blob: 8f8dc2c1eaa70ff5a1f84d016f8275025f5fcae2 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#if CONFIG_EXT_INTRA
#include "av1/common/reconintra.h"
#endif // CONFIG_EXT_INTRA
#include "av1/common/seg_common.h"
#if CONFIG_WARPED_MOTION
#include "av1/common/warped_motion.h"
#endif // CONFIG_WARPED_MOTION
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "aom_dsp/aom_dsp_common.h"
#define ACCT_STR __func__
#if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
static INLINE int read_uniform(aom_reader *r, int n) {
int l = get_unsigned_bits(n);
int m = (1 << l) - n;
int v = aom_read_literal(r, l - 1, ACCT_STR);
assert(l != 0);
if (v < m)
return v;
else
return (v << 1) - m + aom_read_literal(r, 1, ACCT_STR);
}
#endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
#if CONFIG_DAALA_EC
static PREDICTION_MODE read_intra_mode(aom_reader *r, aom_cdf_prob *cdf) {
return (PREDICTION_MODE)
av1_intra_mode_inv[aom_read_symbol(r, cdf, INTRA_MODES, ACCT_STR)];
}
#else
static PREDICTION_MODE read_intra_mode(aom_reader *r, const aom_prob *p) {
return (PREDICTION_MODE)aom_read_tree(r, av1_intra_mode_tree, p, ACCT_STR);
}
#endif
#if CONFIG_DELTA_Q
static int read_delta_qindex(AV1_COMMON *cm, MACROBLOCKD *xd, aom_reader *r,
MB_MODE_INFO *const mbmi, int mi_col, int mi_row) {
FRAME_COUNTS *counts = xd->counts;
int sign, abs, reduced_delta_qindex = 0;
BLOCK_SIZE bsize = mbmi->sb_type;
const int b_col = mi_col & MAX_MIB_MASK;
const int b_row = mi_row & MAX_MIB_MASK;
const int read_delta_q_flag = (b_col == 0 && b_row == 0);
int rem_bits, thr, bit = 1;
if ((bsize != BLOCK_64X64 || mbmi->skip == 0) && read_delta_q_flag) {
abs = 0;
while (abs < DELTA_Q_SMALL && bit) {
bit = aom_read(r, cm->fc->delta_q_prob[abs], ACCT_STR);
if (counts) counts->delta_q[abs][bit]++;
abs += bit;
}
if (abs == DELTA_Q_SMALL) {
rem_bits = aom_read_literal(r, 3, ACCT_STR);
thr = (1 << rem_bits) + 1;
abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
}
if (abs) {
sign = aom_read_bit(r, ACCT_STR);
} else {
sign = 1;
}
reduced_delta_qindex = sign ? -abs : abs;
}
return reduced_delta_qindex;
}
#endif
static PREDICTION_MODE read_intra_mode_y(AV1_COMMON *cm, MACROBLOCKD *xd,
aom_reader *r, int size_group) {
const PREDICTION_MODE y_mode =
#if CONFIG_DAALA_EC
read_intra_mode(r, cm->fc->y_mode_cdf[size_group]);
#else
read_intra_mode(r, cm->fc->y_mode_prob[size_group]);
#endif
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->y_mode[size_group][y_mode];
return y_mode;
}
static PREDICTION_MODE read_intra_mode_uv(AV1_COMMON *cm, MACROBLOCKD *xd,
aom_reader *r,
PREDICTION_MODE y_mode) {
const PREDICTION_MODE uv_mode =
#if CONFIG_DAALA_EC
read_intra_mode(r, cm->fc->uv_mode_cdf[y_mode]);
#else
read_intra_mode(r, cm->fc->uv_mode_prob[y_mode]);
#endif
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->uv_mode[y_mode][uv_mode];
return uv_mode;
}
#if CONFIG_EXT_INTER
static INTERINTRA_MODE read_interintra_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
aom_reader *r, int size_group) {
const INTERINTRA_MODE ii_mode = (INTERINTRA_MODE)aom_read_tree(
r, av1_interintra_mode_tree, cm->fc->interintra_mode_prob[size_group],
ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->interintra_mode[size_group][ii_mode];
return ii_mode;
}
#endif // CONFIG_EXT_INTER
static PREDICTION_MODE read_inter_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
MB_MODE_INFO *mbmi,
#endif
aom_reader *r, int16_t ctx) {
#if CONFIG_REF_MV
FRAME_COUNTS *counts = xd->counts;
int16_t mode_ctx = ctx & NEWMV_CTX_MASK;
aom_prob mode_prob = cm->fc->newmv_prob[mode_ctx];
if (aom_read(r, mode_prob, ACCT_STR) == 0) {
if (counts) ++counts->newmv_mode[mode_ctx][0];
#if CONFIG_EXT_INTER
if (has_second_ref(mbmi)) {
#endif // CONFIG_EXT_INTER
return NEWMV;
#if CONFIG_EXT_INTER
} else {
mode_prob = cm->fc->new2mv_prob;
if (aom_read(r, mode_prob, ACCT_STR) == 0) {
if (counts) ++counts->new2mv_mode[0];
return NEWMV;
} else {
if (counts) ++counts->new2mv_mode[1];
return NEWFROMNEARMV;
}
}
#endif // CONFIG_EXT_INTER
}
if (counts) ++counts->newmv_mode[mode_ctx][1];
if (ctx & (1 << ALL_ZERO_FLAG_OFFSET)) return ZEROMV;
mode_ctx = (ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
mode_prob = cm->fc->zeromv_prob[mode_ctx];
if (aom_read(r, mode_prob, ACCT_STR) == 0) {
if (counts) ++counts->zeromv_mode[mode_ctx][0];
return ZEROMV;
}
if (counts) ++counts->zeromv_mode[mode_ctx][1];
mode_ctx = (ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
if (ctx & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
if (ctx & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
if (ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
mode_prob = cm->fc->refmv_prob[mode_ctx];
if (aom_read(r, mode_prob, ACCT_STR) == 0) {
if (counts) ++counts->refmv_mode[mode_ctx][0];
return NEARESTMV;
} else {
if (counts) ++counts->refmv_mode[mode_ctx][1];
return NEARMV;
}
// Invalid prediction mode.
assert(0);
#else
#if CONFIG_DAALA_EC
const int mode = av1_inter_mode_inv[aom_read_symbol(
r, cm->fc->inter_mode_cdf[ctx], INTER_MODES, ACCT_STR)];
#else
const int mode = aom_read_tree(r, av1_inter_mode_tree,
cm->fc->inter_mode_probs[ctx], ACCT_STR);
#endif
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->inter_mode[ctx][mode];
return NEARESTMV + mode;
#endif
}
#if CONFIG_REF_MV
static void read_drl_idx(const AV1_COMMON *cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, aom_reader *r) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
mbmi->ref_mv_idx = 0;
if (mbmi->mode == NEWMV) {
int idx;
for (idx = 0; idx < 2; ++idx) {
if (xd->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(xd->ref_mv_stack[ref_frame_type], idx);
aom_prob drl_prob = cm->fc->drl_prob[drl_ctx];
if (!aom_read(r, drl_prob, ACCT_STR)) {
mbmi->ref_mv_idx = idx;
if (xd->counts) ++xd->counts->drl_mode[drl_ctx][0];
return;
}
mbmi->ref_mv_idx = idx + 1;
if (xd->counts) ++xd->counts->drl_mode[drl_ctx][1];
}
}
}
if (mbmi->mode == NEARMV) {
int idx;
// Offset the NEARESTMV mode.
