const int *switchable_interp_p1; | 
|  | #if CONFIG_FPMT_TEST | 
|  | use_actual_frame_probs = | 
|  | (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1; | 
|  | if (!use_actual_frame_probs) { | 
|  | switchable_interp_p0 = (int *)cpi->ppi->temp_frame_probs | 
|  | .switchable_interp_probs[update_type][ctx0]; | 
|  | switchable_interp_p1 = (int *)cpi->ppi->temp_frame_probs | 
|  | .switchable_interp_probs[update_type][ctx1]; | 
|  | } | 
|  | #endif | 
|  | if (use_actual_frame_probs) { | 
|  | switchable_interp_p0 = | 
|  | cpi->ppi->frame_probs.switchable_interp_probs[update_type][ctx0]; | 
|  | switchable_interp_p1 = | 
|  | cpi->ppi->frame_probs.switchable_interp_probs[update_type][ctx1]; | 
|  | } | 
|  | static const int thr[7] = { 0, 8, 8, 8, 8, 0, 8 }; | 
|  | const int thresh = thr[update_type]; | 
|  | for (i = 0; i < SWITCHABLE_FILTERS; i++) { | 
|  | // For non-dual case, the 2 dir's prob should be identical. | 
|  | assert(switchable_interp_p0[i] == switchable_interp_p1[i]); | 
|  | if (switchable_interp_p0[i] < thresh && | 
|  | switchable_interp_p1[i] < thresh) { | 
|  | DUAL_FILTER_TYPE filt_type = i + SWITCHABLE_FILTERS * i; | 
|  | reset_interp_filter_allowed_mask(&interp_filter_search_mask, filt_type); | 
|  | } | 
|  |  | 
|  | if (cpi->oxcf.algo_cfg.sharpness == 3 && i == EIGHTTAP_SMOOTH) { | 
|  | DUAL_FILTER_TYPE filt_type = i + SWITCHABLE_FILTERS * i; | 
|  | reset_interp_filter_allowed_mask(&interp_filter_search_mask, filt_type); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Regular filter evaluation should have been done and hence the same should | 
|  | // be the winner | 
|  | assert(x->e_mbd.mi[0]->interp_filters.as_int == filter_sets[0].as_int); | 
|  | if ((skip_hor & skip_ver) != interp_search_flags->default_interp_skip_flags) { | 
|  | INTERP_PRED_TYPE pred_filter_type = INTERP_HORZ_NEQ_VERT_NEQ; | 
|  | int_interpfilters af = av1_broadcast_interp_filter(INTERP_INVALID); | 
|  | int_interpfilters lf = af; | 
|  |  | 
|  | pred_filter_type = is_pred_filter_search_allowed(cpi, xd, bsize, &af, &lf); | 
|  | if (pred_filter_type) { | 
|  | assert(af.as_filters.x_filter != INTERP_INVALID); | 
|  | int filter_idx = SWITCHABLE * af.as_filters.x_filter; | 
|  | // This assert tells that (filter_x == filter_y) for non-dual filter case | 
|  | assert(filter_sets[filter_idx].as_filters.x_filter == | 
|  | filter_sets[filter_idx].as_filters.y_filter); | 
|  | if (cpi->sf.interp_sf.adaptive_interp_filter_search && | 
|  | !(get_interp_filter_allowed_mask(interp_filter_search_mask, | 
|  | filter_idx))) { | 
|  | return; | 
|  | } | 
|  | if (filter_idx) { | 
|  | interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, | 
|  | rd_stats_y, rd_stats, switchable_rate, dst_bufs, | 
|  | filter_idx, switchable_ctx, | 
|  | (skip_hor & skip_ver)); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  | // Reuse regular filter's modeled rd data for sharp filter for following | 
|  | // cases | 
|  | // 1) When bsize is 4x4 | 
|  | // 2) When block width is 4 (i.e. 4x8/4x16 blocks) and MV in vertical | 
|  | // direction is full-pel | 
|  | // 3) When block height is 4 (i.e. 8x4/16x4 blocks) and MV in horizontal | 
|  | // direction is full-pel | 
|  | // TODO(any): Optimize cases 2 and 3 further if luma MV in relavant direction | 
