| /* |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <float.h> |
| |
| #include "aom_dsp/txfm_common.h" |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/reconintra.h" |
| |
| #include "av1/encoder/aq_complexity.h" |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/context_tree.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodeframe_utils.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/intra_mode_search_utils.h" |
| #include "av1/encoder/motion_search_facade.h" |
| #include "av1/encoder/nonrd_opt.h" |
| #include "av1/encoder/partition_search.h" |
| #include "av1/encoder/partition_strategy.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/tokenize.h" |
| #include "av1/encoder/var_based_part.h" |
| #include "av1/encoder/av1_ml_partition_models.h" |
| |
| #if CONFIG_TUNE_VMAF |
| #include "av1/encoder/tune_vmaf.h" |
| #endif |
| |
| #define COLLECT_MOTION_SEARCH_FEATURE_SB 0 |
| |
| void av1_reset_part_sf(PARTITION_SPEED_FEATURES *part_sf) { |
| part_sf->partition_search_type = SEARCH_PARTITION; |
| part_sf->less_rectangular_check_level = 0; |
| part_sf->use_square_partition_only_threshold = BLOCK_128X128; |
| part_sf->auto_max_partition_based_on_simple_motion = NOT_IN_USE; |
| part_sf->default_max_partition_size = BLOCK_LARGEST; |
| part_sf->default_min_partition_size = BLOCK_4X4; |
| part_sf->adjust_var_based_rd_partitioning = 0; |
| part_sf->max_intra_bsize = BLOCK_LARGEST; |
| // This setting only takes effect when partition_search_type is set |
| // to FIXED_PARTITION. |
| part_sf->fixed_partition_size = BLOCK_16X16; |
| // Recode loop tolerance %. |
| part_sf->partition_search_breakout_dist_thr = 0; |
| part_sf->partition_search_breakout_rate_thr = 0; |
| part_sf->prune_ext_partition_types_search_level = 0; |
| part_sf->prune_part4_search = 0; |
| part_sf->ml_prune_partition = 0; |
| part_sf->ml_early_term_after_part_split_level = 0; |
| for (int i = 0; i < PARTITION_BLOCK_SIZES; ++i) { |
| part_sf->ml_partition_search_breakout_thresh[i] = |
| -1; // -1 means not enabled. |
| } |
| part_sf->simple_motion_search_prune_agg = SIMPLE_AGG_LVL0; |
| part_sf->simple_motion_search_split = 0; |
| part_sf->simple_motion_search_prune_rect = 0; |
| part_sf->simple_motion_search_early_term_none = 0; |
| part_sf->simple_motion_search_reduce_search_steps = 0; |
| part_sf->intra_cnn_based_part_prune_level = 0; |
| part_sf->ext_partition_eval_thresh = BLOCK_8X8; |
| part_sf->rect_partition_eval_thresh = BLOCK_128X128; |
| part_sf->ext_part_eval_based_on_cur_best = 0; |
| part_sf->prune_ext_part_using_split_info = 0; |
| part_sf->prune_rectangular_split_based_on_qidx = 0; |
| part_sf->early_term_after_none_split = 0; |
| part_sf->ml_predict_breakout_level = 0; |
| part_sf->prune_sub_8x8_partition_level = 0; |
| part_sf->simple_motion_search_rect_split = 0; |
| part_sf->reuse_prev_rd_results_for_part_ab = 0; |
| part_sf->reuse_best_prediction_for_part_ab = 0; |
| part_sf->use_best_rd_for_pruning = 0; |
| part_sf->skip_non_sq_part_based_on_none = 0; |
| } |
| |
| // Reset speed features that works for the baseline encoding, but |
| // blocks the external partition search. |
| void av1_reset_sf_for_ext_part(AV1_COMP *const cpi) { |
| cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions = 0; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // If input |features| is NULL, write tpl stats to file for each super block. |
| // Otherwise, store tpl stats to |features|. |
| // The tpl stats is computed in the unit of tpl_bsize_1d (16x16). |
| // When writing to text file: |
| // The first row contains super block position, super block size, |
| // tpl unit length, number of units in the super block. |
| // The second row contains the intra prediction cost for each unit. |
| // The third row contains the inter prediction cost for each unit. |
| // The forth row contains the motion compensated dependency cost for each unit. |
| static void collect_tpl_stats_sb(const AV1_COMP *const cpi, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col, |
| aom_partition_features_t *features) { |
| const AV1_COMMON *const cm = &cpi->common; |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE || |
| gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) { |
| return; |
| } |
| |
| TplParams *const tpl_data = &cpi->ppi->tpl_data; |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| // If tpl stats is not established, early return |
| if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) { |
| if (features != NULL) features->sb_features.tpl_features.available = 0; |
| return; |
| } |
| |
| const int tpl_stride = tpl_frame->stride; |
| const int step = 1 << tpl_data->tpl_stats_block_mis_log2; |
| const int mi_width = |
| AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); |
| const int mi_height = |
| AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); |
| const int col_steps = (mi_width / step) + ((mi_width % step) > 0); |
| const int row_steps = (mi_height / step) + ((mi_height % step) > 0); |
| const int num_blocks = col_steps * row_steps; |
| |
| if (features == NULL) { |
| char filename[256]; |
| snprintf(filename, sizeof(filename), "%s/tpl_feature_sb%d", |
| cpi->oxcf.partition_info_path, cpi->sb_counter); |
| FILE *pfile = fopen(filename, "w"); |
| fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize, |
| tpl_data->tpl_bsize_1d, num_blocks); |
| int count = 0; |
| for (int row = 0; row < mi_height; row += step) { |
| for (int col = 0; col < mi_width; col += step) { |
| TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, |
| tpl_data->tpl_stats_block_mis_log2)]; |
| fprintf(pfile, "%.0f", (double)this_stats->intra_cost); |
| if (count < num_blocks - 1) fprintf(pfile, ","); |
| ++count; |
| } |
| } |
| fprintf(pfile, "\n"); |
| count = 0; |
| for (int row = 0; row < mi_height; row += step) { |
| for (int col = 0; col < mi_width; col += step) { |
| TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, |
| tpl_data->tpl_stats_block_mis_log2)]; |
| fprintf(pfile, "%.0f", (double)this_stats->inter_cost); |
| if (count < num_blocks - 1) fprintf(pfile, ","); |
| ++count; |
| } |
| } |
| fprintf(pfile, "\n"); |
| count = 0; |
| for (int row = 0; row < mi_height; row += step) { |
| for (int col = 0; col < mi_width; col += step) { |
| TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, |
| tpl_data->tpl_stats_block_mis_log2)]; |
| const int64_t mc_dep_delta = |
| RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
| this_stats->mc_dep_dist); |
| fprintf(pfile, "%.0f", (double)mc_dep_delta); |
| if (count < num_blocks - 1) fprintf(pfile, ","); |
| ++count; |
| } |
| } |
| fclose(pfile); |
| } else { |
| features->sb_features.tpl_features.available = 1; |
| features->sb_features.tpl_features.tpl_unit_length = tpl_data->tpl_bsize_1d; |
| features->sb_features.tpl_features.num_units = num_blocks; |
| int count = 0; |
| for (int row = 0; row < mi_height; row += step) { |
| for (int col = 0; col < mi_width; col += step) { |
| TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, |
| tpl_data->tpl_stats_block_mis_log2)]; |
| const int64_t mc_dep_delta = |
| RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
| this_stats->mc_dep_dist); |
| features->sb_features.tpl_features.intra_cost[count] = |
| this_stats->intra_cost; |
| features->sb_features.tpl_features.inter_cost[count] = |
| this_stats->inter_cost; |
| features->sb_features.tpl_features.mc_dep_cost[count] = mc_dep_delta; |
| ++count; |
| } |
| } |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, |
| FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, |
| int blk_row, int blk_col, |
| uint8_t allow_update_cdf) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->bsize; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, mbmi->bsize, |
| tx_size); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| assert(tx_size > TX_4X4); |
| |
| if (depth == MAX_VARTX_DEPTH) { |
| // Don't add to counts in this case |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| |
| if (tx_size == plane_tx_size) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][0]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][1]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); |
| ++x->txfm_search_info.txb_split_count; |
| |
| if (sub_txs == TX_4X4) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = row; |
| int offsetc = col; |
| |
| update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, |
| blk_col + offsetc, allow_update_cdf); |
| } |
| } |
| } |
| } |
| |
| static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, |
| BLOCK_SIZE plane_bsize, |
| FRAME_COUNTS *td_counts, |
| uint8_t allow_update_cdf) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); |
| |
| for (int idy = 0; idy < mi_height; idy += bh) { |
| for (int idx = 0; idx < mi_width; idx += bw) { |
| update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, |
| allow_update_cdf); |
| } |
| } |
| } |
| |
| static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, |
| int blk_col) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->bsize; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size) { |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| |
| } else { |
| if (tx_size == TX_8X8) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int row_end = |
| AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); |
| const int col_end = |
| AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); |
| for (int row = 0; row < row_end; row += bsh) { |
| const int offsetr = blk_row + row; |
| for (int col = 0; col < col_end; col += bsw) { |