// TODO(jingning): Unify the two syntax decoding loops after the NEARESTMV
// mode is factored in.
for (idx = 1; idx < 3; ++idx) {
if (xd->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(xd->ref_mv_stack[ref_frame_type], idx);
aom_prob drl_prob = cm->fc->drl_prob[drl_ctx];
if (!aom_read(r, drl_prob, ACCT_STR)) {
mbmi->ref_mv_idx = idx - 1;
if (xd->counts) ++xd->counts->drl_mode[drl_ctx][0];
return;
}
mbmi->ref_mv_idx = idx;
if (xd->counts) ++xd->counts->drl_mode[drl_ctx][1];
}
}
}
}
#endif
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, aom_reader *r) {
MOTION_MODE last_motion_mode_allowed = motion_mode_allowed(mbmi);
int motion_mode;
FRAME_COUNTS *counts = xd->counts;
if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return SIMPLE_TRANSLATION;
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
if (last_motion_mode_allowed == OBMC_CAUSAL) {
motion_mode = aom_read(r, cm->fc->obmc_prob[mbmi->sb_type], ACCT_STR);
if (counts) ++counts->obmc[mbmi->sb_type][motion_mode];
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
} else {
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
motion_mode =
aom_read_tree(r, av1_motion_mode_tree,
cm->fc->motion_mode_prob[mbmi->sb_type], ACCT_STR);
if (counts) ++counts->motion_mode[mbmi->sb_type][motion_mode];
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
}
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
}
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_EXT_INTER
static PREDICTION_MODE read_inter_compound_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
aom_reader *r, int16_t ctx) {
const int mode =
aom_read_tree(r, av1_inter_compound_mode_tree,
cm->fc->inter_compound_mode_probs[ctx], ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->inter_compound_mode[ctx][mode];
assert(is_inter_compound_mode(NEAREST_NEARESTMV + mode));
return NEAREST_NEARESTMV + mode;
}
#endif // CONFIG_EXT_INTER
static int read_segment_id(aom_reader *r, struct segmentation_probs *segp) {
#if CONFIG_DAALA_EC
return aom_read_symbol(r, segp->tree_cdf, MAX_SEGMENTS, ACCT_STR);
#else
return aom_read_tree(r, av1_segment_tree, segp->tree_probs, ACCT_STR);
#endif
}
#if CONFIG_VAR_TX
static void read_tx_size_vartx(AV1_COMMON *cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, FRAME_COUNTS *counts,
TX_SIZE tx_size, int depth, int blk_row,
int blk_col, aom_reader *r) {
int is_split = 0;
const int tx_row = blk_row >> 1;
const int tx_col = blk_col >> 1;
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
int ctx = txfm_partition_context(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row,
mbmi->sb_type, tx_size);
TX_SIZE(*const inter_tx_size)
[MAX_MIB_SIZE] =
(TX_SIZE(*)[MAX_MIB_SIZE]) & mbmi->inter_tx_size[tx_row][tx_col];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (depth == MAX_VARTX_DEPTH) {
int idx, idy;
inter_tx_size[0][0] = tx_size;
for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy)
for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx)
inter_tx_size[idy][idx] = tx_size;
mbmi->tx_size = tx_size;
mbmi->min_tx_size = AOMMIN(mbmi->min_tx_size, get_min_tx_size(tx_size));
if (counts) ++counts->txfm_partition[ctx][0];
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, tx_size);
return;
}
is_split = aom_read(r, cm->fc->txfm_partition_prob[ctx], ACCT_STR);
if (is_split) {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
int i;
if (counts) ++counts->txfm_partition[ctx][1];
if (tx_size == TX_8X8) {
inter_tx_size[0][0] = TX_4X4;
mbmi->tx_size = TX_4X4;
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, TX_4X4);
return;
}
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
int offsetr = blk_row + (i >> 1) * bsl;
int offsetc = blk_col + (i & 0x01) * bsl;
read_tx_size_vartx(cm, xd, mbmi, counts, sub_txs, depth + 1, offsetr,
offsetc, r);
}
} else {
int idx, idy;
inter_tx_size[0][0] = tx_size;
for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy)
for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx)
inter_tx_size[idy][idx] = tx_size;
mbmi->tx_size = tx_size;
mbmi->min_tx_size = AOMMIN(mbmi->min_tx_size, get_min_tx_size(tx_size));
if (counts) ++counts->txfm_partition[ctx][0];
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, tx_size);
}
}
#endif
static TX_SIZE read_selected_tx_size(AV1_COMMON *cm, MACROBLOCKD *xd,
int tx_size_cat, aom_reader *r) {
FRAME_COUNTS *counts = xd->counts;
const int ctx = get_tx_size_context(xd);
int depth = aom_read_tree(r, av1_tx_size_tree[tx_size_cat],
cm->fc->tx_size_probs[tx_size_cat][ctx], ACCT_STR);
TX_SIZE tx_size = depth_to_tx_size(depth);
if (counts) ++counts->tx_size[tx_size_cat][ctx][depth];
return tx_size;
}
static TX_SIZE read_tx_size_intra(AV1_COMMON *cm, MACROBLOCKD *xd,
aom_reader *r) {
TX_MODE tx_mode = cm->tx_mode;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return TX_4X4;
if (bsize >= BLOCK_8X8) {
if (tx_mode == TX_MODE_SELECT) {
const TX_SIZE tx_size =
read_selected_tx_size(cm, xd, intra_tx_size_cat_lookup[bsize], r);
assert(tx_size <= max_txsize_lookup[bsize]);
return tx_size;
} else {
return tx_size_from_tx_mode(bsize, cm->tx_mode, 0);
}
} else {
return TX_4X4;
}
}
static TX_SIZE read_tx_size_inter(AV1_COMMON *cm, MACROBLOCKD *xd,
int allow_select, aom_reader *r) {
TX_MODE tx_mode = cm->tx_mode;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return TX_4X4;
if (bsize >= BLOCK_8X8) {
if (allow_select && tx_mode == TX_MODE_SELECT) {
const TX_SIZE coded_tx_size =
read_selected_tx_size(cm, xd, inter_tx_size_cat_lookup[bsize], r);
#if CONFIG_EXT_TX && CONFIG_RECT_TX
if (coded_tx_size > max_txsize_lookup[bsize]) {
assert(coded_tx_size == max_txsize_lookup[bsize] + 1);
return max_txsize_rect_lookup[bsize];
}
#else
assert(coded_tx_size <= max_txsize_lookup[bsize]);
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
return coded_tx_size;
} else {
return tx_size_from_tx_mode(bsize, cm->tx_mode, 1);
}
} else {
#if CONFIG_EXT_TX && CONFIG_RECT_TX
assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4));
return max_txsize_rect_lookup[bsize];
#else
return TX_4X4;
#endif
}
}
static int dec_get_segment_id(const AV1_COMMON *cm, const uint8_t *segment_ids,
int mi_offset, int x_mis, int y_mis) {
int x, y, segment_id = INT_MAX;
for (y = 0; y < y_mis; y++)
for (x = 0; x < x_mis; x++)
segment_id =
AOMMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]);
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
return segment_id;
}
static void set_segment_id(AV1_COMMON *cm, int mi_offset, int x_mis, int y_mis,
int segment_id) {
int x, y;
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
for (y = 0; y < y_mis; y++)
for (x = 0; x < x_mis; x++)
cm->current_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id;
}
static int read_intra_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int mi_offset, int x_mis, int y_mis,
aom_reader *r) {
struct segmentation *const seg = &cm->seg;
FRAME_COUNTS *counts = xd->counts;
struct segmentation_probs *const segp = &cm->fc->seg;
int segment_id;
if (!seg->enabled) return 0; // Default for disabled segmentation
assert(seg->update_map && !seg->temporal_update);
segment_id = read_segment_id(r, segp);
if (counts) ++counts->seg.tree_total[segment_id];
set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
return segment_id;
}
static void copy_segment_id(const AV1_COMMON *cm,
const uint8_t *last_segment_ids,
uint8_t *current_segment_ids, int mi_offset,
int x_mis, int y_mis) {
int x, y;
for (y = 0; y < y_mis; y++)
for (x = 0; x < x_mis; x++)
current_segment_ids[mi_offset + y * cm->mi_cols + x] =
last_segment_ids ? last_segment_ids[mi_offset + y * cm->mi_cols + x]
: 0;
}
static int read_inter_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int mi_row, int mi_col, aom_reader *r) {
struct segmentation *const seg = &cm->seg;
FRAME_COUNTS *counts = xd->counts;
struct segmentation_probs *const segp = &cm->fc->seg;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
int predicted_segment_id, segment_id;
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = mi_size_wide[mbmi->sb_type];
const int bh = mi_size_high[mbmi->sb_type];
// TODO(slavarnway): move x_mis, y_mis into xd ?????
