| /* | 
 |  * Copyright (c) 2020, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <stdbool.h> | 
 |  | 
 | #include "av1/common/av1_common_int.h" | 
 | #include "av1/common/cfl.h" | 
 | #include "av1/common/reconintra.h" | 
 |  | 
 | #include "av1/encoder/intra_mode_search.h" | 
 | #include "av1/encoder/intra_mode_search_utils.h" | 
 | #include "av1/encoder/palette.h" | 
 | #include "av1/encoder/speed_features.h" | 
 | #include "av1/encoder/tx_search.h" | 
 |  | 
 | // Even though there are 7 delta angles, this macro is set to 9 to facilitate | 
 | // the rd threshold check to prune -3 and 3 delta angles. | 
 | #define SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY (2 * MAX_ANGLE_DELTA + 3) | 
 |  | 
 | // The order for evaluating delta angles while processing the luma directional | 
 | // intra modes. Currently, this order of evaluation is applicable only when | 
 | // speed feature prune_luma_odd_delta_angles_in_intra is enabled. In this case, | 
 | // even angles are evaluated first in order to facilitate the pruning of odd | 
 | // delta angles based on the rd costs of the neighboring delta angles. | 
 | static const int8_t luma_delta_angles_order[2 * MAX_ANGLE_DELTA] = { | 
 |   -2, 2, -3, -1, 1, 3, | 
 | }; | 
 |  | 
 | /*!\cond */ | 
 | static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = { | 
 |   DC_PRED,       H_PRED,        V_PRED,    SMOOTH_PRED, PAETH_PRED, | 
 |   SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED,   D157_PRED, | 
 |   D67_PRED,      D113_PRED,     D45_PRED, | 
 | }; | 
 |  | 
 | static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = { | 
 |   UV_DC_PRED,     UV_CFL_PRED,   UV_H_PRED,        UV_V_PRED, | 
 |   UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED, | 
 |   UV_D135_PRED,   UV_D203_PRED,  UV_D157_PRED,     UV_D67_PRED, | 
 |   UV_D113_PRED,   UV_D45_PRED, | 
 | }; | 
 |  | 
 | // The bitmask corresponds to the filter intra modes as defined in enums.h | 
 | // FILTER_INTRA_MODE enumeration type. Setting a bit to 0 in the mask means to | 
 | // disable the evaluation of corresponding filter intra mode. The table | 
 | // av1_derived_filter_intra_mode_used_flag is used when speed feature | 
 | // prune_filter_intra_level is 1. The evaluated filter intra modes are union | 
 | // of the following: | 
 | // 1) FILTER_DC_PRED | 
 | // 2) mode that corresponds to best mode so far of DC_PRED, V_PRED, H_PRED, | 
 | // D157_PRED and PAETH_PRED. (Eg: FILTER_V_PRED if best mode so far is V_PRED). | 
 | static const uint8_t av1_derived_filter_intra_mode_used_flag[INTRA_MODES] = { | 
 |   0x01,  // DC_PRED:           0000 0001 | 
 |   0x03,  // V_PRED:            0000 0011 | 
 |   0x05,  // H_PRED:            0000 0101 | 
 |   0x01,  // D45_PRED:          0000 0001 | 
 |   0x01,  // D135_PRED:         0000 0001 | 
 |   0x01,  // D113_PRED:         0000 0001 | 
 |   0x09,  // D157_PRED:         0000 1001 | 
 |   0x01,  // D203_PRED:         0000 0001 | 
 |   0x01,  // D67_PRED:          0000 0001 | 
 |   0x01,  // SMOOTH_PRED:       0000 0001 | 
 |   0x01,  // SMOOTH_V_PRED:     0000 0001 | 
 |   0x01,  // SMOOTH_H_PRED:     0000 0001 | 
 |   0x11   // PAETH_PRED:        0001 0001 | 
 | }; | 
 |  | 
 | // The bitmask corresponds to the chroma intra modes as defined in enums.h | 
 | // UV_PREDICTION_MODE enumeration type. Setting a bit to 0 in the mask means to | 
 | // disable the evaluation of corresponding chroma intra mode. The table | 
 | // av1_derived_chroma_intra_mode_used_flag is used when speed feature | 
 | // prune_chroma_modes_using_luma_winner is enabled. The evaluated chroma | 
 | // intra modes are union of the following: | 
 | // 1) UV_DC_PRED | 
 | // 2) UV_SMOOTH_PRED | 
 | // 3) UV_CFL_PRED | 
 | // 4) mode that corresponds to luma intra mode winner (Eg : UV_V_PRED if luma | 
 | // intra mode winner is V_PRED). | 
 | static const uint16_t av1_derived_chroma_intra_mode_used_flag[INTRA_MODES] = { | 
 |   0x2201,  // DC_PRED:           0010 0010 0000 0001 | 
 |   0x2203,  // V_PRED:            0010 0010 0000 0011 | 
 |   0x2205,  // H_PRED:            0010 0010 0000 0101 | 
 |   0x2209,  // D45_PRED:          0010 0010 0000 1001 | 
 |   0x2211,  // D135_PRED:         0010 0010 0001 0001 | 
 |   0x2221,  // D113_PRED:         0010 0010 0010 0001 | 
 |   0x2241,  // D157_PRED:         0010 0010 0100 0001 | 
 |   0x2281,  // D203_PRED:         0010 0010 1000 0001 | 
 |   0x2301,  // D67_PRED:          0010 0011 0000 0001 | 
 |   0x2201,  // SMOOTH_PRED:       0010 0010 0000 0001 | 
 |   0x2601,  // SMOOTH_V_PRED:     0010 0110 0000 0001 | 
 |   0x2a01,  // SMOOTH_H_PRED:     0010 1010 0000 0001 | 
 |   0x3201   // PAETH_PRED:        0011 0010 0000 0001 | 
 | }; | 
 |  | 
 | DECLARE_ALIGNED(16, static const uint8_t, all_zeros[MAX_SB_SIZE]) = { 0 }; | 
 | DECLARE_ALIGNED(16, static const uint16_t, | 
 |                 highbd_all_zeros[MAX_SB_SIZE]) = { 0 }; | 
 |  | 
 | int av1_calc_normalized_variance(aom_variance_fn_t vf, const uint8_t *const buf, | 
 |                                  const int stride, const int is_hbd) { | 
 |   unsigned int sse; | 
 |  | 
 |   if (is_hbd) | 
 |     return vf(buf, stride, CONVERT_TO_BYTEPTR(highbd_all_zeros), 0, &sse); | 
 |   else | 
 |     return vf(buf, stride, all_zeros, 0, &sse); | 
 | } | 
 |  | 
 | // Computes average of log(1 + variance) across 4x4 sub-blocks for source and | 
 | // reconstructed blocks. | 
 | static void compute_avg_log_variance(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                      const BLOCK_SIZE bs, | 
 |                                      double *avg_log_src_variance, | 
 |                                      double *avg_log_recon_variance) { | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size; | 
 |   const int mi_row_in_sb = x->e_mbd.mi_row & (mi_size_high[sb_size] - 1); | 
 |   const int mi_col_in_sb = x->e_mbd.mi_col & (mi_size_wide[sb_size] - 1); | 
 |   const int right_overflow = | 
 |       (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; | 
 |   const int bottom_overflow = | 
 |       (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; | 
 |   const int bw = (MI_SIZE * mi_size_wide[bs] - right_overflow); | 
 |   const int bh = (MI_SIZE * mi_size_high[bs] - bottom_overflow); | 
 |   const int is_hbd = is_cur_buf_hbd(xd); | 
 |  | 
 |   aom_variance_fn_t vf = cpi->ppi->fn_ptr[BLOCK_4X4].vf; | 
 |   for (int i = 0; i < bh; i += MI_SIZE) { | 
 |     const int r = mi_row_in_sb + (i >> MI_SIZE_LOG2); | 
 |     for (int j = 0; j < bw; j += MI_SIZE) { | 
 |       const int c = mi_col_in_sb + (j >> MI_SIZE_LOG2); | 
 |       const int mi_offset = r * mi_size_wide[sb_size] + c; | 
 |       Block4x4VarInfo *block_4x4_var_info = | 
 |           &x->src_var_info_of_4x4_sub_blocks[mi_offset]; | 
 |       int src_var = block_4x4_var_info->var; | 
 |       double log_src_var = block_4x4_var_info->log_var; | 
 |       // Compute average of log(1 + variance) for the source block from 4x4 | 
 |       // sub-block variance values. Calculate and store 4x4 sub-block variance | 
 |       // and log(1 + variance), if the values present in | 
 |       // src_var_of_4x4_sub_blocks are invalid. Reuse the same if it is readily | 
 |       // available with valid values. | 
 |       if (src_var < 0) { | 
 |         src_var = av1_calc_normalized_variance( | 
 |             vf, x->plane[0].src.buf + i * x->plane[0].src.stride + j, | 
 |             x->plane[0].src.stride, is_hbd); | 
 |         block_4x4_var_info->var = src_var; | 
 |         log_src_var = log1p(src_var / 16.0); | 
 |         block_4x4_var_info->log_var = log_src_var; | 
 |       } else { | 
 |         // When source variance is already calculated and available for | 
 |         // retrieval, check if log(1 + variance) is also available. If it is | 
 |         // available, then retrieve from buffer. Else, calculate the same and | 
 |         // store to the buffer. | 
 |         if (log_src_var < 0) { | 
 |           log_src_var = log1p(src_var / 16.0); | 
 |           block_4x4_var_info->log_var = log_src_var; | 
 |         } | 
 |       } | 
 |       *avg_log_src_variance += log_src_var; | 
 |  | 
 |       const int recon_var = av1_calc_normalized_variance( | 
 |           vf, xd->plane[0].dst.buf + i * xd->plane[0].dst.stride + j, | 
 |           xd->plane[0].dst.stride, is_hbd); | 
 |       *avg_log_recon_variance += log1p(recon_var / 16.0); | 
 |     } | 
 |   } | 
 |  | 
 |   const int blocks = (bw * bh) / 16; | 
 |   *avg_log_src_variance /= (double)blocks; | 
 |   *avg_log_recon_variance /= (double)blocks; | 
 | } | 
 |  | 
 | // Returns a factor to be applied to the RD value based on how well the | 
 | // reconstructed block variance matches the source variance. | 
 | static double intra_rd_variance_factor(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                        BLOCK_SIZE bs) { | 
 |   double threshold = INTRA_RD_VAR_THRESH(cpi->oxcf.speed); | 
 |   // For non-positive threshold values, the comparison of source and | 
 |   // reconstructed variances with threshold evaluates to false | 
 |   // (src_var < threshold/rec_var < threshold) as these metrics are greater than | 
 |   // than 0. Hence further calculations are skipped. | 
 |   if (threshold <= 0) return 1.0; | 
 |  | 
 |   double variance_rd_factor = 1.0; | 
 |   double avg_log_src_variance = 0.0; | 
 |   double avg_log_recon_variance = 0.0; | 
 |   double var_diff = 0.0; | 
 |  | 
 |   compute_avg_log_variance(cpi, x, bs, &avg_log_src_variance, | 
 |                            &avg_log_recon_variance); | 
 |  | 
 |   // Dont allow 0 to prevent / 0 below. | 
 |   avg_log_src_variance += 0.000001; | 
 |   avg_log_recon_variance += 0.000001; | 
 |  | 
 |   if (avg_log_src_variance >= avg_log_recon_variance) { | 
 |     var_diff = (avg_log_src_variance - avg_log_recon_variance); | 
 |     if ((var_diff > 0.5) && (avg_log_recon_variance < threshold)) { | 
 |       variance_rd_factor = 1.0 + ((var_diff * 2) / avg_log_src_variance); | 
 |     } | 
 |   } else { | 
 |     var_diff = (avg_log_recon_variance - avg_log_src_variance); | 
 |     if ((var_diff > 0.5) && (avg_log_src_variance < threshold)) { | 
 |       variance_rd_factor = 1.0 + (var_diff / (2 * avg_log_src_variance)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Limit adjustment; | 
 |   variance_rd_factor = AOMMIN(3.0, variance_rd_factor); | 