| const int offsetc = blk_col + col; |
| set_txfm_context(xd, sub_txs, offsetr, offsetc); |
| } |
| } |
| } |
| } |
| |
| static void tx_partition_set_contexts(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); |
| |
| for (int idy = 0; idy < mi_height; idy += bh) { |
| for (int idx = 0; idx < mi_width; idx += bw) { |
| set_txfm_context(xd, max_tx_size, idy, idx); |
| } |
| } |
| } |
| |
| static void update_zeromv_cnt(const AV1_COMP *const cpi, |
| const MB_MODE_INFO *const mi, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| if (mi->ref_frame[0] != LAST_FRAME || !is_inter_block(mi) || |
| mi->segment_id > CR_SEGMENT_ID_BOOST2) { |
| return; |
| } |
| const AV1_COMMON *const cm = &cpi->common; |
| const MV mv = mi->mv[0].as_mv; |
| const int bw = mi_size_wide[bsize] >> 1; |
| const int bh = mi_size_high[bsize] >> 1; |
| const int xmis = AOMMIN((cm->mi_params.mi_cols - mi_col) >> 1, bw); |
| const int ymis = AOMMIN((cm->mi_params.mi_rows - mi_row) >> 1, bh); |
| const int block_index = |
| (mi_row >> 1) * (cm->mi_params.mi_cols >> 1) + (mi_col >> 1); |
| for (int y = 0; y < ymis; y++) { |
| for (int x = 0; x < xmis; x++) { |
| // consec_zero_mv is in the scale of 8x8 blocks |
| const int map_offset = block_index + y * (cm->mi_params.mi_cols >> 1) + x; |
| if (abs(mv.row) < 10 && abs(mv.col) < 10) { |
| if (cpi->consec_zero_mv[map_offset] < 255) |
| cpi->consec_zero_mv[map_offset]++; |
| } else { |
| cpi->consec_zero_mv[map_offset] = 0; |
| } |
| } |
| } |
| } |
| |
| static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TokenExtra **t, RUN_TYPE dry_run, |
| BLOCK_SIZE bsize, int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO **mi_4x4 = xd->mi; |
| MB_MODE_INFO *mbmi = mi_4x4[0]; |
| const int seg_skip = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); |
| const int mis = cm->mi_params.mi_stride; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| const int is_inter = is_inter_block(mbmi); |
| |
| // Initialize tx_mode and tx_size_search_method |
| TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| set_tx_size_search_method( |
| cm, &cpi->winner_mode_params, txfm_params, |
| cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1); |
| |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| if (!is_inter) { |
| xd->cfl.store_y = store_cfl_required(cm, xd); |
| mbmi->skip_txfm = 1; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run, |
| cpi->optimize_seg_arr[mbmi->segment_id]); |
| } |
| |
| // If there is at least one lossless segment, force the skip for intra |
| // block to be 0, in order to avoid the segment_id to be changed by in |
| // write_segment_id(). |
| if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && |
| cpi->enc_seg.has_lossless_segment) |
| mbmi->skip_txfm = 0; |
| |
| xd->cfl.store_y = 0; |
| if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { |
| for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) { |
| if (mbmi->palette_mode_info.palette_size[plane] > 0) { |
| if (!dry_run) { |
| av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, |
| PALETTE_MAP, tile_data->allow_update_cdf, |
| td->counts); |
| } else if (dry_run == DRY_RUN_COSTCOEFFS) { |
| *rate += |
| av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); |
| } |
| } |
| } |
| } |
| |
| av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize, |
| tile_data->allow_update_cdf); |
| } else { |
| int ref; |
| const int is_compound = has_second_ref(mbmi); |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const YV12_BUFFER_CONFIG *cfg = |
| get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]); |
| assert(IMPLIES(!is_intrabc_block(mbmi), cfg)); |
| av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, |
| xd->block_ref_scale_factors[ref], num_planes); |
| } |
| // Predicted sample of inter mode (for Luma plane) cannot be reused if |
| // nonrd_check_partition_split speed feature is enabled, Since in such cases |
| // the buffer may not contain the predicted sample of best mode. |
| const int start_plane = |
| (x->reuse_inter_pred && (!cpi->sf.rt_sf.nonrd_check_partition_split) && |
| cm->seq_params->bit_depth == AOM_BITS_8) |
| ? 1 |
| : 0; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| start_plane, av1_num_planes(cm) - 1); |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| assert(cpi->oxcf.motion_mode_cfg.enable_obmc); |
| av1_build_obmc_inter_predictors_sb(cm, xd); |
| } |
| |
| #if CONFIG_MISMATCH_DEBUG |
| if (dry_run == OUTPUT_ENABLED) { |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| int pixel_c, pixel_r; |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, |
| pd->subsampling_y)) |
| continue; |
| mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, |
| cm->current_frame.order_hint, plane, pixel_c, |
| pixel_r, pd->width, pd->height, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); |
| } |
| } |
| #else |
| (void)num_planes; |
| #endif |
| |
| av1_encode_sb(cpi, x, bsize, dry_run); |
| av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate, |
| tile_data->allow_update_cdf); |
| } |
| |
| if (!dry_run) { |
| if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1; |
| if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && |
| !xd->lossless[mbmi->segment_id] && mbmi->bsize > BLOCK_4X4 && |
| !(is_inter && (mbmi->skip_txfm || seg_skip))) { |
| if (is_inter) { |
| tx_partition_count_update(cm, x, bsize, td->counts, |
| tile_data->allow_update_cdf); |
| } else { |
| if (mbmi->tx_size != max_txsize_rect_lookup[bsize]) |
| ++x->txfm_search_info.txb_split_count; |
| if (block_signals_txsize(bsize)) { |
| const int tx_size_ctx = get_tx_size_context(xd); |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| const int depth = tx_size_to_depth(mbmi->tx_size, bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| |
| if (tile_data->allow_update_cdf) |
| update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], |
| depth, max_depths + 1); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; |
| #endif |
| } |
| } |
| assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); |
| } else { |
| int i, j; |
| TX_SIZE intra_tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| intra_tx_size = TX_4X4; |
| } else { |
| intra_tx_size = |
| tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); |
| } |
| } else { |
| intra_tx_size = mbmi->tx_size; |
| } |
| |
| const int cols = AOMMIN(cm->mi_params.mi_cols - mi_col, mi_width); |
| const int rows = AOMMIN(cm->mi_params.mi_rows - mi_row, mi_height); |
| for (j = 0; j < rows; j++) { |
| for (i = 0; i < cols; i++) mi_4x4[mis * j + i]->tx_size = intra_tx_size; |
| } |
| |
| if (intra_tx_size != max_txsize_rect_lookup[bsize]) |
| ++x->txfm_search_info.txb_split_count; |
| } |
| } |
| |
| if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && |
| block_signals_txsize(mbmi->bsize) && is_inter && |
| !(mbmi->skip_txfm || seg_skip) && !xd->lossless[mbmi->segment_id]) { |
| if (dry_run) tx_partition_set_contexts(cm, xd, bsize); |
| } else { |
| TX_SIZE tx_size = mbmi->tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| tx_size = TX_4X4; |
| } else { |
| tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); |
| } |
| } else { |
| tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; |
| } |
| mbmi->tx_size = tx_size; |
| set_txfm_ctxs(tx_size, xd->width, xd->height, |
| (mbmi->skip_txfm || seg_skip) && is_inter_block(mbmi), xd); |
| } |
| |
| if (is_inter_block(mbmi) && !xd->is_chroma_ref && is_cfl_allowed(xd)) { |
| cfl_store_block(xd, mbmi->bsize, mbmi->tx_size); |
| } |
| if (!dry_run) { |
| if (cpi->oxcf.pass == AOM_RC_ONE_PASS && cpi->svc.temporal_layer_id == 0 && |
| cpi->sf.rt_sf.use_temporal_noise_estimate && |
| (!cpi->ppi->use_svc || |
| (cpi->ppi->use_svc && |
| !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1))) |
| update_zeromv_cnt(cpi, mbmi, mi_row, mi_col, bsize); |
| } |
| } |
| |
| static void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| AQ_MODE aq_mode, MB_MODE_INFO *mbmi) { |
| x->rdmult = cpi->rd.RDMULT; |
| |
| if (aq_mode != NO_AQ) { |
| assert(mbmi != NULL); |
| if (aq_mode == VARIANCE_AQ) { |
| if (cpi->vaq_refresh) { |
| const int energy = bsize <= BLOCK_16X16 |
| ? x->mb_energy |
| : av1_log_block_var(cpi, x, bsize); |
| mbmi->segment_id = energy; |
| } |
| x->rdmult = set_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == COMPLEXITY_AQ) { |
| x->rdmult = set_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == CYCLIC_REFRESH_AQ) { |
| // If segment is boosted, use rdmult for that segment. |
| if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) |
| x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->common.delta_q_info.delta_q_present_flag && |
| !cpi->sf.rt_sf.use_nonrd_pick_mode) { |
| x->rdmult = av1_get_cb_rdmult(cpi, x, bsize, mi_row, mi_col); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM) { |
| av1_set_ssim_rdmult(cpi, &x->errorperbit, bsize, mi_row, mi_col, |
| &x->rdmult); |
| } |
| #if CONFIG_SALIENCY_MAP |
| else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_SALIENCY_MAP) { |
| av1_set_saliency_map_vmaf_rdmult(cpi, &x->errorperbit, |
| cpi->common.seq_params->sb_size, mi_row, |
| mi_col, &x->rdmult); |
| } |
| #endif |
| #if CONFIG_TUNE_VMAF |
| else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING || |
| cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN || |
| cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { |
| av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| #endif |
| #if CONFIG_TUNE_BUTTERAUGLI |
| else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) { |