const int x_mis = AOMMIN(cm->mi_cols - mi_col, bw);
const int y_mis = AOMMIN(cm->mi_rows - mi_row, bh);
if (!seg->enabled) return 0; // Default for disabled segmentation
predicted_segment_id = cm->last_frame_seg_map
? dec_get_segment_id(cm, cm->last_frame_seg_map,
mi_offset, x_mis, y_mis)
: 0;
if (!seg->update_map) {
copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map,
mi_offset, x_mis, y_mis);
return predicted_segment_id;
}
if (seg->temporal_update) {
const int ctx = av1_get_pred_context_seg_id(xd);
const aom_prob pred_prob = segp->pred_probs[ctx];
mbmi->seg_id_predicted = aom_read(r, pred_prob, ACCT_STR);
if (counts) ++counts->seg.pred[ctx][mbmi->seg_id_predicted];
if (mbmi->seg_id_predicted) {
segment_id = predicted_segment_id;
} else {
segment_id = read_segment_id(r, segp);
if (counts) ++counts->seg.tree_mispred[segment_id];
}
} else {
segment_id = read_segment_id(r, segp);
if (counts) ++counts->seg.tree_total[segment_id];
}
set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
return segment_id;
}
static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int ctx = av1_get_skip_context(xd);
const int skip = aom_read(r, cm->fc->skip_probs[ctx], ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->skip[ctx][skip];
return skip;
}
}
#if CONFIG_PALETTE
static void read_palette_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
const MODE_INFO *const above_mi = xd->above_mi;
const MODE_INFO *const left_mi = xd->left_mi;
const BLOCK_SIZE bsize = mbmi->sb_type;
int i, n, palette_ctx = 0;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
if (mbmi->mode == DC_PRED) {
if (above_mi)
palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
if (left_mi)
palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
if (aom_read(
r, av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx],
ACCT_STR)) {
pmi->palette_size[0] =
aom_read_tree(r, av1_palette_size_tree,
av1_default_palette_y_size_prob[bsize - BLOCK_8X8],
ACCT_STR) +
2;
n = pmi->palette_size[0];
for (i = 0; i < n; ++i)
pmi->palette_colors[i] = aom_read_literal(r, cm->bit_depth, ACCT_STR);
xd->plane[0].color_index_map[0] = read_uniform(r, n);
assert(xd->plane[0].color_index_map[0] < n);
}
}
if (mbmi->uv_mode == DC_PRED) {
if (aom_read(r, av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0],
ACCT_STR)) {
pmi->palette_size[1] =
aom_read_tree(r, av1_palette_size_tree,
av1_default_palette_uv_size_prob[bsize - BLOCK_8X8],
ACCT_STR) +
2;
n = pmi->palette_size[1];
for (i = 0; i < n; ++i) {
pmi->palette_colors[PALETTE_MAX_SIZE + i] =
aom_read_literal(r, cm->bit_depth, ACCT_STR);
pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] =
aom_read_literal(r, cm->bit_depth, ACCT_STR);
}
xd->plane[1].color_index_map[0] = read_uniform(r, n);
assert(xd->plane[1].color_index_map[0] < n);
}
}
}
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
static void read_filter_intra_mode_info(AV1_COMMON *const cm,
MACROBLOCKD *const xd, aom_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
FRAME_COUNTS *counts = xd->counts;
FILTER_INTRA_MODE_INFO *filter_intra_mode_info =
&mbmi->filter_intra_mode_info;
if (mbmi->mode == DC_PRED
#if CONFIG_PALETTE
&& mbmi->palette_mode_info.palette_size[0] == 0
#endif // CONFIG_PALETTE
) {
filter_intra_mode_info->use_filter_intra_mode[0] =
aom_read(r, cm->fc->filter_intra_probs[0], ACCT_STR);
if (filter_intra_mode_info->use_filter_intra_mode[0]) {
filter_intra_mode_info->filter_intra_mode[0] =
read_uniform(r, FILTER_INTRA_MODES);
}
if (counts) {
++counts->filter_intra[0]
[filter_intra_mode_info->use_filter_intra_mode[0]];
}
}
if (mbmi->uv_mode == DC_PRED
#if CONFIG_PALETTE
&& mbmi->palette_mode_info.palette_size[1] == 0
#endif // CONFIG_PALETTE
) {
filter_intra_mode_info->use_filter_intra_mode[1] =
aom_read(r, cm->fc->filter_intra_probs[1], ACCT_STR);
if (filter_intra_mode_info->use_filter_intra_mode[1]) {
filter_intra_mode_info->filter_intra_mode[1] =
read_uniform(r, FILTER_INTRA_MODES);
}
if (counts) {
++counts->filter_intra[1]
[filter_intra_mode_info->use_filter_intra_mode[1]];
}
}
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
static void read_intra_angle_info(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r) {
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
#if CONFIG_INTRA_INTERP
const int ctx = av1_get_pred_context_intra_interp(xd);
int p_angle;
#endif // CONFIG_INTRA_INTERP
(void)cm;
if (bsize < BLOCK_8X8) return;
if (av1_is_directional_mode(mbmi->mode, bsize)) {
const int max_angle_delta = av1_get_max_angle_delta(mbmi->sb_type, 0);
mbmi->angle_delta[0] =
read_uniform(r, 2 * max_angle_delta + 1) - max_angle_delta;
#if CONFIG_INTRA_INTERP
p_angle = mode_to_angle_map[mbmi->mode] +
mbmi->angle_delta[0] * av1_get_angle_step(mbmi->sb_type, 0);
if (av1_is_intra_filter_switchable(p_angle)) {
FRAME_COUNTS *counts = xd->counts;
mbmi->intra_filter = aom_read_tree(
r, av1_intra_filter_tree, cm->fc->intra_filter_probs[ctx], ACCT_STR);
if (counts) ++counts->intra_filter[ctx][mbmi->intra_filter];
} else {
mbmi->intra_filter = INTRA_FILTER_LINEAR;
}
#endif // CONFIG_INTRA_INTERP
}
if (av1_is_directional_mode(mbmi->uv_mode, bsize)) {
mbmi->angle_delta[1] =
read_uniform(r, 2 * MAX_ANGLE_DELTA_UV + 1) - MAX_ANGLE_DELTA_UV;
}
}
#endif // CONFIG_EXT_INTRA
static void read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
aom_reader *r) {
const int inter_block = is_inter_block(mbmi);
#if CONFIG_VAR_TX
const TX_SIZE tx_size = inter_block ? mbmi->min_tx_size : mbmi->tx_size;
#else
const TX_SIZE tx_size = mbmi->tx_size;
#endif
if (!FIXED_TX_TYPE) {
#if CONFIG_EXT_TX
if (get_ext_tx_types(tx_size, mbmi->sb_type, inter_block) > 1 &&
cm->base_qindex > 0 && !mbmi->skip &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
int eset = get_ext_tx_set(tx_size, mbmi->sb_type, inter_block);
FRAME_COUNTS *counts = xd->counts;
if (inter_block) {
if (eset > 0) {
mbmi->tx_type = aom_read_tree(
r, av1_ext_tx_inter_tree[eset],
cm->fc->inter_ext_tx_prob[eset][txsize_sqr_map[tx_size]],
ACCT_STR);
if (counts)
++counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]]
[mbmi->tx_type];
}
} else if (ALLOW_INTRA_EXT_TX) {
if (eset > 0) {
mbmi->tx_type = aom_read_tree(
r, av1_ext_tx_intra_tree[eset],
cm->fc->intra_ext_tx_prob[eset][tx_size][mbmi->mode], ACCT_STR);
if (counts)
++counts->intra_ext_tx[eset][tx_size][mbmi->mode][mbmi->tx_type];
}
}
} else {
mbmi->tx_type = DCT_DCT;
}
#else
if (tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
FRAME_COUNTS *counts = xd->counts;
if (inter_block) {
#if CONFIG_DAALA_EC
mbmi->tx_type = av1_ext_tx_inv[aom_read_symbol(
r, cm->fc->inter_ext_tx_cdf[tx_size], TX_TYPES, ACCT_STR)];
#else
mbmi->tx_type = aom_read_tree(
r, av1_ext_tx_tree, cm->fc->inter_ext_tx_prob[tx_size], ACCT_STR);
#endif
if (counts) ++counts->inter_ext_tx[tx_size][mbmi->tx_type];
} else {
const TX_TYPE tx_type_nom = intra_mode_to_tx_type_context[mbmi->mode];
#if CONFIG_DAALA_EC
mbmi->tx_type = av1_ext_tx_inv[aom_read_symbol(
r, cm->fc->intra_ext_tx_cdf[tx_size][tx_type_nom], TX_TYPES,
ACCT_STR)];
#else
mbmi->tx_type = aom_read_tree(
r, av1_ext_tx_tree, cm->fc->intra_ext_tx_prob[tx_size][tx_type_nom],
ACCT_STR);
#endif
if (counts) ++counts->intra_ext_tx[tx_size][tx_type_nom][mbmi->tx_type];
}
} else {
mbmi->tx_type = DCT_DCT;
}
#endif // CONFIG_EXT_TX
}
}
static void read_intra_frame_mode_info(AV1_COMMON *const cm,
MACROBLOCKD *const xd, int mi_row,
int mi_col, aom_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const BLOCK_SIZE bsize = mbmi->sb_type;
int i;
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
// TODO(slavarnway): move x_mis, y_mis into xd ?????