 |  | 
 |   return variance_rd_factor; | 
 | } | 
 | /*!\endcond */ | 
 |  | 
 | /*!\brief Search for the best filter_intra mode when coding intra frame. | 
 |  * | 
 |  * \ingroup intra_mode_search | 
 |  * \callergraph | 
 |  * This function loops through all filter_intra modes to find the best one. | 
 |  * | 
 |  * \return Returns 1 if a new filter_intra mode is selected; 0 otherwise. | 
 |  */ | 
 | static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                     int *rate, int *rate_tokenonly, | 
 |                                     int64_t *distortion, uint8_t *skippable, | 
 |                                     BLOCK_SIZE bsize, int mode_cost, | 
 |                                     PREDICTION_MODE best_mode_so_far, | 
 |                                     int64_t *best_rd, int64_t *best_model_rd, | 
 |                                     PICK_MODE_CONTEXT *ctx) { | 
 |   // Skip the evaluation of filter intra modes. | 
 |   if (cpi->sf.intra_sf.prune_filter_intra_level == 2) return 0; | 
 |  | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   int filter_intra_selected_flag = 0; | 
 |   FILTER_INTRA_MODE mode; | 
 |   TX_SIZE best_tx_size = TX_8X8; | 
 |   FILTER_INTRA_MODE_INFO filter_intra_mode_info; | 
 |   uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
 |   av1_zero(filter_intra_mode_info); | 
 |   mbmi->filter_intra_mode_info.use_filter_intra = 1; | 
 |   mbmi->mode = DC_PRED; | 
 |   mbmi->palette_mode_info.palette_size[0] = 0; | 
 |  | 
 |   // Skip the evaluation of filter-intra if cached MB_MODE_INFO does not have | 
 |   // filter-intra as winner. | 
 |   if (x->use_mb_mode_cache && | 
 |       !x->mb_mode_cache->filter_intra_mode_info.use_filter_intra) | 
 |     return 0; | 
 |  | 
 |   for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { | 
 |     int64_t this_rd; | 
 |     RD_STATS tokenonly_rd_stats; | 
 |     mbmi->filter_intra_mode_info.filter_intra_mode = mode; | 
 |  | 
 |     if ((cpi->sf.intra_sf.prune_filter_intra_level == 1) && | 
 |         !(av1_derived_filter_intra_mode_used_flag[best_mode_so_far] & | 
 |           (1 << mode))) | 
 |       continue; | 
 |  | 
 |     // Skip the evaluation of modes that do not match with the winner mode in | 
 |     // x->mb_mode_cache. | 
 |     if (x->use_mb_mode_cache && | 
 |         mode != x->mb_mode_cache->filter_intra_mode_info.filter_intra_mode) | 
 |       continue; | 
 |  | 
 |     if (model_intra_yrd_and_prune(cpi, x, bsize, best_model_rd)) { | 
 |       continue; | 
 |     } | 
 |     av1_pick_uniform_tx_size_type_yrd(cpi, x, &tokenonly_rd_stats, bsize, | 
 |                                       *best_rd); | 
 |     if (tokenonly_rd_stats.rate == INT_MAX) continue; | 
 |     const int this_rate = | 
 |         tokenonly_rd_stats.rate + | 
 |         intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); | 
 |     this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); | 
 |  | 
 |     // Visual quality adjustment based on recon vs source variance. | 
 |     if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) { | 
 |       this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize)); | 
 |     } | 
 |  | 
 |     // Collect mode stats for multiwinner mode processing | 
 |     const int txfm_search_done = 1; | 
 |     store_winner_mode_stats( | 
 |         &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd, | 
 |         cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); | 
 |     if (this_rd < *best_rd) { | 
 |       *best_rd = this_rd; | 
 |       best_tx_size = mbmi->tx_size; | 
 |       filter_intra_mode_info = mbmi->filter_intra_mode_info; | 
 |       av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
 |       memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, | 
 |              sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); | 
 |       *rate = this_rate; | 
 |       *rate_tokenonly = tokenonly_rd_stats.rate; | 
 |       *distortion = tokenonly_rd_stats.dist; | 
 |       *skippable = tokenonly_rd_stats.skip_txfm; | 
 |       filter_intra_selected_flag = 1; | 
 |     } | 
 |   } | 
 |  | 
 |   if (filter_intra_selected_flag) { | 
 |     mbmi->mode = DC_PRED; | 
 |     mbmi->tx_size = best_tx_size; | 
 |     mbmi->filter_intra_mode_info = filter_intra_mode_info; | 
 |     av1_copy_array(ctx->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); | 
 |     return 1; | 
 |   } else { | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | void av1_count_colors(const uint8_t *src, int stride, int rows, int cols, | 
 |                       int *val_count, int *num_colors) { | 
 |   const int max_pix_val = 1 << 8; | 
 |   memset(val_count, 0, max_pix_val * sizeof(val_count[0])); | 
 |   for (int r = 0; r < rows; ++r) { | 
 |     for (int c = 0; c < cols; ++c) { | 
 |       const int this_val = src[r * stride + c]; | 
 |       assert(this_val < max_pix_val); | 
 |       ++val_count[this_val]; | 
 |     } | 
 |   } | 
 |   int n = 0; | 
 |   for (int i = 0; i < max_pix_val; ++i) { | 
 |     if (val_count[i]) ++n; | 
 |   } | 
 |   *num_colors = n; | 
 | } | 
 |  | 
 | void av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, | 
 |                              int cols, int bit_depth, int *val_count, | 
 |                              int *bin_val_count, int *num_color_bins, | 
 |                              int *num_colors) { | 
 |   assert(bit_depth <= 12); | 
 |   const int max_bin_val = 1 << 8; | 
 |   const int max_pix_val = 1 << bit_depth; | 
 |   const uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
 |   memset(bin_val_count, 0, max_bin_val * sizeof(val_count[0])); | 
 |   if (val_count != NULL) | 
 |     memset(val_count, 0, max_pix_val * sizeof(val_count[0])); | 
 |   for (int r = 0; r < rows; ++r) { | 
 |     for (int c = 0; c < cols; ++c) { | 
 |       /* | 
 |        * Down-convert the pixels to 8-bit domain before counting. | 
 |        * This provides consistency of behavior for palette search | 
 |        * between lbd and hbd encodes. This down-converted pixels | 
 |        * are only used for calculating the threshold (n). | 
 |        */ | 
 |       const int this_val = ((src[r * stride + c]) >> (bit_depth - 8)); | 
 |       assert(this_val < max_bin_val); | 
 |       if (this_val >= max_bin_val) continue; | 
 |       ++bin_val_count[this_val]; | 
 |       if (val_count != NULL) ++val_count[(src[r * stride + c])]; | 
 |     } | 
 |   } | 
 |   int n = 0; | 
 |   // Count the colors based on 8-bit domain used to gate the palette path | 
 |   for (int i = 0; i < max_bin_val; ++i) { | 
 |     if (bin_val_count[i]) ++n; | 
 |   } | 
 |   *num_color_bins = n; | 
 |  | 
 |   // Count the actual hbd colors used to create top_colors | 
 |   n = 0; | 
 |   if (val_count != NULL) { | 
 |     for (int i = 0; i < max_pix_val; ++i) { | 
 |       if (val_count[i]) ++n; | 
 |     } | 
 |     *num_colors = n; | 
 |   } | 
 | } | 
 |  | 
 | bool av1_count_colors_with_threshold(const uint8_t *src, int stride, int rows, | 
 |                                      int cols, int num_colors_threshold, | 
 |                                      int *num_colors) { | 
 |   bool has_color[1 << 8] = { false }; | 
 |   *num_colors = 0; | 
 |  | 
 |   for (int r = 0; r < rows; ++r) { | 
 |     for (int c = 0; c < cols; ++c) { | 
 |       const int this_val = src[r * stride + c]; | 
 |       if (!has_color[this_val]) { | 
 |         has_color[this_val] = true; | 
 |         (*num_colors)++; | 
 |         if (*num_colors > num_colors_threshold) { | 
 |           // We're over the threshold, so we can exit early | 
 |           return false; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void set_y_mode_and_delta_angle(const int mode_idx, MB_MODE_INFO *const mbmi, | 
 |                                 int reorder_delta_angle_eval) { | 
 |   if (mode_idx < INTRA_MODE_END) { | 
 |     mbmi->mode = intra_rd_search_mode_order[mode_idx]; | 
 |     mbmi->angle_delta[PLANE_TYPE_Y] = 0; | 
 |   } else { | 
 |     mbmi->mode = (mode_idx - INTRA_MODE_END) / (MAX_ANGLE_DELTA * 2) + V_PRED; | 
 |     int delta_angle_eval_idx = | 
 |         (mode_idx - INTRA_MODE_END) % (MAX_ANGLE_DELTA * 2); | 
 |     if (reorder_delta_angle_eval) { | 
 |       mbmi->angle_delta[PLANE_TYPE_Y] = | 
 |           luma_delta_angles_order[delta_angle_eval_idx]; | 
 |     } else { | 
 |       mbmi->angle_delta[PLANE_TYPE_Y] = | 
 |           (delta_angle_eval_idx < 3 ? (delta_angle_eval_idx - 3) | 
 |                                     : (delta_angle_eval_idx - 2)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static inline int get_model_rd_index_for_pruning( | 
 |     const MACROBLOCK *const x, | 
 |     const INTRA_MODE_SPEED_FEATURES *const intra_sf) { | 
 |   const int top_intra_model_count_allowed = | 
 |       intra_sf->top_intra_model_count_allowed; | 
 |   if (!intra_sf->adapt_top_model_rd_count_using_neighbors) | 
 |     return top_intra_model_count_allowed - 1; | 
 |  | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const PREDICTION_MODE mode = xd->mi[0]->mode; | 
 |   int model_rd_index_for_pruning = top_intra_model_count_allowed - 1; | 
 |   int is_left_mode_neq_cur_mode = 0, is_above_mode_neq_cur_mode = 0; | 
 |   if (xd->left_available) | 
 |     is_left_mode_neq_cur_mode = xd->left_mbmi->mode != mode; | 
 |   if (xd->up_available) | 
 |     is_above_mode_neq_cur_mode = xd->above_mbmi->mode != mode; | 
 |   // The pruning of luma intra modes is made more aggressive at lower quantizers | 
 |   // and vice versa. The value for model_rd_index_for_pruning is derived as | 
 |   // follows. | 
 |   // qidx 0 to 127: Reduce the index of a candidate used for comparison only if | 
 |   // the current mode does not match either of the available neighboring modes. | 
 |   // qidx 128 to 255: Reduce the index of a candidate used for comparison only | 
 |   // if the current mode does not match both the available neighboring modes. | 
 |   if (x->qindex <= 127) { | 
 |     if (is_left_mode_neq_cur_mode || is_above_mode_neq_cur_mode) | 
 |       model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0); | 
 |   } else { | 
 |     if (is_left_mode_neq_cur_mode && is_above_mode_neq_cur_mode) | 
 |       model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0); | 
 |   } | 
 |   return model_rd_index_for_pruning; | 
 | } | 
 |  | 