| av1_set_butteraugli_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| #endif |
| if (cpi->oxcf.mode == ALLINTRA) { |
| x->rdmult = (int)(((int64_t)x->rdmult * x->intra_sb_rdmult_modifier) >> 7); |
| } |
| |
| // Check to make sure that the adjustments above have not caused the |
| // rd multiplier to be truncated to 0. |
| x->rdmult = (x->rdmult > 0) ? x->rdmult : 1; |
| } |
| |
| void av1_set_offsets_without_segment_id(const AV1_COMP *const cpi, |
| const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| |
| set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, |
| mi_row, mi_col); |
| |
| set_entropy_context(xd, mi_row, mi_col, num_planes); |
| xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| // Set up destination pointers. |
| av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, |
| num_planes); |
| |
| // Set up limit values for MV components. |
| // Mv beyond the range do not produce new/different prediction block. |
| av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height, |
| mi_width, cpi->oxcf.border_in_pixels); |
| |
| set_plane_n4(xd, mi_width, mi_height, num_planes); |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units. |
| assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); |
| set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, |
| cm->mi_params.mi_rows, cm->mi_params.mi_cols); |
| |
| // Set up source buffers. |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); |
| |
| // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() |
| xd->tile = *tile; |
| } |
| |
| void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| |
| av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| |
| // Setup segment ID. |
| mbmi = xd->mi[0]; |
| mbmi->segment_id = 0; |
| if (seg->enabled) { |
| if (seg->enabled && !cpi->vaq_refresh) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; |
| mbmi->segment_id = |
| map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0; |
| } |
| av1_init_plane_quantizers(cpi, x, mbmi->segment_id, 0); |
| } |
| #ifndef NDEBUG |
| x->last_set_offsets_loc.mi_row = mi_row; |
| x->last_set_offsets_loc.mi_col = mi_col; |
| x->last_set_offsets_loc.bsize = bsize; |
| #endif // NDEBUG |
| } |
| |
| /*!\brief Hybrid intra mode search. |
| * |
| * \ingroup intra_mode_search |
| * \callgraph |
| * \callergraph |
| * This is top level function for mode search for intra frames in non-RD |
| * optimized case. Depending on speed feature and block size it calls |
| * either non-RD or RD optimized intra mode search. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the data for |
| the current macroblock |
| * \param[in] rd_cost Struct to keep track of the RD information |
| * \param[in] bsize Current block size |
| * \param[in] ctx Structure to hold snapshot of coding context |
| during the mode picking process |
| * |
| * \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x |
| * is modified to store information about the best mode computed |
| * in this function. The rd_cost struct is also updated with the RD stats |
| * corresponding to the best mode found. |
| */ |
| |
| static AOM_INLINE void hybrid_intra_mode_search(AV1_COMP *cpi, |
| MACROBLOCK *const x, |
| RD_STATS *rd_cost, |
| BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx) { |
| int use_rdopt = 0; |
| const int hybrid_intra_pickmode = cpi->sf.rt_sf.hybrid_intra_pickmode; |
| // Use rd pick for intra mode search based on block size and variance. |
| if (hybrid_intra_pickmode && bsize < BLOCK_16X16) { |
| unsigned int var_thresh[3] = { 0, 101, 201 }; |
| assert(hybrid_intra_pickmode <= 3); |
| if (x->source_variance >= var_thresh[hybrid_intra_pickmode - 1]) |
| use_rdopt = 1; |
| } |
| |
| if (use_rdopt) |
| av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX); |
| else |
| av1_nonrd_pick_intra_mode(cpi, x, rd_cost, bsize, ctx); |
| } |
| |
| // For real time/allintra row-mt enabled multi-threaded encoding with cost |
| // update frequency set to COST_UPD_TILE/COST_UPD_OFF, tile ctxt is not updated |
| // at superblock level. Thus, it is not required for the encoding of top-right |
| // superblock be complete for updating tile ctxt. However, when encoding a block |
| // whose right edge is also the superblock edge, intra and inter mode evaluation |
| // (ref mv list population) require the encoding of the top-right superblock to |
| // be complete. So, here, we delay the waiting of threads until the need for the |
| // data from the top-right superblock region. |
| static AOM_INLINE void wait_for_top_right_sb( |
| AV1EncRowMultiThreadInfo *enc_row_mt, AV1EncRowMultiThreadSync *row_mt_sync, |
| TileInfo *tile_info, BLOCK_SIZE sb_size, int sb_mi_size_log2, |
| BLOCK_SIZE bsize, int mi_row, int mi_col) { |
| const int sb_size_in_mi = mi_size_wide[sb_size]; |
| const int bw_in_mi = mi_size_wide[bsize]; |
| const int blk_row_in_sb = mi_row & (sb_size_in_mi - 1); |
| const int blk_col_in_sb = mi_col & (sb_size_in_mi - 1); |
| const int top_right_block_in_sb = |
| (blk_row_in_sb == 0) && (blk_col_in_sb + bw_in_mi >= sb_size_in_mi); |
| |
| // Don't wait if the block is the not the top-right block in the superblock. |
| if (!top_right_block_in_sb) return; |
| |
| // Wait for the top-right superblock to finish encoding. |
| const int sb_row_in_tile = |
| (mi_row - tile_info->mi_row_start) >> sb_mi_size_log2; |
| const int sb_col_in_tile = |
| (mi_col - tile_info->mi_col_start) >> sb_mi_size_log2; |
| |
| enc_row_mt->sync_read_ptr(row_mt_sync, sb_row_in_tile, sb_col_in_tile); |
| } |
| |
| /*!\brief Interface for AV1 mode search for an individual coding block |
| * |
| * \ingroup partition_search |
| * \callgraph |
| * \callergraph |
| * Searches prediction modes, transform, and coefficient coding modes for an |
| * individual coding block. This function is the top-level interface that |
| * directs the encoder to the proper mode search function, among these |
| * implemented for inter/intra + rd/non-rd + non-skip segment/skip segment. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] tile_data Pointer to struct holding adaptive |
| * data/contexts/models for the tile during |
| * encoding |
| * \param[in] x Pointer to structure holding all the data for |
| * the current macroblock |
| * \param[in] mi_row Row coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] rd_cost Pointer to structure holding rate and distortion |
| * stats for the current block |
| * \param[in] partition Partition mode of the parent block |
| * \param[in] bsize Current block size |
| * \param[in] ctx Pointer to structure holding coding contexts and |
| * chosen modes for the current block |
| * \param[in] best_rd Upper bound of rd cost of a valid partition |
| * |
| * \remark Nothing is returned. Instead, the chosen modes and contexts necessary |
| * for reconstruction are stored in ctx, the rate-distortion stats are stored in |
| * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be |
| * signalled by an INT64_MAX rd_cost->rdcost. |
| */ |
| static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| RD_STATS *rd_cost, PARTITION_TYPE partition, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, |
| RD_STATS best_rd) { |
| if (cpi->sf.part_sf.use_best_rd_for_pruning && best_rd.rdcost < 0) { |
| ctx->rd_stats.rdcost = INT64_MAX; |
| ctx->rd_stats.skip_txfm = 0; |
| av1_invalid_rd_stats(rd_cost); |
| return; |
| } |
| |
| av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize); |
| |
| if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab && |
| ctx->rd_mode_is_ready) { |
| assert(ctx->mic.bsize == bsize); |
| assert(ctx->mic.partition == partition); |
| rd_cost->rate = ctx->rd_stats.rate; |
| rd_cost->dist = ctx->rd_stats.dist; |
| rd_cost->rdcost = ctx->rd_stats.rdcost; |
| return; |
| } |
| |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| |
| int i; |
| |
| // This is only needed for real time/allintra row-mt enabled multi-threaded |
| // encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF. |
| wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync, |
| &tile_data->tile_info, cm->seq_params->sb_size, |
| cm->seq_params->mib_size_log2, bsize, mi_row, mi_col); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rd_pick_sb_modes_time); |
| #endif |
| |
| mbmi = xd->mi[0]; |
| mbmi->bsize = bsize; |
| mbmi->partition = partition; |
| |
| #if CONFIG_RD_DEBUG |
| mbmi->mi_row = mi_row; |
| mbmi->mi_col = mi_col; |
| #endif |
| |
| // Sets up the tx_type_map buffer in MACROBLOCKD. |
| xd->tx_type_map = txfm_info->tx_type_map_; |
| xd->tx_type_map_stride = mi_size_wide[bsize]; |
| |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| p[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| |
| ctx->skippable = 0; |
| // Set to zero to make sure we do not use the previous encoded frame stats |
| mbmi->skip_txfm = 0; |
| // Reset skip mode flag. |
| mbmi->skip_mode = 0; |
| |
| x->source_variance = av1_get_perpixel_variance_facade( |
| cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); |
| |
| // Initialize default mode evaluation params |
| set_mode_eval_params(cpi, x, DEFAULT_EVAL); |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); |
| // Set error per bit for current rdmult |
| av1_set_error_per_bit(&x->errorperbit, x->rdmult); |
| av1_rd_cost_update(x->rdmult, &best_rd); |
| |
| // If set best_rd.rdcost to INT64_MAX, the encoder will not use any previous |
| // rdcost information for the following mode search. |
| // Disabling the feature could get some coding gain, with encoder slowdown. |