|  | // alone is full-pel | 
|  |  | 
|  | if ((bsize == BLOCK_4X4) || | 
|  | (block_size_wide[bsize] == 4 && | 
|  | skip_ver == interp_search_flags->default_interp_skip_flags) || | 
|  | (block_size_high[bsize] == 4 && | 
|  | skip_hor == interp_search_flags->default_interp_skip_flags)) { | 
|  | int skip_pred = skip_hor & skip_ver; | 
|  | uint16_t allowed_interp_mask = 0; | 
|  |  | 
|  | // REG_REG filter type is evaluated beforehand, hence skip it | 
|  | set_interp_filter_allowed_mask(&allowed_interp_mask, SHARP_SHARP); | 
|  | set_interp_filter_allowed_mask(&allowed_interp_mask, SMOOTH_SMOOTH); | 
|  | if (cpi->sf.interp_sf.adaptive_interp_filter_search) | 
|  | allowed_interp_mask &= interp_filter_search_mask; | 
|  |  | 
|  | find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd, | 
|  | rd_stats_y, rd_stats, switchable_rate, dst_bufs, | 
|  | switchable_ctx, skip_pred, allowed_interp_mask, | 
|  | 1); | 
|  | } else { | 
|  | int skip_pred = (skip_hor & skip_ver); | 
|  | for (i = (SWITCHABLE_FILTERS + 1); i < DUAL_FILTER_SET_SIZE; | 
|  | i += (SWITCHABLE_FILTERS + 1)) { | 
|  | // This assert tells that (filter_x == filter_y) for non-dual filter case | 
|  | assert(filter_sets[i].as_filters.x_filter == | 
|  | filter_sets[i].as_filters.y_filter); | 
|  | if (cpi->sf.interp_sf.adaptive_interp_filter_search && | 
|  | !(get_interp_filter_allowed_mask(interp_filter_search_mask, i))) { | 
|  | continue; | 
|  | } | 
|  | interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, | 
|  | rd_stats_y, rd_stats, switchable_rate, dst_bufs, | 
|  | i, switchable_ctx, skip_pred); | 
|  | // In first iteration, smooth filter is evaluated. If smooth filter | 
|  | // (which is less sharper) is the winner among regular and smooth filters, | 
|  | // sharp filter evaluation is skipped | 
|  | // TODO(any): Refine this gating based on modelled rd only (i.e., by not | 
|  | // accounting switchable filter rate) | 
|  | if (cpi->sf.interp_sf.skip_sharp_interp_filter_search && | 
|  | skip_pred != interp_search_flags->default_interp_skip_flags) { | 
|  | if (mbmi->interp_filters.as_int == filter_sets[SMOOTH_SMOOTH].as_int) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void calc_interp_skip_pred_flag(MACROBLOCK *const x, | 
|  | const AV1_COMP *const cpi, | 
|  | int *skip_hor, int *skip_ver) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const int is_compound = has_second_ref(mbmi); | 
|  | assert(is_intrabc_block(mbmi) == 0); | 
|  | for (int ref = 0; ref < 1 + is_compound; ++ref) { | 
|  | const struct scale_factors *const sf = | 
|  | get_ref_scale_factors_const(cm, mbmi->ref_frame[ref]); | 
|  | // TODO(any): Refine skip flag calculation considering scaling | 
|  | if (av1_is_scaled(sf)) { | 
|  | *skip_hor = 0; | 
|  | *skip_ver = 0; | 
|  | break; | 
|  | } | 
|  | const MV mv = mbmi->mv[ref].as_mv; | 
|  | int skip_hor_plane = 0; | 
|  | int skip_ver_plane = 0; | 
|  | for (int plane_idx = 0; plane_idx < AOMMAX(1, (num_planes - 1)); | 
|  | ++plane_idx) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane_idx]; | 
|  | const int bw = pd->width; | 
|  | const int bh = pd->height; | 
|  | const MV mv_q4 = clamp_mv_to_umv_border_sb( | 
|  | xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); | 
|  | const int sub_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; | 