 | /*! \brief prune luma intra mode based on the model rd. | 
 |  * \param[in]    this_model_rd              model rd for current mode. | 
 |  * \param[in]    best_model_rd              Best model RD seen for this block so | 
 |  *                                          far. | 
 |  * \param[in]    top_intra_model_rd         Top intra model RD seen for this | 
 |  *                                          block so far. | 
 |  * \param[in]    max_model_cnt_allowed      The maximum number of top intra | 
 |  *                                          model RD allowed. | 
 |  * \param[in]    model_rd_index_for_pruning Index of the candidate used for | 
 |  *                                          pruning based on model rd. | 
 |  */ | 
 | static int prune_intra_y_mode(int64_t this_model_rd, int64_t *best_model_rd, | 
 |                               int64_t top_intra_model_rd[], | 
 |                               int max_model_cnt_allowed, | 
 |                               int model_rd_index_for_pruning) { | 
 |   const double thresh_best = 1.50; | 
 |   const double thresh_top = 1.00; | 
 |   for (int i = 0; i < max_model_cnt_allowed; i++) { | 
 |     if (this_model_rd < top_intra_model_rd[i]) { | 
 |       for (int j = max_model_cnt_allowed - 1; j > i; j--) { | 
 |         top_intra_model_rd[j] = top_intra_model_rd[j - 1]; | 
 |       } | 
 |       top_intra_model_rd[i] = this_model_rd; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if (top_intra_model_rd[model_rd_index_for_pruning] != INT64_MAX && | 
 |       this_model_rd > | 
 |           thresh_top * top_intra_model_rd[model_rd_index_for_pruning]) | 
 |     return 1; | 
 |  | 
 |   if (this_model_rd != INT64_MAX && | 
 |       this_model_rd > thresh_best * (*best_model_rd)) | 
 |     return 1; | 
 |   if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; | 
 |   return 0; | 
 | } | 
 |  | 
 | // Run RD calculation with given chroma intra prediction angle., and return | 
 | // the RD cost. Update the best mode info. if the RD cost is the best so far. | 
 | static int64_t pick_intra_angle_routine_sbuv( | 
 |     const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, | 
 |     int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats, | 
 |     int *best_angle_delta, int64_t *best_rd) { | 
 |   MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; | 
 |   assert(!is_inter_block(mbmi)); | 
 |   int this_rate; | 
 |   int64_t this_rd; | 
 |   RD_STATS tokenonly_rd_stats; | 
 |  | 
 |   if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in)) | 
 |     return INT64_MAX; | 
 |   this_rate = tokenonly_rd_stats.rate + | 
 |               intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead); | 
 |   this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); | 
 |   if (this_rd < *best_rd) { | 
 |     *best_rd = this_rd; | 
 |     *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; | 
 |     *rate = this_rate; | 
 |     rd_stats->rate = tokenonly_rd_stats.rate; | 
 |     rd_stats->dist = tokenonly_rd_stats.dist; | 
 |     rd_stats->skip_txfm = tokenonly_rd_stats.skip_txfm; | 
 |   } | 
 |   return this_rd; | 
 | } | 
 |  | 
 | /*!\brief Search for the best angle delta for chroma prediction | 
 |  * | 
 |  * \ingroup intra_mode_search | 
 |  * \callergraph | 
 |  * Given a chroma directional intra prediction mode, this function will try to | 
 |  * estimate the best delta_angle. | 
 |  * | 
 |  * \returns Return if there is a new mode with smaller rdcost than best_rd. | 
 |  */ | 
 | static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                     BLOCK_SIZE bsize, int rate_overhead, | 
 |                                     int64_t best_rd, int *rate, | 
 |                                     RD_STATS *rd_stats) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   assert(!is_inter_block(mbmi)); | 
 |   int i, angle_delta, best_angle_delta = 0; | 
 |   int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; | 
 |  | 
 |   rd_stats->rate = INT_MAX; | 
 |   rd_stats->skip_txfm = 0; | 
 |   rd_stats->dist = INT64_MAX; | 
 |   for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; | 
 |  | 
 |   for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { | 
 |     for (i = 0; i < 2; ++i) { | 
 |       best_rd_in = (best_rd == INT64_MAX) | 
 |                        ? INT64_MAX | 
 |                        : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5))); | 
 |       mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; | 
 |       this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, | 
 |                                               best_rd_in, rate, rd_stats, | 
 |                                               &best_angle_delta, &best_rd); | 
 |       rd_cost[2 * angle_delta + i] = this_rd; | 
 |       if (angle_delta == 0) { | 
 |         if (this_rd == INT64_MAX) return 0; | 
 |         rd_cost[1] = this_rd; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   assert(best_rd != INT64_MAX); | 
 |   for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { | 
 |     int64_t rd_thresh; | 
 |     for (i = 0; i < 2; ++i) { | 
 |       int skip_search = 0; | 
 |       rd_thresh = best_rd + (best_rd >> 5); | 
 |       if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && | 
 |           rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) | 
 |         skip_search = 1; | 
 |       if (!skip_search) { | 
 |         mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; | 
 |         pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd, | 
 |                                       rate, rd_stats, &best_angle_delta, | 
 |                                       &best_rd); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta; | 
 |   return rd_stats->rate != INT_MAX; | 
 | } | 
 |  | 
 | #define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \ | 
 |   (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1) | 
 |  | 
 | static void cfl_idx_to_sign_and_alpha(int cfl_idx, CFL_SIGN_TYPE *cfl_sign, | 
 |                                       int *cfl_alpha) { | 
 |   int cfl_linear_idx = cfl_idx - CFL_INDEX_ZERO; | 
 |   if (cfl_linear_idx == 0) { | 
 |     *cfl_sign = CFL_SIGN_ZERO; | 
 |     *cfl_alpha = 0; | 
 |   } else { | 
 |     *cfl_sign = cfl_linear_idx > 0 ? CFL_SIGN_POS : CFL_SIGN_NEG; | 
 |     *cfl_alpha = abs(cfl_linear_idx) - 1; | 
 |   } | 
 | } | 
 |  | 
 | static int64_t cfl_compute_rd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                               int plane, TX_SIZE tx_size, | 
 |                               BLOCK_SIZE plane_bsize, int cfl_idx, | 
 |                               int fast_mode, RD_STATS *rd_stats) { | 
 |   assert(IMPLIES(fast_mode, rd_stats == NULL)); | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   int cfl_plane = get_cfl_pred_type(plane); | 
 |   CFL_SIGN_TYPE cfl_sign; | 
 |   int cfl_alpha; | 
 |   cfl_idx_to_sign_and_alpha(cfl_idx, &cfl_sign, &cfl_alpha); | 
 |   // We conly build CFL for a given plane, the other plane's sign is dummy | 
 |   int dummy_sign = CFL_SIGN_NEG; | 
 |   const int8_t orig_cfl_alpha_signs = mbmi->cfl_alpha_signs; | 
 |   const uint8_t orig_cfl_alpha_idx = mbmi->cfl_alpha_idx; | 
 |   mbmi->cfl_alpha_signs = | 
 |       PLANE_SIGN_TO_JOINT_SIGN(cfl_plane, cfl_sign, dummy_sign); | 
 |   mbmi->cfl_alpha_idx = (cfl_alpha << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha; | 
 |   int64_t cfl_cost; | 
 |   if (fast_mode) { | 
 |     cfl_cost = | 
 |         intra_model_rd(cm, x, plane, plane_bsize, tx_size, /*use_hadamard=*/0); | 
 |   } else { | 
 |     av1_init_rd_stats(rd_stats); | 
 |     av1_txfm_rd_in_plane(x, cpi, rd_stats, INT64_MAX, 0, plane, plane_bsize, | 
 |                          tx_size, FTXS_NONE, 0); | 
 |     av1_rd_cost_update(x->rdmult, rd_stats); | 
 |     cfl_cost = rd_stats->rdcost; | 
 |   } | 
 |   mbmi->cfl_alpha_signs = orig_cfl_alpha_signs; | 
 |   mbmi->cfl_alpha_idx = orig_cfl_alpha_idx; | 
 |   return cfl_cost; | 
 | } | 
 |  | 
 | static const int cfl_dir_ls[2] = { 1, -1 }; | 
 |  | 
 | // If cfl_search_range is CFL_MAGS_SIZE, return zero. Otherwise return the index | 
 | // of the best alpha found using intra_model_rd(). | 
 | static int cfl_pick_plane_parameter(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                     int plane, TX_SIZE tx_size, | 
 |                                     int cfl_search_range) { | 
 |   assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); | 
 |  | 
 |   if (cfl_search_range == CFL_MAGS_SIZE) return CFL_INDEX_ZERO; | 
 |  | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   assert(mbmi->uv_mode == UV_CFL_PRED); | 
 |   const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; | 
 |   const BLOCK_SIZE plane_bsize = | 
 |       get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); | 
 |  | 
 |   int est_best_cfl_idx = CFL_INDEX_ZERO; | 
 |   int fast_mode = 1; | 
 |   int start_cfl_idx = CFL_INDEX_ZERO; | 
 |   int64_t best_cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, | 
 |                                          start_cfl_idx, fast_mode, NULL); | 
 |   for (int si = 0; si < 2; ++si) { | 
 |     const int dir = cfl_dir_ls[si]; | 
 |     for (int i = 1; i < CFL_MAGS_SIZE; ++i) { | 
 |       int cfl_idx = start_cfl_idx + dir * i; | 
 |       if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break; | 
 |       int64_t cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, | 
 |                                         cfl_idx, fast_mode, NULL); | 
 |       if (cfl_cost < best_cfl_cost) { | 
 |         best_cfl_cost = cfl_cost; | 
 |         est_best_cfl_idx = cfl_idx; | 
 |       } else { | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |   return est_best_cfl_idx; | 
 | } | 
 |  | 
 | static inline void set_invalid_cfl_parameters(uint8_t *best_cfl_alpha_idx, | 
 |                                               int8_t *best_cfl_alpha_signs) { | 
 |   *best_cfl_alpha_idx = 0; | 
 |   *best_cfl_alpha_signs = 0; | 
 | } | 
 |  | 
 | static void cfl_pick_plane_rd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                               int plane, TX_SIZE tx_size, int cfl_search_range, | 
 |                               RD_STATS cfl_rd_arr[CFL_MAGS_SIZE], | 
 |                               int est_best_cfl_idx) { | 
 |   assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); | 