const int x_mis = AOMMIN(cm->mi_cols - mi_col, bw);
const int y_mis = AOMMIN(cm->mi_rows - mi_row, bh);
mbmi->segment_id = read_intra_segment_id(cm, xd, mi_offset, x_mis, y_mis, r);
mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r);
#if CONFIG_DELTA_Q
if (cm->delta_q_present_flag) {
xd->current_qindex =
xd->prev_qindex +
read_delta_qindex(cm, xd, r, mbmi, mi_col, mi_row) * cm->delta_q_res;
xd->prev_qindex = xd->current_qindex;
}
#endif
mbmi->tx_size = read_tx_size_intra(cm, xd, r);
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
#if CONFIG_CB4X4
(void)i;
mbmi->mode =
#if CONFIG_DAALA_EC
read_intra_mode(r, get_y_mode_cdf(cm, mi, above_mi, left_mi, 0));
#else
read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 0));
#endif // CONFIG_DAALA_EC
#else
switch (bsize) {
case BLOCK_4X4:
for (i = 0; i < 4; ++i)
mi->bmi[i].as_mode =
#if CONFIG_DAALA_EC
read_intra_mode(r, get_y_mode_cdf(cm, mi, above_mi, left_mi, i));
#else
read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, i));
#endif
mbmi->mode = mi->bmi[3].as_mode;
break;
case BLOCK_4X8:
mi->bmi[0].as_mode = mi->bmi[2].as_mode =
#if CONFIG_DAALA_EC
read_intra_mode(r, get_y_mode_cdf(cm, mi, above_mi, left_mi, 0));
#else
read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 0));
#endif
mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode =
#if CONFIG_DAALA_EC
read_intra_mode(r, get_y_mode_cdf(cm, mi, above_mi, left_mi, 1));
#else
read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 1));
#endif
break;
case BLOCK_8X4:
mi->bmi[0].as_mode = mi->bmi[1].as_mode =
#if CONFIG_DAALA_EC
read_intra_mode(r, get_y_mode_cdf(cm, mi, above_mi, left_mi, 0));
#else
read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 0));
#endif
mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode =
#if CONFIG_DAALA_EC
read_intra_mode(r, get_y_mode_cdf(cm, mi, above_mi, left_mi, 2));
#else
read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 2));
#endif
break;
default:
mbmi->mode =
#if CONFIG_DAALA_EC
read_intra_mode(r, get_y_mode_cdf(cm, mi, above_mi, left_mi, 0));
#else
read_intra_mode(r, get_y_mode_probs(cm, mi, above_mi, left_mi, 0));
#endif
}
#endif
mbmi->uv_mode = read_intra_mode_uv(cm, xd, r, mbmi->mode);
#if CONFIG_EXT_INTRA
read_intra_angle_info(cm, xd, r);
#endif // CONFIG_EXT_INTRA
#if CONFIG_PALETTE
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools)
read_palette_mode_info(cm, xd, r);
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
if (bsize >= BLOCK_8X8) read_filter_intra_mode_info(cm, xd, r);
#endif // CONFIG_FILTER_INTRA
read_tx_type(cm, xd, mbmi,
#if CONFIG_SUPERTX
0,
#endif
r);
}
static int read_mv_component(aom_reader *r, nmv_component *mvcomp, int usehp) {
int mag, d, fr, hp;
const int sign = aom_read(r, mvcomp->sign, ACCT_STR);
const int mv_class =
#if CONFIG_EC_MULTISYMBOL
aom_read_symbol(r, mvcomp->class_cdf, MV_CLASSES, ACCT_STR);
#else
aom_read_tree(r, av1_mv_class_tree, mvcomp->classes, ACCT_STR);
#endif
const int class0 = mv_class == MV_CLASS_0;
// Integer part
if (class0) {
d = aom_read(r, mvcomp->class0[0], ACCT_STR);
mag = 0;
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (i = 0; i < n; ++i) d |= aom_read(r, mvcomp->bits[i], ACCT_STR) << i;
mag = CLASS0_SIZE << (mv_class + 2);
}
// Fractional part
#if CONFIG_EC_MULTISYMBOL
fr = aom_read_symbol(r, class0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf,
MV_FP_SIZE, ACCT_STR);
#else
fr = aom_read_tree(r, av1_mv_fp_tree,
class0 ? mvcomp->class0_fp[d] : mvcomp->fp, ACCT_STR);
#endif
// High precision part (if hp is not used, the default value of the hp is 1)
hp = usehp ? aom_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp, ACCT_STR)
: 1;
// Result
mag += ((d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref,
nmv_context *ctx, nmv_context_counts *counts,
int allow_hp) {
MV_JOINT_TYPE joint_type;
MV diff = { 0, 0 };
joint_type =
#if CONFIG_EC_MULTISYMBOL
(MV_JOINT_TYPE)aom_read_symbol(r, ctx->joint_cdf, MV_JOINTS, ACCT_STR);
#else
(MV_JOINT_TYPE)aom_read_tree(r, av1_mv_joint_tree, ctx->joints, ACCT_STR);
#endif
if (mv_joint_vertical(joint_type))
diff.row = read_mv_component(r, &ctx->comps[0], allow_hp);
if (mv_joint_horizontal(joint_type))
diff.col = read_mv_component(r, &ctx->comps[1], allow_hp);
av1_inc_mv(&diff, counts, allow_hp);
mv->row = ref->row + diff.row;
mv->col = ref->col + diff.col;
}
static REFERENCE_MODE read_block_reference_mode(AV1_COMMON *cm,
const MACROBLOCKD *xd,
aom_reader *r) {
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
const int ctx = av1_get_reference_mode_context(cm, xd);
const REFERENCE_MODE mode =
(REFERENCE_MODE)aom_read(r, cm->fc->comp_inter_prob[ctx], ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->comp_inter[ctx][mode];
return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE
} else {
return cm->reference_mode;
}
}
// Read the referncence frame
static void read_ref_frames(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r, int segment_id,
MV_REFERENCE_FRAME ref_frame[2]) {
FRAME_CONTEXT *const fc = cm->fc;
FRAME_COUNTS *counts = xd->counts;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id,
SEG_LVL_REF_FRAME);
ref_frame[1] = NONE;
} else {
const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r);
// FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding
if (mode == COMPOUND_REFERENCE) {
#if CONFIG_EXT_REFS
const int idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]];
#else
const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
#endif // CONFIG_EXT_REFS
const int ctx = av1_get_pred_context_comp_ref_p(cm, xd);
const int bit = aom_read(r, fc->comp_ref_prob[ctx][0], ACCT_STR);
if (counts) ++counts->comp_ref[ctx][0][bit];
#if CONFIG_EXT_REFS
// Decode forward references.
if (!bit) {
const int ctx1 = av1_get_pred_context_comp_ref_p1(cm, xd);
const int bit1 = aom_read(r, fc->comp_ref_prob[ctx1][1], ACCT_STR);
if (counts) ++counts->comp_ref[ctx1][1][bit1];
ref_frame[!idx] = cm->comp_fwd_ref[bit1 ? 0 : 1];
} else {
const int ctx2 = av1_get_pred_context_comp_ref_p2(cm, xd);
const int bit2 = aom_read(r, fc->comp_ref_prob[ctx2][2], ACCT_STR);
if (counts) ++counts->comp_ref[ctx2][2][bit2];
ref_frame[!idx] = cm->comp_fwd_ref[bit2 ? 3 : 2];
}
// Decode backward references.