|  | const int sub_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; | 
|  | skip_hor_plane |= ((sub_x == 0) << plane_idx); | 
|  | skip_ver_plane |= ((sub_y == 0) << plane_idx); | 
|  | } | 
|  | *skip_hor &= skip_hor_plane; | 
|  | *skip_ver &= skip_ver_plane; | 
|  | // It is not valid that "luma MV is sub-pel, whereas chroma MV is not" | 
|  | assert(*skip_hor != 2); | 
|  | assert(*skip_ver != 2); | 
|  | } | 
|  | // When compond prediction type is compound segment wedge, luma MC and chroma | 
|  | // MC need to go hand in hand as mask generated during luma MC is reuired for | 
|  | // chroma MC. If skip_hor = 0 and skip_ver = 1, mask used for chroma MC during | 
|  | // vertical filter decision may be incorrect as temporary MC evaluation | 
|  | // overwrites the mask. Make skip_ver as 0 for this case so that mask is | 
|  | // populated during luma MC | 
|  | if (is_compound && mbmi->compound_idx == 1 && | 
|  | mbmi->interinter_comp.type == COMPOUND_DIFFWTD) { | 
|  | assert(mbmi->comp_group_idx == 1); | 
|  | if (*skip_hor == 0 && *skip_ver == 1) *skip_ver = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief AV1 interpolation filter search | 
|  | * | 
|  | * \ingroup inter_mode_search | 
|  | * | 
|  | * \param[in]     cpi               Top-level encoder structure. | 
|  | * \param[in]     tile_data         Pointer to struct holding adaptive | 
|  | *                                  data/contexts/models for the tile during | 
|  | *                                  encoding. | 
|  | * \param[in]     x                 Pointer to struc holding all the data for | 
|  | *                                  the current macroblock. | 
|  | * \param[in]     bsize             Current block size. | 
|  | * \param[in]     tmp_dst           A temporary prediction buffer to hold a | 
|  | *                                  computed prediction. | 
|  | * \param[in,out] orig_dst          A prediction buffer to hold a computed | 
|  | *                                  prediction. This will eventually hold the | 
|  | *                                  final prediction, and the tmp_dst info will | 
|  | *                                  be copied here. | 
|  | * \param[in,out] rd                The RD cost associated with the selected | 
|  | *                                  interpolation filter parameters. | 
|  | * \param[in,out] switchable_rate   The rate associated with using a SWITCHABLE | 
|  | *                                  filter mode. | 
|  | * \param[in,out] skip_build_pred   Indicates whether or not to build the inter | 
|  | *                                  predictor. If this is 0, the inter predictor | 
|  | *                                  has already been built and thus we can avoid | 
|  | *                                  repeating computation. | 
|  | * \param[in]     args              HandleInterModeArgs struct holding | 
|  | *                                  miscellaneous arguments for inter mode | 
|  | *                                  search. See the documentation for this | 
|  | *                                  struct for a description of each member. | 
|  | * \param[in]     ref_best_rd       Best RD found so far for this block. | 
|  | *                                  It is used for early termination of this | 