 |   const MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   assert(mbmi->uv_mode == UV_CFL_PRED); | 
 |   const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; | 
 |   const BLOCK_SIZE plane_bsize = | 
 |       get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); | 
 |  | 
 |   for (int cfl_idx = 0; cfl_idx < CFL_MAGS_SIZE; ++cfl_idx) { | 
 |     av1_invalid_rd_stats(&cfl_rd_arr[cfl_idx]); | 
 |   } | 
 |  | 
 |   int fast_mode = 0; | 
 |   int start_cfl_idx = est_best_cfl_idx; | 
 |   cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, start_cfl_idx, fast_mode, | 
 |                  &cfl_rd_arr[start_cfl_idx]); | 
 |  | 
 |   if (cfl_search_range == 1) return; | 
 |  | 
 |   for (int si = 0; si < 2; ++si) { | 
 |     const int dir = cfl_dir_ls[si]; | 
 |     for (int i = 1; i < cfl_search_range; ++i) { | 
 |       int cfl_idx = start_cfl_idx + dir * i; | 
 |       if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break; | 
 |       cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, cfl_idx, fast_mode, | 
 |                      &cfl_rd_arr[cfl_idx]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /*!\brief Pick the optimal parameters for Chroma to Luma (CFL) component | 
 |  * | 
 |  * \ingroup intra_mode_search | 
 |  * \callergraph | 
 |  * | 
 |  * This function will use DCT_DCT followed by computing SATD (sum of absolute | 
 |  * transformed differences) to estimate the RD score and find the best possible | 
 |  * CFL parameter. | 
 |  * | 
 |  * Then the function will apply a full RD search near the best possible CFL | 
 |  * parameter to find the best actual CFL parameter. | 
 |  * | 
 |  * Side effect: | 
 |  * We use ths buffers in x->plane[] and xd->plane[] as throw-away buffers for RD | 
 |  * search. | 
 |  * | 
 |  * \param[in] x                Encoder prediction block structure. | 
 |  * \param[in] cpi              Top-level encoder instance structure. | 
 |  * \param[in] tx_size          Transform size. | 
 |  * \param[in] ref_best_rd      Reference best RD. | 
 |  * \param[in] cfl_search_range The search range of full RD search near the | 
 |  *                             estimated best CFL parameter. | 
 |  * | 
 |  * \param[out]   best_rd_stats          RD stats of the best CFL parameter | 
 |  * \param[out]   best_cfl_alpha_idx     Best CFL alpha index | 
 |  * \param[out]   best_cfl_alpha_signs   Best CFL joint signs | 
 |  * | 
 |  */ | 
 | static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi, | 
 |                              TX_SIZE tx_size, int64_t ref_best_rd, | 
 |                              int cfl_search_range, RD_STATS *best_rd_stats, | 
 |                              uint8_t *best_cfl_alpha_idx, | 
 |                              int8_t *best_cfl_alpha_signs) { | 
 |   assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); | 
 |   const ModeCosts *mode_costs = &x->mode_costs; | 
 |   RD_STATS cfl_rd_arr_u[CFL_MAGS_SIZE]; | 
 |   RD_STATS cfl_rd_arr_v[CFL_MAGS_SIZE]; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   int est_best_cfl_idx_u, est_best_cfl_idx_v; | 
 |  | 
 |   av1_invalid_rd_stats(best_rd_stats); | 
 |  | 
 |   // As the dc pred data is same for different values of alpha, enable the | 
 |   // caching of dc pred data. Call clear_cfl_dc_pred_cache_flags() before | 
 |   // returning to avoid the unintentional usage of cached dc pred data. | 
 |   xd->cfl.use_dc_pred_cache = true; | 
 |   // Evaluate alpha parameter of each chroma plane. | 
 |   est_best_cfl_idx_u = | 
 |       cfl_pick_plane_parameter(cpi, x, 1, tx_size, cfl_search_range); | 
 |   est_best_cfl_idx_v = | 
 |       cfl_pick_plane_parameter(cpi, x, 2, tx_size, cfl_search_range); | 
 |  | 
 |   if (cfl_search_range == 1) { | 
 |     // For cfl_search_range=1, further refinement of alpha is not enabled. Hence | 
 |     // CfL index=0 for both the chroma planes implies invalid CfL mode. | 
 |     if (est_best_cfl_idx_u == CFL_INDEX_ZERO && | 
 |         est_best_cfl_idx_v == CFL_INDEX_ZERO) { | 
 |       set_invalid_cfl_parameters(best_cfl_alpha_idx, best_cfl_alpha_signs); | 
 |       clear_cfl_dc_pred_cache_flags(&xd->cfl); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     int cfl_alpha_u, cfl_alpha_v; | 
 |     CFL_SIGN_TYPE cfl_sign_u, cfl_sign_v; | 
 |     const MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |     cfl_idx_to_sign_and_alpha(est_best_cfl_idx_u, &cfl_sign_u, &cfl_alpha_u); | 
 |     cfl_idx_to_sign_and_alpha(est_best_cfl_idx_v, &cfl_sign_v, &cfl_alpha_v); | 
 |     const int joint_sign = cfl_sign_u * CFL_SIGNS + cfl_sign_v - 1; | 
 |     // Compute alpha and mode signaling rate. | 
 |     const int rate_overhead = | 
 |         mode_costs->cfl_cost[joint_sign][CFL_PRED_U][cfl_alpha_u] + | 
 |         mode_costs->cfl_cost[joint_sign][CFL_PRED_V][cfl_alpha_v] + | 
 |         mode_costs | 
 |             ->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_CFL_PRED]; | 
 |     // Skip the CfL mode evaluation if the RD cost derived using the rate needed | 
 |     // to signal the CfL mode and alpha parameter exceeds the ref_best_rd. | 
 |     if (RDCOST(x->rdmult, rate_overhead, 0) > ref_best_rd) { | 
 |       set_invalid_cfl_parameters(best_cfl_alpha_idx, best_cfl_alpha_signs); | 
 |       clear_cfl_dc_pred_cache_flags(&xd->cfl); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // Compute the rd cost of each chroma plane using the alpha parameters which | 
 |   // were already evaluated. | 
 |   cfl_pick_plane_rd(cpi, x, 1, tx_size, cfl_search_range, cfl_rd_arr_u, | 
 |                     est_best_cfl_idx_u); | 
 |   cfl_pick_plane_rd(cpi, x, 2, tx_size, cfl_search_range, cfl_rd_arr_v, | 
 |                     est_best_cfl_idx_v); | 
 |  | 
 |   clear_cfl_dc_pred_cache_flags(&xd->cfl); | 
 |  | 
 |   for (int ui = 0; ui < CFL_MAGS_SIZE; ++ui) { | 
 |     if (cfl_rd_arr_u[ui].rate == INT_MAX) continue; | 
 |     int cfl_alpha_u; | 
 |     CFL_SIGN_TYPE cfl_sign_u; | 
 |     cfl_idx_to_sign_and_alpha(ui, &cfl_sign_u, &cfl_alpha_u); | 
 |     for (int vi = 0; vi < CFL_MAGS_SIZE; ++vi) { | 
 |       if (cfl_rd_arr_v[vi].rate == INT_MAX) continue; | 
 |       int cfl_alpha_v; | 
 |       CFL_SIGN_TYPE cfl_sign_v; | 
 |       cfl_idx_to_sign_and_alpha(vi, &cfl_sign_v, &cfl_alpha_v); | 
 |       // cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO is not a | 
 |       // valid parameter for CFL | 
 |       if (cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO) continue; | 
 |       int joint_sign = cfl_sign_u * CFL_SIGNS + cfl_sign_v - 1; | 
 |       RD_STATS rd_stats = cfl_rd_arr_u[ui]; | 
 |       av1_merge_rd_stats(&rd_stats, &cfl_rd_arr_v[vi]); | 
 |       if (rd_stats.rate != INT_MAX) { | 
 |         rd_stats.rate += | 
 |             mode_costs->cfl_cost[joint_sign][CFL_PRED_U][cfl_alpha_u]; | 
 |         rd_stats.rate += | 
 |             mode_costs->cfl_cost[joint_sign][CFL_PRED_V][cfl_alpha_v]; | 
 |       } | 
 |       av1_rd_cost_update(x->rdmult, &rd_stats); | 
 |       if (rd_stats.rdcost < best_rd_stats->rdcost) { | 
 |         *best_rd_stats = rd_stats; | 
 |         *best_cfl_alpha_idx = | 
 |             (cfl_alpha_u << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha_v; | 
 |         *best_cfl_alpha_signs = joint_sign; | 
 |       } | 
 |     } | 
 |   } | 
 |   if (best_rd_stats->rdcost >= ref_best_rd) { | 
 |     av1_invalid_rd_stats(best_rd_stats); | 
 |     // Set invalid CFL parameters here since the rdcost is not better than | 
 |     // ref_best_rd. | 
 |     set_invalid_cfl_parameters(best_cfl_alpha_idx, best_cfl_alpha_signs); | 
 |     return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static bool should_prune_chroma_smooth_pred_based_on_source_variance( | 
 |     const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize) { | 
 |   if (!cpi->sf.intra_sf.prune_smooth_intra_mode_for_chroma) return false; | 
 |  | 
 |   // If the source variance of both chroma planes is less than 20 (empirically | 
 |   // derived), prune UV_SMOOTH_PRED. | 
 |   for (int i = AOM_PLANE_U; i < av1_num_planes(&cpi->common); i++) { | 
 |     const unsigned int variance = av1_get_perpixel_variance_facade( | 
 |         cpi, &x->e_mbd, &x->plane[i].src, bsize, i); | 
 |     if (variance >= 20) return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | int64_t av1_rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                     int *rate, int *rate_tokenonly, | 
 |                                     int64_t *distortion, uint8_t *skippable, | 
 |                                     BLOCK_SIZE bsize, TX_SIZE max_tx_size) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   assert(!is_inter_block(mbmi)); | 
 |   MB_MODE_INFO best_mbmi = *mbmi; | 
 |   int64_t best_rd = INT64_MAX, this_rd; | 
 |   const ModeCosts *mode_costs = &x->mode_costs; | 
 |   const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg; | 
 |  | 
 |   init_sbuv_mode(mbmi); | 
 |  | 
 |   // Return if the current block does not correspond to a chroma block. | 
 |   if (!xd->is_chroma_ref) { | 
 |     *rate = 0; | 
 |     *rate_tokenonly = 0; | 
 |     *distortion = 0; | 
 |     *skippable = 1; | 
 |     return INT64_MAX; | 
 |   } | 
 |  | 
 |   // Only store reconstructed luma when there's chroma RDO. When there's no | 
 |   // chroma RDO, the reconstructed luma will be stored in encode_superblock(). | 
 |   xd->cfl.store_y = store_cfl_required_rdo(cm, x); | 
 |   if (xd->cfl.store_y) { | 
 |     // Restore reconstructed luma values. | 
 |     // TODO(chiyotsai@google.com): right now we are re-computing the txfm in | 
 |     // this function everytime we search through uv modes. There is some | 
 |     // potential speed up here if we cache the result to avoid redundant | 
 |     // computation. | 
 |     av1_encode_intra_block_plane(cpi, x, mbmi->bsize, AOM_PLANE_Y, | 
 |                                  DRY_RUN_NORMAL, | 
 |                                  cpi->optimize_seg_arr[mbmi->segment_id]); | 
 |     xd->cfl.store_y = 0; | 
 |   } | 
 |   IntraModeSearchState intra_search_state; | 
 |   init_intra_mode_search_state(&intra_search_state); | 
 |   const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); | 
 |  | 
 |   // Search through all non-palette modes. | 
 |   for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) { | 
 |     int this_rate; | 