| if (!cpi->sf.part_sf.use_best_rd_for_pruning) { |
| av1_invalid_rd_stats(&best_rd); |
| } |
| |
| // Find best coding mode & reconstruct the MB so it is available |
| // as a predictor for MBs that follow in the SB |
| if (frame_is_intra_only(cm)) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_rd_pick_intra_mode_sb_time); |
| #endif |
| av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_rd_pick_intra_mode_sb_time); |
| #endif |
| } else { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_rd_pick_inter_mode_sb_time); |
| #endif |
| if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, |
| rd_cost, bsize, ctx, best_rd.rdcost); |
| } else { |
| av1_rd_pick_inter_mode(cpi, tile_data, x, rd_cost, bsize, ctx, |
| best_rd.rdcost); |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_rd_pick_inter_mode_sb_time); |
| #endif |
| } |
| |
| // Examine the resulting rate and for AQ mode 2 make a segment choice. |
| if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ && |
| bsize >= BLOCK_16X16) { |
| av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); |
| } |
| |
| x->rdmult = orig_rdmult; |
| |
| // TODO(jingning) The rate-distortion optimization flow needs to be |
| // refactored to provide proper exit/return handle. |
| if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; |
| |
| ctx->rd_stats.rate = rd_cost->rate; |
| ctx->rd_stats.dist = rd_cost->dist; |
| ctx->rd_stats.rdcost = rd_cost->rdcost; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rd_pick_sb_modes_time); |
| #endif |
| } |
| |
| static void update_stats(const AV1_COMMON *const cm, ThreadData *td) { |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| const BLOCK_SIZE bsize = mbmi->bsize; |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| |
| if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active && |
| is_comp_ref_allowed(bsize)) { |
| const int skip_mode_ctx = av1_get_skip_mode_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; |
| #endif |
| update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); |
| } |
| |
| if (!mbmi->skip_mode && !seg_ref_active) { |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts->skip_txfm[skip_ctx][mbmi->skip_txfm]++; |
| #endif |
| update_cdf(fc->skip_txfm_cdfs[skip_ctx], mbmi->skip_txfm, 2); |
| } |
| |
| #if CONFIG_ENTROPY_STATS |
| // delta quant applies to both intra and inter |
| const int super_block_upper_left = |
| ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) && |
| ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0); |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| if (delta_q_info->delta_q_present_flag && |
| (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) && |
| super_block_upper_left) { |
| const int dq = (mbmi->current_qindex - xd->current_base_qindex) / |
| delta_q_info->delta_q_res; |
| const int absdq = abs(dq); |
| for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { |
| td->counts->delta_q[i][1]++; |
| } |
| if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; |
| if (delta_q_info->delta_lf_present_flag) { |
| if (delta_q_info->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / |
| delta_q_info->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf_multi[lf_id][i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; |
| } |
| } else { |
| const int delta_lf = |
| (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / |
| delta_q_info->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf[i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf[abs_delta_lf][0]++; |
| } |
| } |
| } |
| #endif |
| |
| if (!is_inter_block(mbmi)) { |
| av1_sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi, |
| frame_is_intra_only(cm)); |
| } |
| |
| if (av1_allow_intrabc(cm)) { |
| const int is_intrabc = is_intrabc_block(mbmi); |
| update_cdf(fc->intrabc_cdf, is_intrabc, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intrabc[is_intrabc]; |
| #endif // CONFIG_ENTROPY_STATS |
| if (is_intrabc) { |
| const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| const int_mv dv_ref = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; |
| av1_update_mv_stats(&mbmi->mv[0].as_mv, &dv_ref.as_mv, &fc->ndvc, |
| MV_SUBPEL_NONE); |
| } |
| } |
| |
| if (frame_is_intra_only(cm) || mbmi->skip_mode) return; |
| |
| FRAME_COUNTS *const counts = td->counts; |
| const int inter_block = is_inter_block(mbmi); |
| |
| if (!seg_ref_active) { |
| #if CONFIG_ENTROPY_STATS |
| counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; |
| #endif |
| update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], |
| inter_block, 2); |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (inter_block) { |
| const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; |
| if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { |
| if (is_comp_ref_allowed(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_inter[av1_get_reference_mode_context(xd)] |
| [has_second_ref(mbmi)]++; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2); |
| } |
| } |
| |
| if (has_second_ref(mbmi)) { |
| const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) |
| ? UNIDIR_COMP_REFERENCE |
| : BIDIR_COMP_REFERENCE; |
| update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type, |
| COMP_REFERENCE_TYPES); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref_type[av1_get_comp_reference_type_context(xd)] |
| [comp_ref_type]++; |
| #endif // CONFIG_ENTROPY_STATS |
| |
| if (comp_ref_type == UNIDIR_COMP_REFERENCE) { |
| const int bit = (ref0 == BWDREF_FRAME); |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts |
| ->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit) { |
| const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME); |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1] |
| [bit1]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (bit1) { |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd), |
| ref1 == GOLDEN_FRAME, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)][2] |
| [ref1 == GOLDEN_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } else { |
| const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); |
| update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit) { |
| update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1] |
| [ref0 == LAST2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } else { |
| update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2] |
| [ref0 == GOLDEN_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0] |
| [ref1 == ALTREF_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (ref1 != ALTREF_FRAME) { |
| update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd), |
| ref1 == ALTREF2_FRAME, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1] |
| [ref1 == ALTREF2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } else { |
| const int bit = (ref0 >= BWDREF_FRAME); |
| update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (bit) { |
| assert(ref0 <= ALTREF_FRAME); |
| update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] |
| [ref0 == ALTREF_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (ref0 != ALTREF_FRAME) { |
| update_cdf(av1_get_pred_cdf_single_ref_p6(xd), |
| ref0 == ALTREF2_FRAME, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5] |
| [ref0 == ALTREF2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } else { |
| const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); |
| update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit1) { |
| update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] |
| [ref0 != LAST_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } else { |
| update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] |
| [ref0 != LAST3_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } |
| |
| if (cm->seq_params->enable_interintra_compound && |
| is_interintra_allowed(mbmi)) { |
| const int bsize_group = size_group_lookup[bsize]; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][1]++; |
| #endif |
| update_cdf(fc->interintra_cdf[bsize_group], 1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; |
| #endif |
| update_cdf(fc->interintra_mode_cdf[bsize_group], |
| mbmi->interintra_mode, INTERINTRA_MODES); |
| if (av1_is_wedge_used(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; |
| #endif |
| update_cdf(fc->wedge_interintra_cdf[bsize], |
| mbmi->use_wedge_interintra, 2); |
| if (mbmi->use_wedge_interintra) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; |
| #endif |
| update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index, |
| 16); |
| } |
| } |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][0]++; |
| #endif |
| update_cdf(fc->interintra_cdf[bsize_group], 0, 2); |
| } |
| } |
| |
| const MOTION_MODE motion_allowed = |
| cm->features.switchable_motion_mode |
| ? motion_mode_allowed(xd->global_motion, xd, mbmi, |
| cm->features.allow_warped_motion) |
| : SIMPLE_TRANSLATION; |
| if (mbmi->ref_frame[1] != INTRA_FRAME) { |
| if (motion_allowed == WARPED_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->motion_mode[bsize][mbmi->motion_mode]++; |
| #endif |
| update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, |
| MOTION_MODES); |
| } else if (motion_allowed == OBMC_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; |
| #endif |
| update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2); |
| } |
| } |
| |
| if (has_second_ref(mbmi)) { |
| assert(current_frame->reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| mbmi->motion_mode == SIMPLE_TRANSLATION); |
| |
| const int masked_compound_used = is_any_masked_compound_used(bsize) && |