|  | *                                  search if the RD exceeds this value. | 
|  | * | 
|  | * \return Returns INT64_MAX if the filter parameters are invalid and the | 
|  | * current motion mode being tested should be skipped. It returns 0 if the | 
|  | * parameter search is a success. | 
|  | */ | 
|  | int64_t av1_interpolation_filter_search( | 
|  | MACROBLOCK *const x, const AV1_COMP *const cpi, | 
|  | const TileDataEnc *tile_data, BLOCK_SIZE bsize, | 
|  | const BUFFER_SET *const tmp_dst, const BUFFER_SET *const orig_dst, | 
|  | int64_t *const rd, int *const switchable_rate, int *skip_build_pred, | 
|  | HandleInterModeArgs *args, int64_t ref_best_rd) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const int need_search = av1_is_interp_needed(xd); | 
|  | const int ref_frame = xd->mi[0]->ref_frame[0]; | 
|  | RD_STATS rd_stats_luma, rd_stats; | 
|  |  | 
|  | // Initialization of rd_stats structures with default values | 
|  | av1_init_rd_stats(&rd_stats_luma); | 
|  | av1_init_rd_stats(&rd_stats); | 
|  |  | 
|  | int match_found_idx = -1; | 
|  | const InterpFilter assign_filter = cm->features.interp_filter; | 
|  |  | 
|  | match_found_idx = find_interp_filter_match( | 
|  | mbmi, cpi, assign_filter, need_search, args->interp_filter_stats, | 
|  | args->interp_filter_stats_idx); | 
|  |  | 
|  | if (match_found_idx != -1) { | 
|  | *rd = args->interp_filter_stats[match_found_idx].rd; | 
|  | x->pred_sse[ref_frame] = | 
|  | args->interp_filter_stats[match_found_idx].pred_sse; | 
|  | *skip_build_pred = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int switchable_ctx[2]; | 
|  | switchable_ctx[0] = av1_get_pred_context_switchable_interp(xd, 0); | 
|  | switchable_ctx[1] = av1_get_pred_context_switchable_interp(xd, 1); | 
|  | *switchable_rate = | 
|  | get_switchable_rate(x, mbmi->interp_filters, switchable_ctx, | 
|  | cm->seq_params->enable_dual_filter); | 
|  |  | 
|  | // Do MC evaluation for default filter_type. | 
|  | // Luma MC | 
|  | interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_Y, AOM_PLANE_Y, | 
|  | &rd_stats_luma, *skip_build_pred); | 
|  |  | 
|  | #if CONFIG_COLLECT_RD_STATS == 3 | 
|  | RD_STATS rd_stats_y; | 
|  | av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); | 
|  | PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize); | 
|  | #endif  // CONFIG_COLLECT_RD_STATS == 3 | 
|  | // Chroma MC | 
|  | if (num_planes > 1) { | 
|  | interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_U, AOM_PLANE_V, | 
|  | &rd_stats, *skip_build_pred); | 
|  | } | 
|  | *skip_build_pred = 1; | 
|  |  | 
|  | av1_merge_rd_stats(&rd_stats, &rd_stats_luma); | 
|  |  | 
|  | assert(rd_stats.rate >= 0); | 
|  |  | 
|  | *rd = RDCOST(x->rdmult, *switchable_rate + rd_stats.rate, rd_stats.dist); | 
|  | x->pred_sse[ref_frame] = (unsigned int)(rd_stats_luma.sse >> 4); | 
|  |  | 
|  | if (assign_filter != SWITCHABLE || match_found_idx != -1) { | 
|  | return 0; | 
|  | } | 
|  | if (!need_search) { | 
|  | int_interpfilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); | 
|  | assert(mbmi->interp_filters.as_int == filters.as_int); | 
|  | (void)filters; | 
|  | return 0; | 
|  | } | 
|  | if (args->modelled_rd != NULL) { | 
|  | if (has_second_ref(mbmi)) { | 
|  | const int ref_mv_idx = mbmi->ref_mv_idx; | 