 |     RD_STATS tokenonly_rd_stats; | 
 |     UV_PREDICTION_MODE uv_mode = uv_rd_search_mode_order[mode_idx]; | 
 |  | 
 |     // Skip the current mode evaluation if the RD cost derived using the mode | 
 |     // signaling rate exceeds the best_rd so far. | 
 |     const int mode_rate = | 
 |         mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][uv_mode]; | 
 |     if (RDCOST(x->rdmult, mode_rate, 0) > best_rd) continue; | 
 |  | 
 |     PREDICTION_MODE intra_mode = get_uv_mode(uv_mode); | 
 |     const int is_diagonal_mode = av1_is_diagonal_mode(intra_mode); | 
 |     const int is_directional_mode = av1_is_directional_mode(intra_mode); | 
 |  | 
 |     if (is_diagonal_mode && !cpi->oxcf.intra_mode_cfg.enable_diagonal_intra) | 
 |       continue; | 
 |     if (is_directional_mode && | 
 |         !cpi->oxcf.intra_mode_cfg.enable_directional_intra) | 
 |       continue; | 
 |  | 
 |     if (!(cpi->sf.intra_sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] & | 
 |           (1 << uv_mode))) | 
 |       continue; | 
 |     if (!intra_mode_cfg->enable_smooth_intra && uv_mode >= UV_SMOOTH_PRED && | 
 |         uv_mode <= UV_SMOOTH_H_PRED) | 
 |       continue; | 
 |  | 
 |     if (!intra_mode_cfg->enable_paeth_intra && uv_mode == UV_PAETH_PRED) | 
 |       continue; | 
 |  | 
 |     assert(mbmi->mode < INTRA_MODES); | 
 |     if (cpi->sf.intra_sf.prune_chroma_modes_using_luma_winner && | 
 |         !(av1_derived_chroma_intra_mode_used_flag[mbmi->mode] & (1 << uv_mode))) | 
 |       continue; | 
 |  | 
 |     mbmi->uv_mode = uv_mode; | 
 |  | 
 |     // Init variables for cfl and angle delta | 
 |     const SPEED_FEATURES *sf = &cpi->sf; | 
 |     mbmi->angle_delta[PLANE_TYPE_UV] = 0; | 
 |     if (uv_mode == UV_CFL_PRED) { | 
 |       if (!cfl_allowed || !intra_mode_cfg->enable_cfl_intra) continue; | 
 |       assert(!is_directional_mode); | 
 |       const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); | 
 |       if (!cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd, | 
 |                              sf->intra_sf.cfl_search_range, &tokenonly_rd_stats, | 
 |                              &mbmi->cfl_alpha_idx, &mbmi->cfl_alpha_signs)) { | 
 |         continue; | 
 |       } | 
 |     } else if (is_directional_mode && av1_use_angle_delta(mbmi->bsize) && | 
 |                intra_mode_cfg->enable_angle_delta) { | 
 |       if (sf->intra_sf.chroma_intra_pruning_with_hog && | 
 |           !intra_search_state.dir_mode_skip_mask_ready) { | 
 |         static const float thresh[2][4] = { | 
 |           { -1.2f, 0.0f, 0.0f, 1.2f },    // Interframe | 
 |           { -1.2f, -1.2f, -0.6f, 0.4f },  // Intraframe | 
 |         }; | 
 |         const int is_chroma = 1; | 
 |         const int is_intra_frame = frame_is_intra_only(cm); | 
 |         prune_intra_mode_with_hog( | 
 |             x, bsize, cm->seq_params->sb_size, | 
 |             thresh[is_intra_frame] | 
 |                   [sf->intra_sf.chroma_intra_pruning_with_hog - 1], | 
 |             intra_search_state.directional_mode_skip_mask, is_chroma); | 
 |         intra_search_state.dir_mode_skip_mask_ready = 1; | 
 |       } | 
 |       if (intra_search_state.directional_mode_skip_mask[uv_mode]) { | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Search through angle delta | 
 |       const int rate_overhead = | 
 |           mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][uv_mode]; | 
 |       if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd, | 
 |                                     &this_rate, &tokenonly_rd_stats)) | 
 |         continue; | 
 |     } else { | 
 |       if (uv_mode == UV_SMOOTH_PRED && | 
 |           should_prune_chroma_smooth_pred_based_on_source_variance(cpi, x, | 
 |                                                                    bsize)) | 
 |         continue; | 
 |  | 
 |       // Predict directly if we don't need to search for angle delta. | 
 |       if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) { | 
 |         continue; | 
 |       } | 
 |     } | 
 |     const int mode_cost = | 
 |         mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][uv_mode]; | 
 |     this_rate = tokenonly_rd_stats.rate + | 
 |                 intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost); | 
 |     this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); | 
 |  | 
 |     if (this_rd < best_rd) { | 
 |       best_mbmi = *mbmi; | 
 |       best_rd = this_rd; | 
 |       *rate = this_rate; | 
 |       *rate_tokenonly = tokenonly_rd_stats.rate; | 
 |       *distortion = tokenonly_rd_stats.dist; | 
 |       *skippable = tokenonly_rd_stats.skip_txfm; | 
 |     } | 
 |   } | 
 |  | 
 |   // Search palette mode | 
 |   const int try_palette = | 
 |       cpi->oxcf.tool_cfg.enable_palette && | 
 |       av1_allow_palette(cpi->common.features.allow_screen_content_tools, | 
 |                         mbmi->bsize); | 
 |   if (try_palette) { | 
 |     uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map; | 
 |     av1_rd_pick_palette_intra_sbuv( | 
 |         cpi, x, | 
 |         mode_costs->intra_uv_mode_cost[cfl_allowed][mbmi->mode][UV_DC_PRED], | 
 |         best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly, | 
 |         distortion, skippable); | 
 |   } | 
 |  | 
 |   *mbmi = best_mbmi; | 
 |   // Make sure we actually chose a mode | 
 |   assert(best_rd < INT64_MAX); | 
 |   return best_rd; | 
 | } | 
 |  | 
 | // Searches palette mode for luma channel in inter frame. | 
 | int av1_search_palette_mode(IntraModeSearchState *intra_search_state, | 
 |                             const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                             BLOCK_SIZE bsize, unsigned int ref_frame_cost, | 
 |                             PICK_MODE_CONTEXT *ctx, RD_STATS *this_rd_cost, | 
 |                             int64_t best_rd) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MB_MODE_INFO *const mbmi = x->e_mbd.mi[0]; | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   int rate2 = 0; | 
 |   int64_t distortion2 = 0, best_rd_palette = best_rd, this_rd; | 
 |   int skippable = 0; | 
 |   uint8_t *const best_palette_color_map = | 
 |       x->palette_buffer->best_palette_color_map; | 
 |   uint8_t *const color_map = xd->plane[0].color_index_map; | 
 |   MB_MODE_INFO best_mbmi_palette = *mbmi; | 
 |   uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
 |   uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
 |   const ModeCosts *mode_costs = &x->mode_costs; | 
 |   const int *const intra_mode_cost = | 
 |       mode_costs->mbmode_cost[size_group_lookup[bsize]]; | 
 |   const int rows = block_size_high[bsize]; | 
 |   const int cols = block_size_wide[bsize]; | 
 |  | 
 |   mbmi->mode = DC_PRED; | 
 |   mbmi->uv_mode = UV_DC_PRED; | 
 |   mbmi->ref_frame[0] = INTRA_FRAME; | 
 |   mbmi->ref_frame[1] = NONE_FRAME; | 
 |   av1_zero(pmi->palette_size); | 
 |  | 
 |   RD_STATS rd_stats_y; | 
 |   av1_invalid_rd_stats(&rd_stats_y); | 
 |   av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED], | 
 |                                 &best_mbmi_palette, best_palette_color_map, | 
 |                                 &best_rd_palette, &rd_stats_y.rate, NULL, | 
 |                                 &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL, | 
 |                                 ctx, best_blk_skip, best_tx_type_map); | 
 |   if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) { | 
 |     this_rd_cost->rdcost = INT64_MAX; | 
 |     return skippable; | 
 |   } | 
 |  | 
 |   memcpy(x->txfm_search_info.blk_skip, best_blk_skip, | 
 |          sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); | 
 |   av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); | 
 |   memcpy(color_map, best_palette_color_map, | 
 |          rows * cols * sizeof(best_palette_color_map[0])); | 
 |  | 
 |   skippable = rd_stats_y.skip_txfm; | 
 |   distortion2 = rd_stats_y.dist; | 
 |   rate2 = rd_stats_y.rate + ref_frame_cost; | 
 |   if (num_planes > 1) { | 
 |     if (intra_search_state->rate_uv_intra == INT_MAX) { | 
 |       // We have not found any good uv mode yet, so we need to search for it. | 
 |       TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); | 
 |       av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra, | 
 |                                   &intra_search_state->rate_uv_tokenonly, | 
 |                                   &intra_search_state->dist_uvs, | 
 |                                   &intra_search_state->skip_uvs, bsize, uv_tx); | 
 |       intra_search_state->mode_uv = mbmi->uv_mode; | 
 |       intra_search_state->pmi_uv = *pmi; | 
 |       intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; | 
 |     } | 
 |  | 
 |     // We have found at least one good uv mode before, so copy and paste it | 
 |     // over. | 
 |     mbmi->uv_mode = intra_search_state->mode_uv; | 
 |     pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1]; | 
 |     if (pmi->palette_size[1] > 0) { | 
 |       memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, | 
 |              intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE, | 
 |              2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); | 
 |     } | 
 |     mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta; | 
 |     skippable = skippable && intra_search_state->skip_uvs; | 
 |     distortion2 += intra_search_state->dist_uvs; | 
 |     rate2 += intra_search_state->rate_uv_intra; | 
 |   } | 
 |  | 
 |   if (skippable) { | 
 |     rate2 -= rd_stats_y.rate; | 
 |     if (num_planes > 1) rate2 -= intra_search_state->rate_uv_tokenonly; | 
 |     rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1]; | 
 |   } else { | 
 |     rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0]; | 
 |   } | 
 |   this_rd = RDCOST(x->rdmult, rate2, distortion2); | 
 |   this_rd_cost->rate = rate2; | 
 |   this_rd_cost->dist = distortion2; | 
 |   this_rd_cost->rdcost = this_rd; | 
 |   return skippable; | 
 | } | 
 |  | 
 | void av1_search_palette_mode_luma(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                   BLOCK_SIZE bsize, unsigned int ref_frame_cost, | 
 |                                   PICK_MODE_CONTEXT *ctx, | 
 |                                   RD_STATS *this_rd_cost, int64_t best_rd) { | 