| cm->seq_params->enable_masked_compound; |
| if (masked_compound_used) { |
| const int comp_group_idx_ctx = get_comp_group_idx_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; |
| #endif |
| update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], |
| mbmi->comp_group_idx, 2); |
| } |
| |
| if (mbmi->comp_group_idx == 0) { |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->compound_index[comp_index_ctx][mbmi->compound_idx]; |
| #endif |
| update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx, |
| 2); |
| } else { |
| assert(masked_compound_used); |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->compound_type[bsize][mbmi->interinter_comp.type - |
| COMPOUND_WEDGE]; |
| #endif |
| update_cdf(fc->compound_type_cdf[bsize], |
| mbmi->interinter_comp.type - COMPOUND_WEDGE, |
| MASKED_COMPOUND_TYPES); |
| } |
| } |
| } |
| if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; |
| #endif |
| update_cdf(fc->wedge_idx_cdf[bsize], |
| mbmi->interinter_comp.wedge_index, 16); |
| } |
| } |
| } |
| } |
| |
| if (inter_block && cm->features.interp_filter == SWITCHABLE && |
| av1_is_interp_needed(xd)) { |
| update_filter_type_cdf(xd, mbmi, cm->seq_params->enable_dual_filter); |
| } |
| if (inter_block && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| const PREDICTION_MODE mode = mbmi->mode; |
| const int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| if (has_second_ref(mbmi)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; |
| #endif |
| update_cdf(fc->inter_compound_mode_cdf[mode_ctx], |
| INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); |
| } else { |
| av1_update_inter_mode_stats(fc, counts, mode, mode_ctx); |
| } |
| |
| const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; |
| if (new_mv) { |
| const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| for (int idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| const uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; |
| #endif |
| if (mbmi->ref_mv_idx == idx) break; |
| } |
| } |
| } |
| |
| if (have_nearmv_in_inter_mode(mbmi->mode)) { |
| const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| for (int idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| const uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx - 1, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; |
| #endif |
| if (mbmi->ref_mv_idx == idx - 1) break; |
| } |
| } |
| } |
| if (have_newmv_in_inter_mode(mbmi->mode)) { |
| const int allow_hp = cm->features.cur_frame_force_integer_mv |
| ? MV_SUBPEL_NONE |
| : cm->features.allow_high_precision_mv; |
| if (new_mv) { |
| for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| const int_mv ref_mv = av1_get_ref_mv(x, ref); |
| av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, |
| allow_hp); |
| } |
| } else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAR_NEWMV) { |
| const int ref = 1; |
| const int_mv ref_mv = av1_get_ref_mv(x, ref); |
| av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, |
| allow_hp); |
| } else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEW_NEARMV) { |
| const int ref = 0; |
| const int_mv ref_mv = av1_get_ref_mv(x, ref); |
| av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, |
| allow_hp); |
| } |
| } |
| } |
| } |
| |
| /*!\brief Reconstructs an individual coding block |
| * |
| * \ingroup partition_search |
| * Reconstructs an individual coding block by applying the chosen modes stored |
| * in ctx, also updates mode counts and entropy models. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] tile_data Pointer to struct holding adaptive |
| * data/contexts/models for the tile during encoding |
| * \param[in] td Pointer to thread data |
| * \param[in] tp Pointer to the starting token |
| * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] dry_run A code indicating whether it is part of the final |
| * pass for reconstructing the superblock |
| * \param[in] bsize Current block size |
| * \param[in] partition Partition mode of the parent block |
| * \param[in] ctx Pointer to structure holding coding contexts and the |
| * chosen modes for the current block |
| * \param[in] rate Pointer to the total rate for the current block |
| * |
| * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) |
| * will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes |
| * will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0]. |
| */ |
| static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TokenExtra **tp, int mi_row, int mi_col, |
| RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PARTITION_TYPE partition, PICK_MODE_CONTEXT *const ctx, |
| int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int subsampling_x = cm->seq_params->subsampling_x; |
| const int subsampling_y = cm->seq_params->subsampling_y; |
| |
| av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| const int origin_mult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| mbmi->partition = partition; |
| av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); |
| |
| if (!dry_run) { |
| set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y], |
| x->cb_offset[PLANE_TYPE_UV]); |
| assert(x->cb_offset[PLANE_TYPE_Y] < |
| (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size])); |
| assert(x->cb_offset[PLANE_TYPE_UV] < |
| ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >> |
| (subsampling_x + subsampling_y))); |
| } |
| |
| encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate); |
| |
| if (!dry_run) { |
| update_cb_offsets(x, bsize, subsampling_x, subsampling_y); |
| if (bsize == cpi->common.seq_params->sb_size && mbmi->skip_txfm == 1 && |
| cm->delta_q_info.delta_lf_present_flag) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) |
| mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; |
| mbmi->delta_lf_from_base = xd->delta_lf_from_base; |
| } |
| if (has_second_ref(mbmi)) { |
| if (mbmi->compound_idx == 0 || |
| mbmi->interinter_comp.type == COMPOUND_AVERAGE) |
| mbmi->comp_group_idx = 0; |
| else |
| mbmi->comp_group_idx = 1; |
| } |
| |
| // delta quant applies to both intra and inter |
| const int super_block_upper_left = |
| ((mi_row & (cm->seq_params->mib_size - 1)) == 0) && |
| ((mi_col & (cm->seq_params->mib_size - 1)) == 0); |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| if (delta_q_info->delta_q_present_flag && |
| (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) && |
| super_block_upper_left) { |
| xd->current_base_qindex = mbmi->current_qindex; |
| if (delta_q_info->delta_lf_present_flag) { |
| if (delta_q_info->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } |
| } else { |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| |
| RD_COUNTS *rdc = &td->rd_counts; |
| if (mbmi->skip_mode) { |
| assert(!frame_is_intra_only(cm)); |
| rdc->skip_mode_used_flag = 1; |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| assert(has_second_ref(mbmi)); |
| rdc->compound_ref_used_flag = 1; |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| } else { |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| if (!seg_ref_active) { |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (is_inter_block(mbmi)) { |
| av1_collect_neighbors_ref_counts(xd); |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| if (has_second_ref(mbmi)) { |
| // This flag is also updated for 4x4 blocks |
| rdc->compound_ref_used_flag = 1; |
| } |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| } |
| } |
| } |
| |
| if (tile_data->allow_update_cdf) update_stats(&cpi->common, td); |
| |
| // Gather obmc and warped motion count to update the probability. |
| if ((cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && |
| cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) || |
| (cm->features.allow_warped_motion && |
| cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) { |
| const int inter_block = is_inter_block(mbmi); |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| if (!seg_ref_active && inter_block) { |
| const MOTION_MODE motion_allowed = |
| cm->features.switchable_motion_mode |
| ? motion_mode_allowed(xd->global_motion, xd, mbmi, |
| cm->features.allow_warped_motion) |
| : SIMPLE_TRANSLATION; |
| |
| if (mbmi->ref_frame[1] != INTRA_FRAME) { |
| if (motion_allowed >= OBMC_CAUSAL) { |
| td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; |
| } |
| if (motion_allowed == WARPED_CAUSAL) { |
| td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++; |
| } |
| } |
| } |
| } |
| } |
| // TODO(Ravi/Remya): Move this copy function to a better logical place |
| // This function will copy the best mode information from block |
| // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This |
| // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during |
| // bitstream preparation. |
| av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext, |
| av1_ref_frame_type(xd->mi[0]->ref_frame)); |
| x->rdmult = origin_mult; |
| } |
| |
| /*!\brief Reconstructs a partition (may contain multiple coding blocks) |
| * |
| * \ingroup partition_search |
| * Reconstructs a sub-partition of the superblock by applying the chosen modes |
| * and partition trees stored in pc_tree. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] td Pointer to thread data |
| * \param[in] tile_data Pointer to struct holding adaptive |
| * data/contexts/models for the tile during encoding |
| * \param[in] tp Pointer to the starting token |
| * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] dry_run A code indicating whether it is part of the final |