|  | MV_REFERENCE_FRAME *refs = mbmi->ref_frame; | 
|  | const int mode0 = compound_ref0_mode(mbmi->mode); | 
|  | const int mode1 = compound_ref1_mode(mbmi->mode); | 
|  | const int64_t mrd = AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]], | 
|  | args->modelled_rd[mode1][ref_mv_idx][refs[1]]); | 
|  | if ((*rd >> 1) > mrd && ref_best_rd < INT64_MAX) { | 
|  | return INT64_MAX; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | x->recalc_luma_mc_data = 0; | 
|  | // skip_flag=xx (in binary form) | 
|  | // Setting 0th flag corresonds to skipping luma MC and setting 1st bt | 
|  | // corresponds to skipping chroma MC  skip_flag=0 corresponds to "Don't skip | 
|  | // luma and chroma MC"  Skip flag=1 corresponds to "Skip Luma MC only" | 
|  | // Skip_flag=2 is not a valid case | 
|  | // skip_flag=3 corresponds to "Skip both luma and chroma MC" | 
|  | int skip_hor = interp_search_flags->default_interp_skip_flags; | 
|  | int skip_ver = interp_search_flags->default_interp_skip_flags; | 
|  | calc_interp_skip_pred_flag(x, cpi, &skip_hor, &skip_ver); | 
|  |  | 
|  | // do interp_filter search | 
|  | restore_dst_buf(xd, *tmp_dst, num_planes); | 
|  | const BUFFER_SET *dst_bufs[2] = { tmp_dst, orig_dst }; | 
|  | // Evaluate dual interp filters | 
|  | if (cm->seq_params->enable_dual_filter) { | 
|  | if (cpi->sf.interp_sf.use_fast_interpolation_filter_search) { | 
|  | fast_dual_interp_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, | 
|  | &rd_stats_luma, &rd_stats, switchable_rate, | 
|  | dst_bufs, switchable_ctx, skip_hor, skip_ver); | 
|  | } else { | 
|  | // Use full interpolation filter search | 
|  | uint16_t allowed_interp_mask = ALLOW_ALL_INTERP_FILT_MASK; | 
|  | // REG_REG filter type is evaluated beforehand, so loop is repeated over | 
|  | // REG_SMOOTH to SHARP_SHARP for full interpolation filter search | 
|  | reset_interp_filter_allowed_mask(&allowed_interp_mask, REG_REG); | 
|  | find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd, | 
|  | &rd_stats_luma, &rd_stats, switchable_rate, | 
|  | dst_bufs, switchable_ctx, | 
|  | (skip_hor & skip_ver), allowed_interp_mask, 0); | 
|  | } | 
|  | } else { | 
|  | // Evaluate non-dual interp filters | 
|  | find_best_non_dual_interp_filter( | 
|  | x, cpi, tile_data, bsize, orig_dst, rd, &rd_stats_luma, &rd_stats, | 
|  | switchable_rate, dst_bufs, switchable_ctx, skip_ver, skip_hor); | 
|  | } | 
|  | swap_dst_buf(xd, dst_bufs, num_planes); | 
|  | // Recompute final MC data if required | 
|  | if (x->recalc_luma_mc_data == 1) { | 
|  | // Recomputing final luma MC data is required only if the same was skipped | 
|  | // in either of the directions  Condition below is necessary, but not | 
|  | // sufficient | 
|  | assert((skip_hor == 1) || (skip_ver == 1)); | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, | 
|  | AOM_PLANE_Y, AOM_PLANE_Y); | 
|  | } | 
|  | x->pred_sse[ref_frame] = (unsigned int)(rd_stats_luma.sse >> 4); | 
|  |  | 
|  | // save search results | 
|  | if (cpi->sf.interp_sf.use_interp_filter) { | 
|  | assert(match_found_idx == -1); | 
|  | args->interp_filter_stats_idx = save_interp_filter_search_stat( | 
|  | mbmi, *rd, x->pred_sse[ref_frame], args->interp_filter_stats, | 
|  | args->interp_filter_stats_idx); | 
|  | } | 
|  | return 0; | 
|  | } |