 |   MB_MODE_INFO *const mbmi = x->e_mbd.mi[0]; | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   int64_t best_rd_palette = best_rd, this_rd; | 
 |   uint8_t *const best_palette_color_map = | 
 |       x->palette_buffer->best_palette_color_map; | 
 |   uint8_t *const color_map = xd->plane[0].color_index_map; | 
 |   MB_MODE_INFO best_mbmi_palette = *mbmi; | 
 |   uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
 |   uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
 |   const ModeCosts *mode_costs = &x->mode_costs; | 
 |   const int *const intra_mode_cost = | 
 |       mode_costs->mbmode_cost[size_group_lookup[bsize]]; | 
 |   const int rows = block_size_high[bsize]; | 
 |   const int cols = block_size_wide[bsize]; | 
 |  | 
 |   mbmi->mode = DC_PRED; | 
 |   mbmi->uv_mode = UV_DC_PRED; | 
 |   mbmi->ref_frame[0] = INTRA_FRAME; | 
 |   mbmi->ref_frame[1] = NONE_FRAME; | 
 |   av1_zero(pmi->palette_size); | 
 |  | 
 |   RD_STATS rd_stats_y; | 
 |   av1_invalid_rd_stats(&rd_stats_y); | 
 |   av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED], | 
 |                                 &best_mbmi_palette, best_palette_color_map, | 
 |                                 &best_rd_palette, &rd_stats_y.rate, NULL, | 
 |                                 &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL, | 
 |                                 ctx, best_blk_skip, best_tx_type_map); | 
 |   if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) { | 
 |     this_rd_cost->rdcost = INT64_MAX; | 
 |     return; | 
 |   } | 
 |  | 
 |   memcpy(x->txfm_search_info.blk_skip, best_blk_skip, | 
 |          sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); | 
 |   av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); | 
 |   memcpy(color_map, best_palette_color_map, | 
 |          rows * cols * sizeof(best_palette_color_map[0])); | 
 |  | 
 |   rd_stats_y.rate += ref_frame_cost; | 
 |  | 
 |   if (rd_stats_y.skip_txfm) { | 
 |     rd_stats_y.rate = | 
 |         ref_frame_cost + | 
 |         mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1]; | 
 |   } else { | 
 |     rd_stats_y.rate += | 
 |         mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0]; | 
 |   } | 
 |   this_rd = RDCOST(x->rdmult, rd_stats_y.rate, rd_stats_y.dist); | 
 |   this_rd_cost->rate = rd_stats_y.rate; | 
 |   this_rd_cost->dist = rd_stats_y.dist; | 
 |   this_rd_cost->rdcost = this_rd; | 
 |   this_rd_cost->skip_txfm = rd_stats_y.skip_txfm; | 
 | } | 
 |  | 
 | /*!\brief Get the intra prediction by searching through tx_type and tx_size. | 
 |  * | 
 |  * \ingroup intra_mode_search | 
 |  * \callergraph | 
 |  * Currently this function is only used in the intra frame code path for | 
 |  * winner-mode processing. | 
 |  * | 
 |  * \return Returns whether the current mode is an improvement over best_rd. | 
 |  */ | 
 | static inline int intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                   BLOCK_SIZE bsize, const int *bmode_costs, | 
 |                                   int64_t *best_rd, int *rate, | 
 |                                   int *rate_tokenonly, int64_t *distortion, | 
 |                                   uint8_t *skippable, MB_MODE_INFO *best_mbmi, | 
 |                                   PICK_MODE_CONTEXT *ctx) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   RD_STATS rd_stats; | 
 |   // In order to improve txfm search, avoid rd based breakouts during winner | 
 |   // mode evaluation. Hence passing ref_best_rd as INT64_MAX by default when the | 
 |   // speed feature use_rd_based_breakout_for_intra_tx_search is disabled. | 
 |   int64_t ref_best_rd = cpi->sf.tx_sf.use_rd_based_breakout_for_intra_tx_search | 
 |                             ? *best_rd | 
 |                             : INT64_MAX; | 
 |   av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats, bsize, ref_best_rd); | 
 |   if (rd_stats.rate == INT_MAX) return 0; | 
 |   int this_rate_tokenonly = rd_stats.rate; | 
 |   if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) { | 
 |     // av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size | 
 |     // in the tokenonly rate, but for intra blocks, tx_size is always coded | 
 |     // (prediction granularity), so we account for it in the full rate, | 
 |     // not the tokenonly rate. | 
 |     this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size); | 
 |   } | 
 |   const int this_rate = | 
 |       rd_stats.rate + | 
 |       intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0); | 
 |   const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist); | 
 |   if (this_rd < *best_rd) { | 
 |     *best_mbmi = *mbmi; | 
 |     *best_rd = this_rd; | 
 |     *rate = this_rate; | 
 |     *rate_tokenonly = this_rate_tokenonly; | 
 |     *distortion = rd_stats.dist; | 
 |     *skippable = rd_stats.skip_txfm; | 
 |     av1_copy_array(ctx->blk_skip, x->txfm_search_info.blk_skip, | 
 |                    ctx->num_4x4_blk); | 
 |     av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
 |     return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /*!\brief Search for the best filter_intra mode when coding inter frame. | 
 |  * | 
 |  * \ingroup intra_mode_search | 
 |  * \callergraph | 
 |  * This function loops through all filter_intra modes to find the best one. | 
 |  * | 
 |  * \remark Returns nothing, but updates the mbmi and rd_stats. | 
 |  */ | 
 | static inline void handle_filter_intra_mode(const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                             BLOCK_SIZE bsize, | 
 |                                             const PICK_MODE_CONTEXT *ctx, | 
 |                                             RD_STATS *rd_stats_y, int mode_cost, | 
 |                                             int64_t best_rd, | 
 |                                             int64_t best_rd_so_far) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   assert(mbmi->mode == DC_PRED && | 
 |          av1_filter_intra_allowed_bsize(&cpi->common, bsize)); | 
 |  | 
 |   RD_STATS rd_stats_y_fi; | 
 |   int filter_intra_selected_flag = 0; | 
 |   TX_SIZE best_tx_size = mbmi->tx_size; | 
 |   FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED; | 
 |   uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
 |   memcpy(best_blk_skip, x->txfm_search_info.blk_skip, | 
 |          sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); | 
 |   uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
 |   av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
 |   mbmi->filter_intra_mode_info.use_filter_intra = 1; | 
 |   for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; fi_mode < FILTER_INTRA_MODES; | 
 |        ++fi_mode) { | 
 |     mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode; | 
 |     av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y_fi, bsize, best_rd); | 
 |     if (rd_stats_y_fi.rate == INT_MAX) continue; | 
 |     const int this_rate_tmp = | 
 |         rd_stats_y_fi.rate + | 
 |         intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); | 
 |     const int64_t this_rd_tmp = | 
 |         RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist); | 
 |  | 
 |     if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > best_rd) { | 
 |       break; | 
 |     } | 
 |     if (this_rd_tmp < best_rd_so_far) { | 
 |       best_tx_size = mbmi->tx_size; | 
 |       av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
 |       memcpy(best_blk_skip, x->txfm_search_info.blk_skip, | 
 |              sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); | 
 |       best_fi_mode = fi_mode; | 
 |       *rd_stats_y = rd_stats_y_fi; | 
 |       filter_intra_selected_flag = 1; | 
 |       best_rd_so_far = this_rd_tmp; | 
 |     } | 
 |   } | 
 |  | 
 |   mbmi->tx_size = best_tx_size; | 
 |   av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); | 
 |   memcpy(x->txfm_search_info.blk_skip, best_blk_skip, | 
 |          sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); | 
 |  | 
 |   if (filter_intra_selected_flag) { | 
 |     mbmi->filter_intra_mode_info.use_filter_intra = 1; | 
 |     mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode; | 
 |   } else { | 
 |     mbmi->filter_intra_mode_info.use_filter_intra = 0; | 
 |   } | 
 | } | 
 |  | 
 | // Evaluate a given luma intra-mode in inter frames. | 
 | int av1_handle_intra_y_mode(IntraModeSearchState *intra_search_state, | 
 |                             const AV1_COMP *cpi, MACROBLOCK *x, | 
 |                             BLOCK_SIZE bsize, unsigned int ref_frame_cost, | 
 |                             const PICK_MODE_CONTEXT *ctx, RD_STATS *rd_stats_y, | 
 |                             int64_t best_rd, int *mode_cost_y, int64_t *rd_y, | 
 |                             int64_t *best_model_rd, | 
 |                             int64_t top_intra_model_rd[]) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   assert(mbmi->ref_frame[0] == INTRA_FRAME); | 
 |   const PREDICTION_MODE mode = mbmi->mode; | 
 |   const ModeCosts *mode_costs = &x->mode_costs; | 
 |   const int mode_cost = | 
 |       mode_costs->mbmode_cost[size_group_lookup[bsize]][mode] + ref_frame_cost; | 
 |   const int skip_ctx = av1_get_skip_txfm_context(xd); | 
 |  | 
 |   int known_rate = mode_cost; | 
 |   const int intra_cost_penalty = av1_get_intra_cost_penalty( | 
 |       cm->quant_params.base_qindex, cm->quant_params.y_dc_delta_q, | 
 |       cm->seq_params->bit_depth); | 
 |  | 
 |   if (mode != DC_PRED && mode != PAETH_PRED) known_rate += intra_cost_penalty; | 
 |   known_rate += AOMMIN(mode_costs->skip_txfm_cost[skip_ctx][0], | 
 |                        mode_costs->skip_txfm_cost[skip_ctx][1]); | 
 |   const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0); | 
 |   if (known_rd > best_rd) { | 
 |     intra_search_state->skip_intra_modes = 1; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const int is_directional_mode = av1_is_directional_mode(mode); | 
 |   if (is_directional_mode && av1_use_angle_delta(bsize) && | 
 |       cpi->oxcf.intra_mode_cfg.enable_angle_delta) { | 
 |     if (intra_sf->intra_pruning_with_hog && | 
 |         !intra_search_state->dir_mode_skip_mask_ready) { | 
 |       const float thresh[4] = { -1.2f, 0.0f, 0.0f, 1.2f }; | 
 |       const int is_chroma = 0; | 
 |       prune_intra_mode_with_hog(x, bsize, cm->seq_params->sb_size, | 