| * pass for reconstructing the superblock |
| * \param[in] bsize Current block size |
| * \param[in] pc_tree Pointer to the PC_TREE node storing the picked |
| * partitions and mode info for the current block |
| * \param[in] rate Pointer to the total rate for the current block |
| * |
| * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) |
| * will be updated in the pixel buffers in td->mb.e_mbd. |
| */ |
| static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, int mi_row, |
| int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PC_TREE *pc_tree, int *rate) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| const AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int hbs = mi_size_wide[bsize] / 2; |
| const int is_partition_root = bsize >= BLOCK_8X8; |
| const int ctx = is_partition_root |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : -1; |
| const PARTITION_TYPE partition = pc_tree->partitioning; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| #if !CONFIG_REALTIME_ONLY |
| int quarter_step = mi_size_wide[bsize] / 4; |
| int i; |
| BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| #endif |
| |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; |
| if (subsize == BLOCK_INVALID) return; |
| |
| if (!dry_run && ctx >= 0) { |
| const int has_rows = (mi_row + hbs) < mi_params->mi_rows; |
| const int has_cols = (mi_col + hbs) < mi_params->mi_cols; |
| |
| if (has_rows && has_cols) { |
| #if CONFIG_ENTROPY_STATS |
| td->counts->partition[ctx][partition]++; |
| #endif |
| |
| if (tile_data->allow_update_cdf) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| update_cdf(fc->partition_cdf[ctx], partition, |
| partition_cdf_length(bsize)); |
| } |
| } |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->none, rate); |
| break; |
| case PARTITION_VERT: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->vertical[0], rate); |
| if (mi_col + hbs < mi_params->mi_cols) { |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| partition, pc_tree->vertical[1], rate); |
| } |
| break; |
| case PARTITION_HORZ: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontal[0], rate); |
| if (mi_row + hbs < mi_params->mi_rows) { |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontal[1], rate); |
| } |
| break; |
| case PARTITION_SPLIT: |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->split[0], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| pc_tree->split[1], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| pc_tree->split[2], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| subsize, pc_tree->split[3], rate); |
| break; |
| |
| #if !CONFIG_REALTIME_ONLY |
| case PARTITION_HORZ_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, pc_tree->horizontala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, pc_tree->horizontala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontala[2], rate); |
| break; |
| case PARTITION_HORZ_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, pc_tree->horizontalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| bsize2, partition, pc_tree->horizontalb[2], rate); |
| break; |
| case PARTITION_VERT_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, pc_tree->verticala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, pc_tree->verticala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| partition, pc_tree->verticala[2], rate); |
| |
| break; |
| case PARTITION_VERT_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->verticalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, pc_tree->verticalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| bsize2, partition, pc_tree->verticalb[2], rate); |
| break; |
| case PARTITION_HORZ_4: |
| for (i = 0; i < SUB_PARTITIONS_PART4; ++i) { |
| int this_mi_row = mi_row + i * quarter_step; |
| if (i > 0 && this_mi_row >= mi_params->mi_rows) break; |
| |
| encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontal4[i], rate); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (i = 0; i < SUB_PARTITIONS_PART4; ++i) { |
| int this_mi_col = mi_col + i * quarter_step; |
| if (i > 0 && this_mi_col >= mi_params->mi_cols) break; |
| encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, |
| partition, pc_tree->vertical4[i], rate); |
| } |
| break; |
| #endif |
| default: assert(0 && "Invalid partition type."); break; |
| } |
| |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| static AOM_INLINE int is_adjust_var_based_part_enabled( |
| AV1_COMMON *const cm, const PARTITION_SPEED_FEATURES *const part_sf, |
| BLOCK_SIZE bsize) { |
| if (part_sf->partition_search_type != VAR_BASED_PARTITION) return 0; |
| if (part_sf->adjust_var_based_rd_partitioning == 0 || |
| part_sf->adjust_var_based_rd_partitioning > 2) |
| return 0; |
| |
| if (bsize <= BLOCK_32X32) return 1; |
| if (part_sf->adjust_var_based_rd_partitioning == 2) { |
| const int is_larger_qindex = cm->quant_params.base_qindex > 190; |
| const int is_360p_or_larger = AOMMIN(cm->width, cm->height) >= 360; |
| return is_360p_or_larger && is_larger_qindex && bsize == BLOCK_64X64; |
| } |
| return 0; |
| } |
| |
| /*!\brief AV1 block partition search (partition estimation and partial search). |
| * |
| * \ingroup partition_search |
| * Encode the block by applying pre-calculated partition patterns that are |
| * represented by coding block sizes stored in the mbmi array. Minor partition |
| * adjustments are tested and applied if they lead to lower rd costs. The |
| * partition types are limited to a basic set: none, horz, vert, and split. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] td Pointer to thread data |
| * \param[in] tile_data Pointer to struct holding adaptive |
| data/contexts/models for the tile during encoding |
| * \param[in] mib Array representing MB_MODE_INFO pointers for mi |
| blocks starting from the first pixel of the current |
| block |
| * \param[in] tp Pointer to the starting token |
| * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| MI_SIZE |
| * \param[in] bsize Current block size |
| * \param[in] rate Pointer to the final rate for encoding the current |
| block |
| * \param[in] dist Pointer to the final distortion of the current block |
| * \param[in] do_recon Whether the reconstruction function needs to be run, |
| either for finalizing a superblock or providing |
| reference for future sub-partitions |
| * \param[in] pc_tree Pointer to the PC_TREE node holding the picked |
| partitions and mode info for the current block |
| * |
| * \remark Nothing is returned. The pc_tree struct is modified to store the |
| * picked partition and modes. The rate and dist are also updated with those |
| * corresponding to the best partition found. |
| */ |
| void av1_rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, |
| MB_MODE_INFO **mib, TokenExtra **tp, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, int *rate, |
| int64_t *dist, int do_recon, PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| const int pl = (bsize >= BLOCK_8X8) |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| const PARTITION_TYPE partition = |
| (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) |
| : PARTITION_NONE; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc; |
| BLOCK_SIZE bs_type = mib[0]->bsize; |
| int use_partition_none = 0; |
| x->try_merge_partition = 0; |
| |
| if (pc_tree->none == NULL) { |
| pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); |
| if (!pc_tree->none) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } |
| PICK_MODE_CONTEXT *ctx_none = pc_tree->none; |
| |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| // In rt mode, currently the min partition size is BLOCK_8X8. |
| assert(bsize >= cpi->sf.part_sf.default_min_partition_size); |
| |
| av1_invalid_rd_stats(&last_part_rdc); |
| av1_invalid_rd_stats(&none_rdc); |
| av1_invalid_rd_stats(&chosen_rdc); |
| av1_invalid_rd_stats(&invalid_rdc); |
| |
| pc_tree->partitioning = partition; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| x->mb_energy = av1_log_block_var(cpi, x, bsize); |
| } |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| |
| if (partition != PARTITION_NONE && |
| is_adjust_var_based_part_enabled(cm, &cpi->sf.part_sf, bsize) && |
| (mi_row + hbs < mi_params->mi_rows && |
| mi_col + hbs < mi_params->mi_cols)) { |
| assert(bsize > cpi->sf.part_sf.default_min_partition_size); |
| mib[0]->bsize = bsize; |
| pc_tree->partitioning = PARTITION_NONE; |
| x->try_merge_partition = 1; |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, PARTITION_NONE, |
| bsize, ctx_none, invalid_rdc); |
| |
| if (none_rdc.rate < INT_MAX) { |
| none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); |
| } |
| |
| // Try to skip split partition evaluation based on none partition |
| // characteristics. |
| if (none_rdc.rate < INT_MAX && none_rdc.skip_txfm == 1) { |
| use_partition_none = 1; |
| } |
| |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| mib[0]->bsize = bs_type; |
| pc_tree->partitioning = partition; |
| } |
| |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { |
| pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); |
| if (!pc_tree->split[i]) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| pc_tree->split[i]->index = i; |
| } |
| switch (partition) { |
| case PARTITION_NONE: |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_NONE, bsize, ctx_none, invalid_rdc); |
| break; |
| case PARTITION_HORZ: |
| if (use_partition_none) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| |
| for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { |
| pc_tree->horizontal[i] = |
| av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); |
| if (!pc_tree->horizontal[i]) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_HORZ, subsize, pc_tree->horizontal[0], |
| invalid_rdc); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_row + hbs < mi_params->mi_rows) { |
| RD_STATS tmp_rdc; |
| const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0]; |
| av1_init_rd_stats(&tmp_rdc); |
| av1_update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, |
| NULL); |
| pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, |
| PARTITION_HORZ, subsize, pc_tree->horizontal[1], |
| invalid_rdc); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| case PARTITION_VERT: |
| if (use_partition_none) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| |
| for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { |
| pc_tree->vertical[i] = |
| av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); |
| if (!pc_tree->vertical[i]) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_col + hbs < mi_params->mi_cols) { |
| RD_STATS tmp_rdc; |
| const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0]; |
| av1_init_rd_stats(&tmp_rdc); |
| av1_update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, |
| NULL); |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, |
| PARTITION_VERT, subsize, |
| pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| case PARTITION_SPLIT: |
| if (use_partition_none) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| |
| last_part_rdc.rate = 0; |
| last_part_rdc.dist = 0; |
| last_part_rdc.rdcost = 0; |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| int jj = i >> 1, ii = i & 0x01; |
| RD_STATS tmp_rdc; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| |
| av1_init_rd_stats(&tmp_rdc); |
| av1_rd_use_partition( |
| cpi, td, tile_data, |
| mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp, |
| mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, |
| &tmp_rdc.dist, i != (SUB_PARTITIONS_SPLIT - 1), pc_tree->split[i]); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| } |
| break; |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: |
| assert(0 && "Cannot handle extended partition types"); |
| default: assert(0); break; |
| } |
| |
| if (last_part_rdc.rate < INT_MAX) { |
| last_part_rdc.rate += mode_costs->partition_cost[pl][partition]; |
| last_part_rdc.rdcost = |
| RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist); |
| } |
| |
| if ((cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION && |
| cpi->sf.part_sf.adjust_var_based_rd_partitioning > 2) && |
| partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && |
| (mi_row + bs < mi_params->mi_rows || |
| mi_row + hbs == mi_params->mi_rows) && |
| (mi_col + bs < mi_params->mi_cols || |
| mi_col + hbs == mi_params->mi_cols)) { |
| BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| chosen_rdc.rate = 0; |
| chosen_rdc.dist = 0; |
| |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| pc_tree->partitioning = PARTITION_SPLIT; |
| |
| // Split partition. |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| RD_STATS tmp_rdc; |
| |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| |
| av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| if (pc_tree->split[i]->none == NULL) |
| pc_tree->split[i]->none = |
| av1_alloc_pmc(cpi, split_subsize, &td->shared_coeff_buf); |
| if (!pc_tree->split[i]->none) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc, |
| PARTITION_SPLIT, split_subsize, pc_tree->split[i]->none, |
| invalid_rdc); |
| |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&chosen_rdc); |
| break; |
| } |
| |
| chosen_rdc.rate += tmp_rdc.rate; |
| chosen_rdc.dist += tmp_rdc.dist; |
| |
| if (i != SUB_PARTITIONS_SPLIT - 1) |
| encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, |
| OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); |
| |
| chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; |
| } |
| if (chosen_rdc.rate < INT_MAX) { |
| chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; |
| chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist); |
| } |
| } |
| |
| // If last_part is better set the partitioning to that. |
| if (last_part_rdc.rdcost < chosen_rdc.rdcost) { |
| mib[0]->bsize = bs_type; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; |
| |
| chosen_rdc = last_part_rdc; |
| } |
| // If none was better set the partitioning to that. |
| if (none_rdc.rdcost < INT64_MAX && |
| none_rdc.rdcost - (none_rdc.rdcost >> 9) < chosen_rdc.rdcost) { |
| mib[0]->bsize = bsize; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; |
| chosen_rdc = none_rdc; |
| } |
| |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| // We must have chosen a partitioning and encoding or we'll fail later on. |
| // No other opportunities for success. |
| if (bsize == cm->seq_params->sb_size) |
| assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, encode_sb_time); |
| #endif |
| if (do_recon) { |
| if (bsize == cm->seq_params->sb_size) { |
| // NOTE: To get estimate for rate due to the tokens, use: |
| // int rate_coeffs = 0; |
| // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, |
| // bsize, pc_tree, &rate_coeffs); |
| set_cb_offsets(x->cb_offset, 0, 0); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| pc_tree, NULL); |
| } else { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, encode_sb_time); |
| #endif |
| |
| *rate = chosen_rdc.rate; |
| *dist = chosen_rdc.dist; |
| x->rdmult = orig_rdmult; |
| } |
| |
| static void encode_b_nonrd(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TokenExtra **tp, int mi_row, |
| int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PARTITION_TYPE partition, |
| PICK_MODE_CONTEXT *const ctx, int *rate) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing((AV1_COMP *)cpi, encode_b_nonrd_time); |
| #endif |
| const AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| const int origin_mult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| mbmi->partition = partition; |
| av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); |
| const int subsampling_x = cpi->common.seq_params->subsampling_x; |
| const int subsampling_y = cpi->common.seq_params->subsampling_y; |
| if (!dry_run) { |
| set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y], |
| x->cb_offset[PLANE_TYPE_UV]); |
| assert(x->cb_offset[PLANE_TYPE_Y] < |
| (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size])); |
| assert(x->cb_offset[PLANE_TYPE_UV] < |
| ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >> |
| (subsampling_x + subsampling_y))); |
| } |
| |
| encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate); |
| if (!dry_run) { |
| update_cb_offsets(x, bsize, subsampling_x, subsampling_y); |
| if (has_second_ref(mbmi)) { |
| if (mbmi->compound_idx == 0 || |
| mbmi->interinter_comp.type == COMPOUND_AVERAGE) |
| mbmi->comp_group_idx = 0; |
| else |
| mbmi->comp_group_idx = 1; |
| mbmi->compound_idx = 1; |
| } |
| RD_COUNTS *const rdc = &td->rd_counts; |
| if (mbmi->skip_mode) { |
| assert(!frame_is_intra_only(cm)); |
| rdc->skip_mode_used_flag = 1; |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT && |
| has_second_ref(mbmi)) { |
| rdc->compound_ref_used_flag = 1; |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| } else { |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| if (!seg_ref_active) { |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (is_inter_block(mbmi)) { |
| av1_collect_neighbors_ref_counts(xd); |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT && |
| has_second_ref(mbmi)) { |
| // This flag is also updated for 4x4 blocks |
| rdc->compound_ref_used_flag = 1; |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| } |
| } |
| } |
| if (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_SELECTIVELY && |
| (mbmi->mode == NEWMV || mbmi->mode < INTRA_MODE_END)) { |
| int32_t blocks = mi_size_high[bsize] * mi_size_wide[bsize]; |
| rdc->newmv_or_intra_blocks += blocks; |
| } |
| if (tile_data->allow_update_cdf) update_stats(&cpi->common, td); |
| } |
| if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && mbmi->skip_txfm && |
| !cpi->rc.rtc_external_ratectrl && cm->seg.enabled) |
| av1_cyclic_reset_segment_skip(cpi, x, mi_row, mi_col, bsize, dry_run); |
| // TODO(Ravi/Remya): Move this copy function to a better logical place |
| // This function will copy the best mode information from block |
| // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This |
| // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during |
| // bitstream preparation. |
| av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext, |
| av1_ref_frame_type(xd->mi[0]->ref_frame)); |
| x->rdmult = origin_mult; |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing((AV1_COMP *)cpi, encode_b_nonrd_time); |
| #endif |
| } |
| |
| static int get_force_zeromv_skip_flag_for_blk(const AV1_COMP *cpi, |
| const MACROBLOCK *x, |
| BLOCK_SIZE bsize) { |
| // Force zero MV skip based on SB level decision |
| if (x->force_zeromv_skip_for_sb < 2) return x->force_zeromv_skip_for_sb; |
| |
| // For blocks of size equal to superblock size, the decision would have been |
| // already done at superblock level. Hence zeromv-skip decision is skipped. |
| const AV1_COMMON *const cm = &cpi->common; |
| if (bsize == cm->seq_params->sb_size) return 0; |
| |
| const int num_planes = av1_num_planes(cm); |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const unsigned int thresh_exit_part_y = |
| cpi->zeromv_skip_thresh_exit_part[bsize]; |