{
const int ctx_bwd = av1_get_pred_context_comp_bwdref_p(cm, xd);
const int bit_bwd =
aom_read(r, fc->comp_bwdref_prob[ctx_bwd][0], ACCT_STR);
if (counts) ++counts->comp_bwdref[ctx_bwd][0][bit_bwd];
ref_frame[idx] = cm->comp_bwd_ref[bit_bwd];
}
#else
ref_frame[!idx] = cm->comp_var_ref[bit];
ref_frame[idx] = cm->comp_fixed_ref;
#endif // CONFIG_EXT_REFS
} else if (mode == SINGLE_REFERENCE) {
#if CONFIG_EXT_REFS
const int ctx0 = av1_get_pred_context_single_ref_p1(xd);
const int bit0 = aom_read(r, fc->single_ref_prob[ctx0][0], ACCT_STR);
if (counts) ++counts->single_ref[ctx0][0][bit0];
if (bit0) {
const int ctx1 = av1_get_pred_context_single_ref_p2(xd);
const int bit1 = aom_read(r, fc->single_ref_prob[ctx1][1], ACCT_STR);
if (counts) ++counts->single_ref[ctx1][1][bit1];
ref_frame[0] = bit1 ? ALTREF_FRAME : BWDREF_FRAME;
} else {
const int ctx2 = av1_get_pred_context_single_ref_p3(xd);
const int bit2 = aom_read(r, fc->single_ref_prob[ctx2][2], ACCT_STR);
if (counts) ++counts->single_ref[ctx2][2][bit2];
if (bit2) {
const int ctx4 = av1_get_pred_context_single_ref_p5(xd);
const int bit4 = aom_read(r, fc->single_ref_prob[ctx4][4], ACCT_STR);
if (counts) ++counts->single_ref[ctx4][4][bit4];
ref_frame[0] = bit4 ? GOLDEN_FRAME : LAST3_FRAME;
} else {
const int ctx3 = av1_get_pred_context_single_ref_p4(xd);
const int bit3 = aom_read(r, fc->single_ref_prob[ctx3][3], ACCT_STR);
if (counts) ++counts->single_ref[ctx3][3][bit3];
ref_frame[0] = bit3 ? LAST2_FRAME : LAST_FRAME;
}
}
#else
const int ctx0 = av1_get_pred_context_single_ref_p1(xd);
const int bit0 = aom_read(r, fc->single_ref_prob[ctx0][0], ACCT_STR);
if (counts) ++counts->single_ref[ctx0][0][bit0];
if (bit0) {
const int ctx1 = av1_get_pred_context_single_ref_p2(xd);
const int bit1 = aom_read(r, fc->single_ref_prob[ctx1][1], ACCT_STR);
if (counts) ++counts->single_ref[ctx1][1][bit1];
ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME;
} else {
ref_frame[0] = LAST_FRAME;
}
#endif // CONFIG_EXT_REFS
ref_frame[1] = NONE;
} else {
assert(0 && "Invalid prediction mode.");
}
}
}
static INLINE void read_mb_interp_filter(AV1_COMMON *const cm,
MACROBLOCKD *const xd,
MB_MODE_INFO *const mbmi,
aom_reader *r) {
FRAME_COUNTS *counts = xd->counts;
#if CONFIG_DUAL_FILTER
int dir;
if (cm->interp_filter != SWITCHABLE) {
for (dir = 0; dir < 4; ++dir) mbmi->interp_filter[dir] = cm->interp_filter;
} else {
for (dir = 0; dir < 2; ++dir) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
mbmi->interp_filter[dir] = EIGHTTAP_REGULAR;
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
(mbmi->ref_frame[1] > INTRA_FRAME &&
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
#if CONFIG_DAALA_EC
mbmi->interp_filter[dir] =
(InterpFilter)av1_switchable_interp_inv[aom_read_symbol(
r, cm->fc->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS,
ACCT_STR)];
#else
mbmi->interp_filter[dir] = (InterpFilter)aom_read_tree(
r, av1_switchable_interp_tree, cm->fc->switchable_interp_prob[ctx],
ACCT_STR);
#endif
if (counts) ++counts->switchable_interp[ctx][mbmi->interp_filter[dir]];
}
}
// The index system works as:
// (0, 1) -> (vertical, horizontal) filter types for the first ref frame.
// (2, 3) -> (vertical, horizontal) filter types for the second ref frame.
mbmi->interp_filter[2] = mbmi->interp_filter[0];
mbmi->interp_filter[3] = mbmi->interp_filter[1];
}
#else // CONFIG_DUAL_FILTER
#if CONFIG_EXT_INTERP
if (!av1_is_interp_needed(xd)) {
mbmi->interp_filter = EIGHTTAP_REGULAR;
return;
}
#endif // CONFIG_EXT_INTERP
if (cm->interp_filter != SWITCHABLE) {
mbmi->interp_filter = cm->interp_filter;
} else {
const int ctx = av1_get_pred_context_switchable_interp(xd);
#if CONFIG_DAALA_EC
mbmi->interp_filter =
(InterpFilter)av1_switchable_interp_inv[aom_read_symbol(
r, cm->fc->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS,
ACCT_STR)];
#else
mbmi->interp_filter = (InterpFilter)aom_read_tree(
r, av1_switchable_interp_tree, cm->fc->switchable_interp_prob[ctx],
ACCT_STR);
#endif
if (counts) ++counts->switchable_interp[ctx][mbmi->interp_filter];
}
#endif // CONFIG_DUAL_FILTER
}
static void read_intra_block_mode_info(AV1_COMMON *const cm,
MACROBLOCKD *const xd, MODE_INFO *mi,
aom_reader *r) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
int i;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE;
#if CONFIG_CB4X4
(void)i;
mbmi->mode = read_intra_mode_y(cm, xd, r, size_group_lookup[bsize]);
#else
switch (bsize) {
case BLOCK_4X4:
for (i = 0; i < 4; ++i)
mi->bmi[i].as_mode = read_intra_mode_y(cm, xd, r, 0);
mbmi->mode = mi->bmi[3].as_mode;
break;
case BLOCK_4X8:
mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode_y(cm, xd, r, 0);
mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode_y(cm, xd, r, 0);
break;
case BLOCK_8X4:
mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode_y(cm, xd, r, 0);
mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode_y(cm, xd, r, 0);
break;
default:
mbmi->mode = read_intra_mode_y(cm, xd, r, size_group_lookup[bsize]);
}
#endif
mbmi->uv_mode = read_intra_mode_uv(cm, xd, r, mbmi->mode);
#if CONFIG_EXT_INTRA
read_intra_angle_info(cm, xd, r);
#endif // CONFIG_EXT_INTRA
#if CONFIG_PALETTE
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools)
read_palette_mode_info(cm, xd, r);
#endif // CONFIG_PALETTE
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
if (bsize >= BLOCK_8X8) read_filter_intra_mode_info(cm, xd, r);
#endif // CONFIG_FILTER_INTRA
}
static INLINE int is_mv_valid(const MV *mv) {
return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW &&
mv->col < MV_UPP;
}
static INLINE int assign_mv(AV1_COMMON *cm, MACROBLOCKD *xd,
PREDICTION_MODE mode,
MV_REFERENCE_FRAME ref_frame[2], int block,
int_mv mv[2], int_mv ref_mv[2],
int_mv nearest_mv[2], int_mv near_mv[2],
int is_compound, int allow_hp, aom_reader *r) {
int i;
int ret = 1;
#if CONFIG_REF_MV
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
#if CONFIG_CB4X4
int_mv *pred_mv = mbmi->pred_mv;
(void)block;
#else
BLOCK_SIZE bsize = mbmi->sb_type;
int_mv *pred_mv =
(bsize >= BLOCK_8X8) ? mbmi->pred_mv : xd->mi[0]->bmi[block].pred_mv;
#endif // CONFIG_CB4X4
#else
(void)block;
#endif // CONFIG_REF_MV
(void)ref_frame;
switch (mode) {
#if CONFIG_EXT_INTER
case NEWFROMNEARMV:
#endif // CONFIG_EXT_INTER
case NEWMV: {
FRAME_COUNTS *counts = xd->counts;
#if !CONFIG_REF_MV
nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL;
#endif
for (i = 0; i < 1 + is_compound; ++i) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], i,
mbmi->ref_mv_idx);
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc[nmv_ctx],
mv_counts, allow_hp);
#else
read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc, mv_counts,
allow_hp);
#endif
ret = ret && is_mv_valid(&mv[i].as_mv);
#if CONFIG_REF_MV
pred_mv[i].as_int = ref_mv[i].as_int;
#endif
}
break;
}
case NEARESTMV: {
mv[0].as_int = nearest_mv[0].as_int;
if (is_compound) mv[1].as_int = nearest_mv[1].as_int;
#if CONFIG_REF_MV
pred_mv[0].as_int = nearest_mv[0].as_int;
if (is_compound) pred_mv[1].as_int = nearest_mv[1].as_int;
#endif
break;
}
case NEARMV: {
mv[0].as_int = near_mv[0].as_int;
if (is_compound) mv[1].as_int = near_mv[1].as_int;
#if CONFIG_REF_MV
pred_mv[0].as_int = near_mv[0].as_int;
if (is_compound) pred_mv[1].as_int = near_mv[1].as_int;
#endif
break;
}
case ZEROMV: {
#if CONFIG_GLOBAL_MOTION
mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
cm->allow_high_precision_mv)
.as_int;
if (is_compound)
mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]],
cm->allow_high_precision_mv)
.as_int;
#else
mv[0].as_int = 0;
if (is_compound) mv[1].as_int = 0;
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_REF_MV
pred_mv[0].as_int = 0;
if (is_compound) pred_mv[1].as_int = 0;
#endif
break;
}
#if CONFIG_EXT_INTER
case NEW_NEWMV: {
FRAME_COUNTS *counts = xd->counts;
#if !CONFIG_REF_MV
nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL;
#endif
assert(is_compound);
for (i = 0; i < 2; ++i) {
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx =
av1_nmv_ctx(xd->ref_mv_count[rf_type], xd->ref_mv_stack[rf_type], i,
mbmi->ref_mv_idx);
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc[nmv_ctx],
mv_counts, allow_hp);
#else
read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc, mv_counts,
allow_hp);
#endif
ret = ret && is_mv_valid(&mv[i].as_mv);
}
break;
}
case NEAREST_NEARESTMV: {
assert(is_compound);
mv[0].as_int = nearest_mv[0].as_int;
mv[1].as_int = nearest_mv[1].as_int;
break;
}
case NEAREST_NEARMV: {
assert(is_compound);
mv[0].as_int = nearest_mv[0].as_int;
mv[1].as_int = near_mv[1].as_int;
break;
}
case NEAR_NEARESTMV: {
assert(is_compound);
mv[0].as_int = near_mv[0].as_int;
mv[1].as_int = nearest_mv[1].as_int;
break;
}
case NEAR_NEARMV: {
assert(is_compound);
mv[0].as_int = near_mv[0].as_int;
mv[1].as_int = near_mv[1].as_int;
break;
}
case NEW_NEARESTMV: {
FRAME_COUNTS *counts = xd->counts;
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, &cm->fc->nmvc[nmv_ctx],
mv_counts, allow_hp);
#else
nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL;
read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, &cm->fc->nmvc, mv_counts,
allow_hp);
#endif
assert(is_compound);
ret = ret && is_mv_valid(&mv[0].as_mv);
mv[1].as_int = nearest_mv[1].as_int;
break;
}
case NEAREST_NEWMV: {
FRAME_COUNTS *counts = xd->counts;
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx);
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
mv[0].as_int = nearest_mv[0].as_int;
read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, &cm->fc->nmvc[nmv_ctx],
mv_counts, allow_hp);
#else
nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL;
mv[0].as_int = nearest_mv[0].as_int;
read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, &cm->fc->nmvc, mv_counts,
allow_hp);
#endif
assert(is_compound);
ret = ret && is_mv_valid(&mv[1].as_mv);
break;
}
case NEAR_NEWMV: {
FRAME_COUNTS *counts = xd->counts;
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 1, mbmi->ref_mv_idx);
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
mv[0].as_int = near_mv[0].as_int;
read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, &cm->fc->nmvc[nmv_ctx],
mv_counts, allow_hp);
#else
nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL;
mv[0].as_int = near_mv[0].as_int;
read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, &cm->fc->nmvc, mv_counts,
allow_hp);
#endif
assert(is_compound);
ret = ret && is_mv_valid(&mv[1].as_mv);
break;
}
case NEW_NEARMV: {
FRAME_COUNTS *counts = xd->counts;
#if CONFIG_REF_MV
int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame);
int nmv_ctx = av1_nmv_ctx(xd->ref_mv_count[rf_type],
xd->ref_mv_stack[rf_type], 0, mbmi->ref_mv_idx);
nmv_context_counts *const mv_counts =
counts ? &counts->mv[nmv_ctx] : NULL;
read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, &cm->fc->nmvc[nmv_ctx],
mv_counts, allow_hp);
#else
nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL;
read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, &cm->fc->nmvc, mv_counts,
allow_hp);
#endif
assert(is_compound);
ret = ret && is_mv_valid(&mv[0].as_mv);
mv[1].as_int = near_mv[1].as_int;
break;
}
case ZERO_ZEROMV: {
assert(is_compound);
mv[0].as_int = 0;
mv[1].as_int = 0;
break;
}
#endif // CONFIG_EXT_INTER
default: { return 0; }
}
return ret;
}
static int read_is_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int segment_id, aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
return get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME;
} else {
const int ctx = av1_get_intra_inter_context(xd);
const int is_inter = aom_read(r, cm->fc->intra_inter_prob[ctx], ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->intra_inter[ctx][is_inter];
return is_inter;
}
}
static void fpm_sync(void *const data, int mi_row) {
AV1Decoder *const pbi = (AV1Decoder *)data;
av1_frameworker_wait(pbi->frame_worker_owner, pbi->common.prev_frame,
mi_row << pbi->common.mib_size_log2);
}
static void read_inter_block_mode_info(AV1Decoder *const pbi,
MACROBLOCKD *const xd,
MODE_INFO *const mi,
#if (CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION || CONFIG_EXT_INTER) && \
CONFIG_SUPERTX
int mi_row, int mi_col, aom_reader *r,
int supertx_enabled) {
#else
int mi_row, int mi_col, aom_reader *r) {
#endif // CONFIG_MOTION_VAR && CONFIG_SUPERTX
AV1_COMMON *const cm = &pbi->common;
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
const int unify_bsize = CONFIG_CB4X4;
int_mv nearestmv[2], nearmv[2];
int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
#if CONFIG_EXT_INTER
int mv_idx;
#endif // CONFIG_EXT_INTER
int ref, is_compound;
int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
#if CONFIG_REF_MV && CONFIG_EXT_INTER
int16_t compound_inter_mode_ctx[MODE_CTX_REF_FRAMES];
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
int16_t mode_ctx = 0;
#if CONFIG_WARPED_MOTION
double pts[144], pts_inref[144];
#endif // CONFIG_WARPED_MOTION
#if CONFIG_PALETTE
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
#endif // CONFIG_PALETTE
read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame);
is_compound = has_second_ref(mbmi);
for (ref = 0; ref < 1 + is_compound; ++ref) {
MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, &ref_buf->sf);
av1_find_mv_refs(cm, xd, mi, frame,
#if CONFIG_REF_MV
&xd->ref_mv_count[frame], xd->ref_mv_stack[frame],
#if CONFIG_EXT_INTER
compound_inter_mode_ctx,
#endif // CONFIG_EXT_INTER
#endif
ref_mvs[frame], mi_row, mi_col, fpm_sync, (void *)pbi,
inter_mode_ctx);
}
#if CONFIG_REF_MV
if (is_compound) {
MV_REFERENCE_FRAME ref_frame = av1_ref_frame_type(mbmi->ref_frame);
av1_find_mv_refs(cm, xd, mi, ref_frame, &xd->ref_mv_count[ref_frame],
xd->ref_mv_stack[ref_frame],
#if CONFIG_EXT_INTER
compound_inter_mode_ctx,
#endif // CONFIG_EXT_INTER
ref_mvs[ref_frame], mi_row, mi_col, fpm_sync, (void *)pbi,
inter_mode_ctx);
if (xd->ref_mv_count[ref_frame] < 2) {
MV_REFERENCE_FRAME rf[2];
int_mv zeromv[2];
av1_set_ref_frame(rf, ref_frame);
#if CONFIG_GLOBAL_MOTION
zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[rf[0]],
cm->allow_high_precision_mv)
.as_int;
zeromv[1].as_int = (rf[1] != NONE)
? gm_get_motion_vector(&cm->global_motion[rf[1]],
cm->allow_high_precision_mv)
.as_int
: 0;
#else
zeromv[0].as_int = zeromv[1].as_int = 0;
#endif
for (ref = 0; ref < 2; ++ref) {
lower_mv_precision(&ref_mvs[rf[ref]][0].as_mv, allow_hp);
lower_mv_precision(&ref_mvs[rf[ref]][1].as_mv, allow_hp);
}
if (ref_mvs[rf[0]][0].as_int != zeromv[0].as_int ||
ref_mvs[rf[0]][1].as_int != zeromv[0].as_int ||
ref_mvs[rf[1]][0].as_int != zeromv[1].as_int ||
ref_mvs[rf[1]][1].as_int != zeromv[1].as_int)
inter_mode_ctx[ref_frame] &= ~(1 << ALL_ZERO_FLAG_OFFSET);