 |                                 thresh[intra_sf->intra_pruning_with_hog - 1], | 
 |                                 intra_search_state->directional_mode_skip_mask, | 
 |                                 is_chroma); | 
 |       intra_search_state->dir_mode_skip_mask_ready = 1; | 
 |     } | 
 |     if (intra_search_state->directional_mode_skip_mask[mode]) return 0; | 
 |   } | 
 |   const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]); | 
 |   const int64_t this_model_rd = | 
 |       intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1); | 
 |  | 
 |   const int model_rd_index_for_pruning = | 
 |       get_model_rd_index_for_pruning(x, intra_sf); | 
 |  | 
 |   if (prune_intra_y_mode(this_model_rd, best_model_rd, top_intra_model_rd, | 
 |                          intra_sf->top_intra_model_count_allowed, | 
 |                          model_rd_index_for_pruning)) | 
 |     return 0; | 
 |   av1_init_rd_stats(rd_stats_y); | 
 |   av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, best_rd); | 
 |  | 
 |   // Pick filter intra modes. | 
 |   if (mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { | 
 |     int try_filter_intra = 1; | 
 |     int64_t best_rd_so_far = INT64_MAX; | 
 |     if (rd_stats_y->rate != INT_MAX) { | 
 |       // best_rd_so_far is the rdcost of DC_PRED without using filter_intra. | 
 |       // Later, in filter intra search, best_rd_so_far is used for comparison. | 
 |       mbmi->filter_intra_mode_info.use_filter_intra = 0; | 
 |       const int tmp_rate = | 
 |           rd_stats_y->rate + | 
 |           intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); | 
 |       best_rd_so_far = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist); | 
 |       try_filter_intra = (best_rd_so_far / 2) <= best_rd; | 
 |     } else if (intra_sf->skip_filter_intra_in_inter_frames >= 1) { | 
 |       // As rd cost of luma intra dc mode is more than best_rd (i.e., | 
 |       // rd_stats_y->rate = INT_MAX), skip the evaluation of filter intra modes. | 
 |       try_filter_intra = 0; | 
 |     } | 
 |  | 
 |     if (try_filter_intra) { | 
 |       handle_filter_intra_mode(cpi, x, bsize, ctx, rd_stats_y, mode_cost, | 
 |                                best_rd, best_rd_so_far); | 
 |     } | 
 |   } | 
 |  | 
 |   if (rd_stats_y->rate == INT_MAX) return 0; | 
 |  | 
 |   *mode_cost_y = intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); | 
 |   const int rate_y = rd_stats_y->skip_txfm | 
 |                          ? mode_costs->skip_txfm_cost[skip_ctx][1] | 
 |                          : rd_stats_y->rate; | 
 |   *rd_y = RDCOST(x->rdmult, rate_y + *mode_cost_y, rd_stats_y->dist); | 
 |   if (best_rd < (INT64_MAX / 2) && *rd_y > (best_rd + (best_rd >> 2))) { | 
 |     intra_search_state->skip_intra_modes = 1; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | int av1_search_intra_uv_modes_in_interframe( | 
 |     IntraModeSearchState *intra_search_state, const AV1_COMP *cpi, | 
 |     MACROBLOCK *x, BLOCK_SIZE bsize, RD_STATS *rd_stats, | 
 |     const RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, int64_t best_rd) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   assert(mbmi->ref_frame[0] == INTRA_FRAME); | 
 |  | 
 |   // TODO(chiyotsai@google.com): Consolidate the chroma search code here with | 
 |   // the one in av1_search_palette_mode. | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   const int try_palette = | 
 |       cpi->oxcf.tool_cfg.enable_palette && | 
 |       av1_allow_palette(cm->features.allow_screen_content_tools, mbmi->bsize); | 
 |  | 
 |   assert(intra_search_state->rate_uv_intra == INT_MAX); | 
 |   if (intra_search_state->rate_uv_intra == INT_MAX) { | 
 |     // If no good uv-predictor had been found, search for it. | 
 |     const TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); | 
 |     av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra, | 
 |                                 &intra_search_state->rate_uv_tokenonly, | 
 |                                 &intra_search_state->dist_uvs, | 
 |                                 &intra_search_state->skip_uvs, bsize, uv_tx); | 
 |     intra_search_state->mode_uv = mbmi->uv_mode; | 
 |     if (try_palette) intra_search_state->pmi_uv = *pmi; | 
 |     intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; | 
 |  | 
 |     const int uv_rate = intra_search_state->rate_uv_tokenonly; | 
 |     const int64_t uv_dist = intra_search_state->dist_uvs; | 
 |     const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist); | 
 |     if (uv_rd > best_rd) { | 
 |       // If there is no good intra uv-mode available, we can skip all intra | 
 |       // modes. | 
 |       intra_search_state->skip_intra_modes = 1; | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // If we are here, then the encoder has found at least one good intra uv | 
 |   // predictor, so we can directly copy its statistics over. | 
 |   // TODO(any): the stats here is not right if the best uv mode is CFL but the | 
 |   // best y mode is palette. | 
 |   rd_stats_uv->rate = intra_search_state->rate_uv_tokenonly; | 
 |   rd_stats_uv->dist = intra_search_state->dist_uvs; | 
 |   rd_stats_uv->skip_txfm = intra_search_state->skip_uvs; | 
 |   rd_stats->skip_txfm = rd_stats_y->skip_txfm && rd_stats_uv->skip_txfm; | 
 |   mbmi->uv_mode = intra_search_state->mode_uv; | 
 |   if (try_palette) { | 
 |     pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1]; | 
 |     memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, | 
 |            intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE, | 
 |            2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); | 
 |   } | 
 |   mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | // Checks if odd delta angles can be pruned based on rdcosts of even delta | 
 | // angles of the corresponding directional mode. | 
 | static inline int prune_luma_odd_delta_angles_using_rd_cost( | 
 |     const MB_MODE_INFO *const mbmi, const int64_t *const intra_modes_rd_cost, | 
 |     int64_t best_rd, int prune_luma_odd_delta_angles_in_intra) { | 
 |   const int luma_delta_angle = mbmi->angle_delta[PLANE_TYPE_Y]; | 
 |   if (!prune_luma_odd_delta_angles_in_intra || | 
 |       !av1_is_directional_mode(mbmi->mode) || !(abs(luma_delta_angle) & 1) || | 
 |       best_rd == INT64_MAX) | 
 |     return 0; | 
 |  | 
 |   const int64_t rd_thresh = best_rd + (best_rd >> 3); | 
 |  | 
 |   // Neighbour rdcosts are considered for pruning of odd delta angles as | 
 |   // mentioned below: | 
 |   // Delta angle      Delta angle rdcost | 
 |   // to be pruned     to be considered | 
 |   //    -3                   -2 | 
 |   //    -1                -2, 0 | 
 |   //     1                 0, 2 | 
 |   //     3                    2 | 
 |   return intra_modes_rd_cost[luma_delta_angle + MAX_ANGLE_DELTA] > rd_thresh && | 
 |          intra_modes_rd_cost[luma_delta_angle + MAX_ANGLE_DELTA + 2] > | 
 |              rd_thresh; | 
 | } | 
 |  | 
 | // Finds the best non-intrabc mode on an intra frame. | 
 | int64_t av1_rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x, | 
 |                                    int *rate, int *rate_tokenonly, | 
 |                                    int64_t *distortion, uint8_t *skippable, | 
 |                                    BLOCK_SIZE bsize, int64_t best_rd, | 
 |                                    PICK_MODE_CONTEXT *ctx) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   assert(!is_inter_block(mbmi)); | 
 |   int64_t best_model_rd = INT64_MAX; | 
 |   int is_directional_mode; | 
 |   uint8_t directional_mode_skip_mask[INTRA_MODES] = { 0 }; | 
 |   // Flag to check rd of any intra mode is better than best_rd passed to this | 
 |   // function | 
 |   int beat_best_rd = 0; | 
 |   const int *bmode_costs; | 
 |   const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg; | 
 |   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   const int try_palette = | 
 |       cpi->oxcf.tool_cfg.enable_palette && | 
 |       av1_allow_palette(cpi->common.features.allow_screen_content_tools, | 
 |                         mbmi->bsize); | 
 |   uint8_t *best_palette_color_map = | 
 |       try_palette ? x->palette_buffer->best_palette_color_map : NULL; | 
 |   const MB_MODE_INFO *above_mi = xd->above_mbmi; | 
 |   const MB_MODE_INFO *left_mi = xd->left_mbmi; | 
 |   const PREDICTION_MODE A = av1_above_block_mode(above_mi); | 
 |   const PREDICTION_MODE L = av1_left_block_mode(left_mi); | 
 |   const int above_ctx = intra_mode_context[A]; | 
 |   const int left_ctx = intra_mode_context[L]; | 
 |   bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx]; | 
 |  | 
 |   mbmi->angle_delta[PLANE_TYPE_Y] = 0; | 
 |   const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf; | 
 |   if (intra_sf->intra_pruning_with_hog) { | 
 |     // Less aggressive thresholds are used here than those used in inter frame | 
 |     // encoding in av1_handle_intra_y_mode() because we want key frames/intra | 
 |     // frames to have higher quality. | 
 |     const float thresh[4] = { -1.2f, -1.2f, -0.6f, 0.4f }; | 
 |     const int is_chroma = 0; | 
 |     prune_intra_mode_with_hog(x, bsize, cpi->common.seq_params->sb_size, | 
 |                               thresh[intra_sf->intra_pruning_with_hog - 1], | 
 |                               directional_mode_skip_mask, is_chroma); | 
 |   } | 
 |   mbmi->filter_intra_mode_info.use_filter_intra = 0; | 
 |   pmi->palette_size[0] = 0; | 
 |  | 
 |   // Set params for mode evaluation | 
 |   set_mode_eval_params(cpi, x, MODE_EVAL); | 
 |  | 
 |   MB_MODE_INFO best_mbmi = *mbmi; | 
 |   const int max_winner_mode_count = | 
 |       winner_mode_count_allowed[cpi->sf.winner_mode_sf.multi_winner_mode_type]; | 
 |   zero_winner_mode_stats(bsize, max_winner_mode_count, x->winner_mode_stats); | 
 |   x->winner_mode_count = 0; | 
 |  | 
 |   // Searches the intra-modes except for intrabc, palette, and filter_intra. | 
 |   int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT]; | 
 |   for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) { | 
 |     top_intra_model_rd[i] = INT64_MAX; | 
 |   } | 
 |  | 
 |   // Initialize the rdcost corresponding to all the directional and | 
 |   // non-directional intra modes. | 
 |   // 1. For directional modes, it stores the rdcost values for delta angles -4, | 