}
}
#if CONFIG_EXT_INTER
if (is_compound)
mode_ctx = compound_inter_mode_ctx[mbmi->ref_frame[0]];
else
#endif // CONFIG_EXT_INTER
mode_ctx =
av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame, bsize, -1);
mbmi->ref_mv_idx = 0;
#else
mode_ctx = inter_mode_ctx[mbmi->ref_frame[0]];
#endif
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
mbmi->mode = ZEROMV;
if (bsize < BLOCK_8X8) {
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid usage of segement feature on small blocks");
return;
}
} else {
if (bsize >= BLOCK_8X8 || unify_bsize) {
#if CONFIG_EXT_INTER
if (is_compound)
mbmi->mode = read_inter_compound_mode(cm, xd, r, mode_ctx);
else
#endif // CONFIG_EXT_INTER
mbmi->mode = read_inter_mode(cm, xd,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
mbmi,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
r, mode_ctx);
#if CONFIG_REF_MV
if (mbmi->mode == NEARMV || mbmi->mode == NEWMV)
read_drl_idx(cm, xd, mbmi, r);
#endif
}
}
#if CONFIG_EXT_INTER
if ((bsize < BLOCK_8X8 && unify_bsize) ||
(mbmi->mode != ZEROMV && mbmi->mode != ZERO_ZEROMV)) {
#else
if ((bsize < BLOCK_8X8 && !unify_bsize) || mbmi->mode != ZEROMV) {
#endif // CONFIG_EXT_INTER
for (ref = 0; ref < 1 + is_compound; ++ref) {
av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[ref]],
&nearestmv[ref], &nearmv[ref]);
}
}
#if CONFIG_REF_MV
if (mbmi->ref_mv_idx > 0) {
int_mv cur_mv =
xd->ref_mv_stack[mbmi->ref_frame[0]][1 + mbmi->ref_mv_idx].this_mv;
nearmv[0] = cur_mv;
}
#if CONFIG_EXT_INTER
if (is_compound && bsize >= BLOCK_8X8 && mbmi->mode != ZERO_ZEROMV) {
#else
if (is_compound && (bsize >= BLOCK_8X8 || unify_bsize) &&
mbmi->mode != NEWMV && mbmi->mode != ZEROMV) {
#endif // CONFIG_EXT_INTER
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
#if CONFIG_EXT_INTER
if (xd->ref_mv_count[ref_frame_type] > 0) {
#else
if (xd->ref_mv_count[ref_frame_type] == 1 && mbmi->mode == NEARESTMV) {
#endif // CONFIG_EXT_INTER
#if CONFIG_EXT_INTER
if (mbmi->mode == NEAREST_NEARESTMV) {
#endif // CONFIG_EXT_INTER
nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv;
nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv;
lower_mv_precision(&nearestmv[0].as_mv, allow_hp);
lower_mv_precision(&nearestmv[1].as_mv, allow_hp);
#if CONFIG_EXT_INTER
} else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAREST_NEARMV) {
nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv;
lower_mv_precision(&nearestmv[0].as_mv, allow_hp);
} else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEAR_NEARESTMV) {
nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv;
lower_mv_precision(&nearestmv[1].as_mv, allow_hp);
}
#endif // CONFIG_EXT_INTER
}
#if CONFIG_EXT_INTER
if (xd->ref_mv_count[ref_frame_type] > 1) {
if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEAR_NEARESTMV ||
mbmi->mode == NEAR_NEARMV) {
nearmv[0] = xd->ref_mv_stack[ref_frame_type][1].this_mv;
lower_mv_precision(&nearmv[0].as_mv, allow_hp);
}
if (mbmi->mode == NEW_NEARMV || mbmi->mode == NEAREST_NEARMV ||
mbmi->mode == NEAR_NEARMV) {
nearmv[1] = xd->ref_mv_stack[ref_frame_type][1].comp_mv;
lower_mv_precision(&nearmv[1].as_mv, allow_hp);
}
}
#else
if (xd->ref_mv_count[ref_frame_type] > 1) {
int ref_mv_idx = 1 + mbmi->ref_mv_idx;
nearestmv[0] = xd->ref_mv_stack[ref_frame_type][0].this_mv;
nearestmv[1] = xd->ref_mv_stack[ref_frame_type][0].comp_mv;
nearmv[0] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
nearmv[1] = xd->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
}
#endif // CONFIG_EXT_INTER
}
#endif
#if !CONFIG_EXT_INTERP && !CONFIG_DUAL_FILTER && !CONFIG_WARPED_MOTION
read_mb_interp_filter(cm, xd, mbmi, r);
#endif // !CONFIG_EXT_INTERP && !CONFIG_DUAL_FILTER && !CONFIG_WARPED_MOTION
if (bsize < BLOCK_8X8 && !unify_bsize) {
const int num_4x4_w = 1 << xd->bmode_blocks_wl;
const int num_4x4_h = 1 << xd->bmode_blocks_hl;
int idx, idy;
PREDICTION_MODE b_mode;
int_mv nearest_sub8x8[2], near_sub8x8[2];
#if CONFIG_EXT_INTER
int_mv ref_mv[2][2];
#endif // CONFIG_EXT_INTER
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
int_mv block[2];
const int j = idy * 2 + idx;
int_mv ref_mv_s8[2];
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (!is_compound)
#endif // CONFIG_EXT_INTER
mode_ctx = av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame,
bsize, j);
#endif
#if CONFIG_EXT_INTER
if (is_compound)
b_mode = read_inter_compound_mode(cm, xd, r, mode_ctx);
else
#endif // CONFIG_EXT_INTER
b_mode = read_inter_mode(cm, xd,
#if CONFIG_REF_MV && CONFIG_EXT_INTER
mbmi,
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
r, mode_ctx);
#if CONFIG_EXT_INTER
mv_idx = (b_mode == NEWFROMNEARMV) ? 1 : 0;
if (b_mode != ZEROMV && b_mode != ZERO_ZEROMV) {
#else
if (b_mode != ZEROMV) {
#endif // CONFIG_EXT_INTER
#if CONFIG_REF_MV
CANDIDATE_MV ref_mv_stack[2][MAX_REF_MV_STACK_SIZE];
uint8_t ref_mv_count[2];
#endif
for (ref = 0; ref < 1 + is_compound; ++ref)
#if CONFIG_EXT_INTER
{
int_mv mv_ref_list[MAX_MV_REF_CANDIDATES];
av1_update_mv_context(xd, mi, mbmi->ref_frame[ref], mv_ref_list, j,
mi_row, mi_col, NULL);
#endif // CONFIG_EXT_INTER
av1_append_sub8x8_mvs_for_idx(cm, xd, j, ref, mi_row, mi_col,
#if CONFIG_REF_MV
ref_mv_stack[ref], &ref_mv_count[ref],
#endif
#if CONFIG_EXT_INTER
mv_ref_list,
#endif // CONFIG_EXT_INTER
&nearest_sub8x8[ref],
&near_sub8x8[ref]);
#if CONFIG_EXT_INTER
if (have_newmv_in_inter_mode(b_mode)) {
mv_ref_list[0].as_int = nearest_sub8x8[ref].as_int;
mv_ref_list[1].as_int = near_sub8x8[ref].as_int;
av1_find_best_ref_mvs(allow_hp, mv_ref_list, &ref_mv[0][ref],
&ref_mv[1][ref]);
}
}
#endif // CONFIG_EXT_INTER
}
for (ref = 0; ref < 1 + is_compound && b_mode != ZEROMV; ++ref) {
#if CONFIG_REF_MV
ref_mv_s8[ref] = nearest_sub8x8[ref];
lower_mv_precision(&ref_mv_s8[ref].as_mv, allow_hp);
#else
ref_mv_s8[ref] = nearestmv[ref];
#endif
}
#if CONFIG_EXT_INTER
(void)ref_mv_s8;
#endif
if (!assign_mv(cm, xd, b_mode, mbmi->ref_frame, j, block,
#if CONFIG_EXT_INTER
ref_mv[mv_idx],
#else
ref_mv_s8,
#endif // CONFIG_EXT_INTER
nearest_sub8x8, near_sub8x8, is_compound, allow_hp, r)) {
xd->corrupted |= 1;
break;
};
mi->bmi[j].as_mv[0].as_int = block[0].as_int;
mi->bmi[j].as_mode = b_mode;
if (is_compound) mi->bmi[j].as_mv[1].as_int = block[1].as_int;
if (num_4x4_h == 2) mi->bmi[j + 2] = mi->bmi[j];
if (num_4x4_w == 2) mi->bmi[j + 1] = mi->bmi[j];
}
}
#if CONFIG_REF_MV
mbmi->pred_mv[0].as_int = mi->bmi[3].pred_mv[0].as_int;
mbmi->pred_mv[1].as_int = mi->bmi[3].pred_mv[1].as_int;
#endif
mi->mbmi.mode = b_mode;
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
} else {
int_mv ref_mv[2];
ref_mv[0] = nearestmv[0];
ref_mv[1] = nearestmv[1];
for (ref = 0; ref < 1 + is_compound && mbmi->mode == NEWMV; ++ref) {
#if CONFIG_REF_MV
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (xd->ref_mv_count[ref_frame_type] > 1) {
ref_mv[ref] =
(ref == 0)
? xd->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx].this_mv
: xd->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx].comp_mv;
clamp_mv_ref(&ref_mv[ref].as_mv, xd->n8_w << MI_SIZE_LOG2,
xd->n8_h << MI_SIZE_LOG2, xd);
}
#endif
nearestmv[ref] = ref_mv[ref];
}
xd->corrupted |=
!assign_mv(cm, xd, mbmi->mode, mbmi->ref_frame, 0, mbmi->mv,
#if CONFIG_EXT_INTER
mbmi->mode == NEWFROMNEARMV ? nearmv : nearestmv,
#else
ref_mv,
#endif // CONFIG_EXT_INTER
nearestmv, nearmv, is_compound, allow_hp, r);
}
#if CONFIG_EXT_INTER
mbmi->use_wedge_interintra = 0;
if (cm->reference_mode != COMPOUND_REFERENCE &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
const int interintra =
aom_read(r, cm->fc->interintra_prob[bsize_group], ACCT_STR);
if (xd->counts) xd->counts->interintra[bsize_group][interintra]++;
assert(mbmi->ref_frame[1] == NONE);
if (interintra) {
const INTERINTRA_MODE interintra_mode =
read_interintra_mode(cm, xd, r, bsize_group);
mbmi->ref_frame[1] = INTRA_FRAME;
mbmi->interintra_mode = interintra_mode;
#if CONFIG_EXT_INTRA
mbmi->angle_delta[0] = 0;
mbmi->angle_delta[1] = 0;
#if CONFIG_INTRA_INTERP
mbmi->intra_filter = INTRA_FILTER_LINEAR;
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_FILTER_INTRA
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
#endif // CONFIG_FILTER_INTRA
if (is_interintra_wedge_used(bsize)) {
mbmi->use_wedge_interintra =
aom_read(r, cm->fc->wedge_interintra_prob[bsize], ACCT_STR);
if (xd->counts)
xd->counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
if (mbmi->use_wedge_interintra) {
mbmi->interintra_wedge_index =
aom_read_literal(r, get_wedge_bits_lookup(bsize), ACCT_STR);
mbmi->interintra_wedge_sign = 0;
}
}
}
}
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
mbmi->motion_mode = SIMPLE_TRANSLATION;
#if CONFIG_WARPED_MOTION
if (mbmi->sb_type >= BLOCK_8X8 && !has_second_ref(mbmi))
mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref);
#endif // CONFIG_WARPED_MOTION
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_INTER
if (mbmi->ref_frame[1] != INTRA_FRAME)
#endif // CONFIG_EXT_INTER
mbmi->motion_mode = read_motion_mode(cm, xd, mbmi, r);
#if CONFIG_WARPED_MOTION
if (mbmi->motion_mode == WARPED_CAUSAL) {
mbmi->wm_params[0].wmtype = DEFAULT_WMTYPE;
find_projection(mbmi->num_proj_ref[0], pts, pts_inref,
&mbmi->wm_params[0]);
}
#endif // CONFIG_WARPED_MOTION
#if CONFIG_SUPERTX
}
#endif // CONFIG_SUPERTX
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_EXT_INTER
mbmi->interinter_compound_data.type = COMPOUND_AVERAGE;
if (cm->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode)
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
&& mbmi->motion_mode == SIMPLE_TRANSLATION
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
) {
mbmi->interinter_compound_data.type = aom_read_tree(
r, av1_compound_type_tree, cm->fc->compound_type_prob[bsize], ACCT_STR);
if (xd->counts)
xd->counts->compound_interinter[bsize]
[mbmi->interinter_compound_data.type]++;
if (mbmi->interinter_compound_data.type == COMPOUND_WEDGE) {
mbmi->interinter_compound_data.wedge_index =
aom_read_literal(r, get_wedge_bits_lookup(bsize), ACCT_STR);
mbmi->interinter_compound_data.wedge_sign = aom_read_bit(r, ACCT_STR);
}
}
#endif // CONFIG_EXT_INTER
#if CONFIG_WARPED_MOTION
if (mbmi->motion_mode != WARPED_CAUSAL) {
#endif // CONFIG_WARPED_MOTION
#if CONFIG_DUAL_FILTER || CONFIG_EXT_INTERP || CONFIG_WARPED_MOTION
read_mb_interp_filter(cm, xd, mbmi, r);
#endif // CONFIG_DUAL_FILTER || CONFIG_EXT_INTERP || CONFIG_WARPED_MOTION
#if CONFIG_WARPED_MOTION
} else {
#if CONFIG_DUAL_FILTER
mbmi->interp_filter[0] =
cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter;
mbmi->interp_filter[1] =
cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter;
#else
mbmi->interp_filter =
cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter;
#endif // CONFIG_DUAL_FILTER
}
#endif // CONFIG_WARPED_MOTION
}
static void read_inter_frame_mode_info(AV1Decoder *const pbi,
MACROBLOCKD *const xd,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif // CONFIG_SUPERTX
int mi_row, int mi_col, aom_reader *r) {
AV1_COMMON *const cm = &pbi->common;
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
int inter_block = 1;
#if CONFIG_VAR_TX
BLOCK_SIZE bsize = mbmi->sb_type;
#endif // CONFIG_VAR_TX
mbmi->mv[0].as_int = 0;
mbmi->mv[1].as_int = 0;
mbmi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, r);
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif // CONFIG_SUPERTX
mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r);
#if CONFIG_DELTA_Q
if (cm->delta_q_present_flag) {
xd->current_qindex =
xd->prev_qindex +
read_delta_qindex(cm, xd, r, mbmi, mi_col, mi_row) * cm->delta_q_res;
xd->prev_qindex = xd->current_qindex;
}
#endif
inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r);
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && !mbmi->skip &&
inter_block) {
const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
const int width = block_size_wide[bsize] >> tx_size_wide_log2[0];
const int height = block_size_high[bsize] >> tx_size_wide_log2[0];
int idx, idy;
mbmi->min_tx_size = TX_SIZES_ALL;
for (idy = 0; idy < height; idy += bh)
for (idx = 0; idx < width; idx += bw)
read_tx_size_vartx(cm, xd, mbmi, xd->counts, max_tx_size,
height != width, idy, idx, r);
} else {
if (inter_block)
mbmi->tx_size = read_tx_size_inter(cm, xd, !mbmi->skip, r);
else
mbmi->tx_size = read_tx_size_intra(cm, xd, r);
if (inter_block) {
const int width = num_4x4_blocks_wide_lookup[bsize];
const int height = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < height; ++idy)
for (idx = 0; idx < width; ++idx)
mbmi->inter_tx_size[idy >> 1][idx >> 1] = mbmi->tx_size;
}
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, mbmi->skip, xd);
}
#else
if (inter_block)
mbmi->tx_size = read_tx_size_inter(cm, xd, !mbmi->skip, r);
else
mbmi->tx_size = read_tx_size_intra(cm, xd, r);
#endif // CONFIG_VAR_TX
#if CONFIG_SUPERTX
}
#if CONFIG_VAR_TX
else if (inter_block) {
const int width = num_4x4_blocks_wide_lookup[bsize];
const int height = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
xd->mi[0]->mbmi.tx_size = xd->supertx_size;
for (idy = 0; idy < height; ++idy)
for (idx = 0; idx < width; ++idx)
xd->mi[0]->mbmi.inter_tx_size[idy >> 1][idx >> 1] = xd->supertx_size;
}
#endif // CONFIG_VAR_TX
#endif // CONFIG_SUPERTX
if (inter_block)
read_inter_block_mode_info(pbi, xd,
#if (CONFIG_MOTION_VAR || CONFIG_EXT_INTER || CONFIG_WARPED_MOTION) && \
CONFIG_SUPERTX
mi, mi_row, mi_col, r, supertx_enabled);
#else
mi, mi_row, mi_col, r);
#endif // CONFIG_MOTION_VAR && CONFIG_SUPERTX
else
read_intra_block_mode_info(cm, xd, mi, r);
read_tx_type(cm, xd, mbmi,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
r);
}
void av1_read_mode_info(AV1Decoder *const pbi, MACROBLOCKD *xd,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif // CONFIG_SUPERTX
int mi_row, int mi_col, aom_reader *r, int x_mis,
int y_mis) {
AV1_COMMON *const cm = &pbi->common;
MODE_INFO *const mi = xd->mi[0];
MV_REF *frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
int w, h;
if (frame_is_intra_only(cm)) {
read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r);
#if CONFIG_REF_MV
for (h = 0; h < y_mis; ++h) {
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mv + w;
mv->ref_frame[0] = NONE;
mv->ref_frame[1] = NONE;
}
}
#endif
} else {
read_inter_frame_mode_info(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r);
for (h = 0; h < y_mis; ++h) {
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mv + w;
mv->ref_frame[0] = mi->mbmi.ref_frame[0];
mv->ref_frame[1] = mi->mbmi.ref_frame[1];
mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
#if CONFIG_REF_MV
mv->pred_mv[0].as_int = mi->mbmi.pred_mv[0].as_int;
mv->pred_mv[1].as_int = mi->mbmi.pred_mv[1].as_int;
#endif
}
}
}
}