 |   // -3, ..., 3, 4. | 
 |   // 2. The rdcost value for luma_delta_angle is stored at index | 
 |   // luma_delta_angle + MAX_ANGLE_DELTA + 1. | 
 |   // 3. The rdcost values for fictitious/nonexistent luma_delta_angle -4 and 4 | 
 |   // (array indices 0 and 8) are always set to INT64_MAX (the initial value). | 
 |   int64_t intra_modes_rd_cost[INTRA_MODE_END] | 
 |                              [SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY]; | 
 |   for (int i = 0; i < INTRA_MODE_END; i++) { | 
 |     for (int j = 0; j < SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY; j++) { | 
 |       intra_modes_rd_cost[i][j] = INT64_MAX; | 
 |     } | 
 |   } | 
 |  | 
 |   for (int mode_idx = INTRA_MODE_START; mode_idx < LUMA_MODE_COUNT; | 
 |        ++mode_idx) { | 
 |     set_y_mode_and_delta_angle(mode_idx, mbmi, | 
 |                                intra_sf->prune_luma_odd_delta_angles_in_intra); | 
 |     RD_STATS this_rd_stats; | 
 |     int this_rate, this_rate_tokenonly, s; | 
 |     int is_diagonal_mode; | 
 |     int64_t this_distortion, this_rd; | 
 |     const int luma_delta_angle = mbmi->angle_delta[PLANE_TYPE_Y]; | 
 |  | 
 |     is_diagonal_mode = av1_is_diagonal_mode(mbmi->mode); | 
 |     if (is_diagonal_mode && !intra_mode_cfg->enable_diagonal_intra) continue; | 
 |     if (av1_is_directional_mode(mbmi->mode) && | 
 |         !intra_mode_cfg->enable_directional_intra) | 
 |       continue; | 
 |  | 
 |     // The smooth prediction mode appears to be more frequently picked | 
 |     // than horizontal / vertical smooth prediction modes. Hence treat | 
 |     // them differently in speed features. | 
 |     if ((!intra_mode_cfg->enable_smooth_intra || | 
 |          intra_sf->disable_smooth_intra) && | 
 |         (mbmi->mode == SMOOTH_H_PRED || mbmi->mode == SMOOTH_V_PRED)) | 
 |       continue; | 
 |     if (!intra_mode_cfg->enable_smooth_intra && mbmi->mode == SMOOTH_PRED) | 
 |       continue; | 
 |  | 
 |     // The functionality of filter intra modes and smooth prediction | 
 |     // overlap. Hence smooth prediction is pruned only if all the | 
 |     // filter intra modes are enabled. | 
 |     if (intra_sf->disable_smooth_intra && | 
 |         intra_sf->prune_filter_intra_level == 0 && mbmi->mode == SMOOTH_PRED) | 
 |       continue; | 
 |     if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED) | 
 |       continue; | 
 |  | 
 |     // Skip the evaluation of modes that do not match with the winner mode in | 
 |     // x->mb_mode_cache. | 
 |     if (x->use_mb_mode_cache && mbmi->mode != x->mb_mode_cache->mode) continue; | 
 |  | 
 |     is_directional_mode = av1_is_directional_mode(mbmi->mode); | 
 |     if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue; | 
 |     if (is_directional_mode && | 
 |         !(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) && | 
 |         luma_delta_angle != 0) | 
 |       continue; | 
 |  | 
 |     // Use intra_y_mode_mask speed feature to skip intra mode evaluation. | 
 |     if (!(intra_sf->intra_y_mode_mask[max_txsize_lookup[bsize]] & | 
 |           (1 << mbmi->mode))) | 
 |       continue; | 
 |  | 
 |     if (prune_luma_odd_delta_angles_using_rd_cost( | 
 |             mbmi, intra_modes_rd_cost[mbmi->mode], best_rd, | 
 |             intra_sf->prune_luma_odd_delta_angles_in_intra)) | 
 |       continue; | 
 |  | 
 |     const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]); | 
 |     const int64_t this_model_rd = | 
 |         intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1); | 
 |  | 
 |     const int model_rd_index_for_pruning = | 
 |         get_model_rd_index_for_pruning(x, intra_sf); | 
 |  | 
 |     if (prune_intra_y_mode(this_model_rd, &best_model_rd, top_intra_model_rd, | 
 |                            intra_sf->top_intra_model_count_allowed, | 
 |                            model_rd_index_for_pruning)) | 
 |       continue; | 
 |  | 
 |     // Builds the actual prediction. The prediction from | 
 |     // model_intra_yrd_and_prune was just an estimation that did not take into | 
 |     // account the effect of txfm pipeline, so we need to redo it for real | 
 |     // here. | 
 |     av1_pick_uniform_tx_size_type_yrd(cpi, x, &this_rd_stats, bsize, best_rd); | 
 |     this_rate_tokenonly = this_rd_stats.rate; | 
 |     this_distortion = this_rd_stats.dist; | 
 |     s = this_rd_stats.skip_txfm; | 
 |  | 
 |     if (this_rate_tokenonly == INT_MAX) continue; | 
 |  | 
 |     if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) { | 
 |       // av1_pick_uniform_tx_size_type_yrd above includes the cost of the | 
 |       // tx_size in the tokenonly rate, but for intra blocks, tx_size is always | 
 |       // coded (prediction granularity), so we account for it in the full rate, | 
 |       // not the tokenonly rate. | 
 |       this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size); | 
 |     } | 
 |     this_rate = | 
 |         this_rd_stats.rate + | 
 |         intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0); | 
 |     this_rd = RDCOST(x->rdmult, this_rate, this_distortion); | 
 |  | 
 |     // Visual quality adjustment based on recon vs source variance. | 
 |     if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) { | 
 |       this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize)); | 
 |     } | 
 |  | 
 |     intra_modes_rd_cost[mbmi->mode][luma_delta_angle + MAX_ANGLE_DELTA + 1] = | 
 |         this_rd; | 
 |  | 
 |     // Collect mode stats for multiwinner mode processing | 
 |     const int txfm_search_done = 1; | 
 |     store_winner_mode_stats( | 
 |         &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd, | 
 |         cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); | 
 |     if (this_rd < best_rd) { | 
 |       best_mbmi = *mbmi; | 
 |       best_rd = this_rd; | 
 |       // Setting beat_best_rd flag because current mode rd is better than | 
 |       // best_rd passed to this function | 
 |       beat_best_rd = 1; | 
 |       *rate = this_rate; | 
 |       *rate_tokenonly = this_rate_tokenonly; | 
 |       *distortion = this_distortion; | 
 |       *skippable = s; | 
 |       memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, | 
 |              sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); | 
 |       av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
 |     } | 
 |   } | 
 |  | 
 |   // Searches palette | 
 |   if (try_palette) { | 
 |     av1_rd_pick_palette_intra_sby( | 
 |         cpi, x, bsize, bmode_costs[DC_PRED], &best_mbmi, best_palette_color_map, | 
 |         &best_rd, rate, rate_tokenonly, distortion, skippable, &beat_best_rd, | 
 |         ctx, ctx->blk_skip, ctx->tx_type_map); | 
 |   } | 
 |  | 
 |   // Searches filter_intra | 
 |   if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) { | 
 |     if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion, | 
 |                                  skippable, bsize, bmode_costs[DC_PRED], | 
 |                                  best_mbmi.mode, &best_rd, &best_model_rd, | 
 |                                  ctx)) { | 
 |       best_mbmi = *mbmi; | 
 |     } | 
 |   } | 
 |  | 
 |   // No mode is identified with less rd value than best_rd passed to this | 
 |   // function. In such cases winner mode processing is not necessary and return | 
 |   // best_rd as INT64_MAX to indicate best mode is not identified | 
 |   if (!beat_best_rd) return INT64_MAX; | 
 |  | 
 |   // In multi-winner mode processing, perform tx search for few best modes | 
 |   // identified during mode evaluation. Winner mode processing uses best tx | 
 |   // configuration for tx search. | 
 |   if (cpi->sf.winner_mode_sf.multi_winner_mode_type) { | 
 |     int best_mode_idx = 0; | 
 |     int block_width, block_height; | 
 |     uint8_t *color_map_dst = xd->plane[PLANE_TYPE_Y].color_index_map; | 
 |     av1_get_block_dimensions(bsize, AOM_PLANE_Y, xd, &block_width, | 
 |                              &block_height, NULL, NULL); | 
 |  | 
 |     for (int mode_idx = 0; mode_idx < x->winner_mode_count; mode_idx++) { | 
 |       *mbmi = x->winner_mode_stats[mode_idx].mbmi; | 
 |       if (is_winner_mode_processing_enabled(cpi, x, mbmi, 0)) { | 
 |         // Restore color_map of palette mode before winner mode processing | 
 |         if (mbmi->palette_mode_info.palette_size[0] > 0) { | 
 |           uint8_t *color_map_src = | 
 |               x->winner_mode_stats[mode_idx].color_index_map; | 
 |           memcpy(color_map_dst, color_map_src, | 
 |                  block_width * block_height * sizeof(*color_map_src)); | 
 |         } | 
 |         // Set params for winner mode evaluation | 
 |         set_mode_eval_params(cpi, x, WINNER_MODE_EVAL); | 
 |  | 
 |         // Winner mode processing | 
 |         // If previous searches use only the default tx type/no R-D optimization | 
 |         // of quantized coeffs, do an extra search for the best tx type/better | 
 |         // R-D optimization of quantized coeffs | 
 |         if (intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, | 
 |                             rate_tokenonly, distortion, skippable, &best_mbmi, | 
 |                             ctx)) | 
 |           best_mode_idx = mode_idx; | 
 |       } | 
 |     } | 
 |     // Copy color_map of palette mode for final winner mode | 
 |     if (best_mbmi.palette_mode_info.palette_size[0] > 0) { | 
 |       uint8_t *color_map_src = | 
 |           x->winner_mode_stats[best_mode_idx].color_index_map; | 
 |       memcpy(color_map_dst, color_map_src, | 
 |              block_width * block_height * sizeof(*color_map_src)); | 
 |     } | 
 |   } else { | 
 |     // If previous searches use only the default tx type/no R-D optimization of | 
 |     // quantized coeffs, do an extra search for the best tx type/better R-D | 
 |     // optimization of quantized coeffs | 
 |     if (is_winner_mode_processing_enabled(cpi, x, mbmi, 0)) { | 
 |       // Set params for winner mode evaluation | 
 |       set_mode_eval_params(cpi, x, WINNER_MODE_EVAL); | 
 |       *mbmi = best_mbmi; | 
 |       intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, | 
 |                       rate_tokenonly, distortion, skippable, &best_mbmi, ctx); | 
 |     } | 
 |   } | 
 |   *mbmi = best_mbmi; | 
 |   av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk); | 
 |   return best_rd; | 
 | } |