| const unsigned int thresh_exit_part_uv = |
| CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y); |
| const unsigned int thresh_exit_part[MAX_MB_PLANE] = { thresh_exit_part_y, |
| thresh_exit_part_uv, |
| thresh_exit_part_uv }; |
| const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, LAST_FRAME); |
| |
| struct buf_2d yv12_mb[MAX_MB_PLANE]; |
| av1_setup_pred_block(xd, yv12_mb, yv12, sf, sf, num_planes); |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bs = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf( |
| p->src.buf, p->src.stride, yv12_mb[plane].buf, yv12_mb[plane].stride); |
| assert(plane < MAX_MB_PLANE); |
| if (plane_sad >= thresh_exit_part[plane]) return 0; |
| } |
| return 1; |
| } |
| |
| /*!\brief Top level function to pick block mode for non-RD optimized case |
| * |
| * \ingroup partition_search |
| * \callgraph |
| * \callergraph |
| * Searches prediction modes, transform, and coefficient coding modes for an |
| * individual coding block. This function is the top-level function that is |
| * used for non-RD optimized mode search (controlled by |
| * \c cpi->sf.rt_sf.use_nonrd_pick_mode). Depending on frame type it calls |
| * inter/skip/hybrid-intra mode search functions |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] tile_data Pointer to struct holding adaptive |
| * data/contexts/models for the tile during |
| * encoding |
| * \param[in] x Pointer to structure holding all the data for |
| * the current macroblock |
| * \param[in] mi_row Row coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| * MI_SIZE |
| * \param[in] rd_cost Pointer to structure holding rate and distortion |
| * stats for the current block |
| * \param[in] bsize Current block size |
| * \param[in] ctx Pointer to structure holding coding contexts and |
| * chosen modes for the current block |
| * |
| * \remark Nothing is returned. Instead, the chosen modes and contexts necessary |
| * for reconstruction are stored in ctx, the rate-distortion stats are stored in |
| * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be |
| * signalled by an INT64_MAX rd_cost->rdcost. |
| */ |
| static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx) { |
| // For nonrd mode, av1_set_offsets is already called at the superblock level |
| // in encode_nonrd_sb when we determine the partitioning. |
| if (bsize != cpi->common.seq_params->sb_size || |
| cpi->sf.rt_sf.nonrd_check_partition_split == 1) { |
| av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize); |
| } |
| assert(x->last_set_offsets_loc.mi_row == mi_row && |
| x->last_set_offsets_loc.mi_col == mi_col && |
| x->last_set_offsets_loc.bsize == bsize); |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| int i; |
| |
| // This is only needed for real time/allintra row-mt enabled multi-threaded |
| // encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF. |
| wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync, |
| &tile_data->tile_info, cm->seq_params->sb_size, |
| cm->seq_params->mib_size_log2, bsize, mi_row, mi_col); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, pick_sb_modes_nonrd_time); |
| #endif |
| // Sets up the tx_type_map buffer in MACROBLOCKD. |
| xd->tx_type_map = txfm_info->tx_type_map_; |
| xd->tx_type_map_stride = mi_size_wide[bsize]; |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| p[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| |
| x->force_zeromv_skip_for_blk = |
| get_force_zeromv_skip_flag_for_blk(cpi, x, bsize); |
| |
| // Source variance may be already compute at superblock level, so no need |
| // to recompute, unless bsize < sb_size or source_variance is not yet set. |
| if (!x->force_zeromv_skip_for_blk && |
| (x->source_variance == UINT_MAX || bsize < cm->seq_params->sb_size)) |
| x->source_variance = av1_get_perpixel_variance_facade( |
| cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); |
| // Set error per bit for current rdmult |
| av1_set_error_per_bit(&x->errorperbit, x->rdmult); |
| // Find best coding mode & reconstruct the MB so it is available |
| // as a predictor for MBs that follow in the SB |
| if (frame_is_intra_only(cm)) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, hybrid_intra_mode_search_time); |
| #endif |
| hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, hybrid_intra_mode_search_time); |
| #endif |
| } else { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, nonrd_pick_inter_mode_sb_time); |
| #endif |
| if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| RD_STATS invalid_rd; |
| av1_invalid_rd_stats(&invalid_rd); |
| // TODO(kyslov): add av1_nonrd_pick_inter_mode_sb_seg_skip |
| av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, |
| rd_cost, bsize, ctx, |
| invalid_rd.rdcost); |
| } else { |
| av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx); |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, nonrd_pick_inter_mode_sb_time); |
| #endif |
| } |
| if (cpi->sf.rt_sf.skip_cdef_sb) { |
| // cdef_strength is initialized to 1 which means skip_cdef, and is updated |
| // here. Check to see is skipping cdef is allowed. |
| const int allow_cdef_skipping = |
| cpi->rc.frames_since_key > 10 && !cpi->rc.high_source_sad && |
| !(x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] || |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]); |
| |
| // Find the corresponding 64x64 block. It'll be the 128x128 block if that's |
| // the block size. |
| const int mi_row_sb = mi_row - mi_row % MI_SIZE_64X64; |
| const int mi_col_sb = mi_col - mi_col % MI_SIZE_64X64; |
| MB_MODE_INFO **mi_sb = |
| cm->mi_params.mi_grid_base + |
| get_mi_grid_idx(&cm->mi_params, mi_row_sb, mi_col_sb); |
| // Do not skip if intra or new mv is picked, or color sensitivity is set. |
| // Never skip on slide/scene change. |
| if (cpi->sf.rt_sf.skip_cdef_sb >= 2) { |
| mi_sb[0]->cdef_strength = |
| mi_sb[0]->cdef_strength && |
| (allow_cdef_skipping || x->source_variance == 0); |
| } else { |
| mi_sb[0]->cdef_strength = |
| mi_sb[0]->cdef_strength && allow_cdef_skipping && |
| !(mbmi->mode < INTRA_MODES || mbmi->mode == NEWMV); |
| } |
| // Store in the pickmode context. |
| ctx->mic.cdef_strength = mi_sb[0]->cdef_strength; |
| } |
| x->rdmult = orig_rdmult; |
| ctx->rd_stats.rate = rd_cost->rate; |
| ctx->rd_stats.dist = rd_cost->dist; |
| ctx->rd_stats.rdcost = rd_cost->rdcost; |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, pick_sb_modes_nonrd_time); |
| #endif |
| } |
| |
| static int try_split_partition(AV1_COMP *const cpi, ThreadData *const td, |
| TileDataEnc *const tile_data, |
| TileInfo *const tile_info, TokenExtra **tp, |
| MACROBLOCK *const x, MACROBLOCKD *const xd, |
| const CommonModeInfoParams *const mi_params, |
| const int mi_row, const int mi_col, |
| const BLOCK_SIZE bsize, const int pl, |
| PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int hbs = mi_size_wide[bsize] / 2; |
| if (mi_row + mi_size_high[bsize] >= mi_params->mi_rows || |
| mi_col + mi_size_wide[bsize] >= mi_params->mi_cols) |
| return 0; |
| if (bsize <= BLOCK_8X8 || frame_is_intra_only(cm)) return 0; |
| if (x->content_state_sb.source_sad_nonrd <= kLowSad) return 0; |
| |
| // Do not try split partition when the source sad is small, or |
| // the prediction residual is small. |
| const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, LAST_FRAME); |
| const int num_planes = av1_num_planes(cm); |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); |
| av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf, num_planes); |
| int block_sad = 0; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bs = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf( |
| p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride); |
| block_sad += plane_sad; |
| } |
| const int blk_pix = block_size_wide[bsize] * block_size_high[bsize]; |
| const int block_avg_sad = block_sad / blk_pix; |
| // TODO(chengchen): find a proper threshold. It might change according to |
| // q as well. |
| const int threshold = 25; |
| if (block_avg_sad < threshold) return 0; |
| |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| RD_STATS split_rdc, none_rdc; |
| av1_invalid_rd_stats(&split_rdc); |
| av1_invalid_rd_stats(&none_rdc); |
| av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| // Calculate rdcost for none partition |
| pc_tree->partitioning = PARTITION_NONE; |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| if (!pc_tree->none) { |
| pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); |
| if (!pc_tree->none) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } else { |
| av1_reset_pmc(pc_tree->none); |
| } |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, |
| pc_tree->none); |
| none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| |
| // Calculate rdcost for split partition |
| pc_tree->partitioning = PARTITION_SPLIT; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| av1_init_rd_stats(&split_rdc); |
| split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; |
| if (subsize >= BLOCK_8X8) { |
| split_rdc.rate += (mode_costs->partition_cost[pl][PARTITION_NONE] * 4); |
| } |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { |
| if (!pc_tree->split[i]) { |
| pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); |
| if (!pc_tree->split[i]) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| } |
| pc_tree->split[i]->index = i; |
| } |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { |
| RD_STATS block_rdc; |
| av1_invalid_rd_stats(&block_rdc); |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK); |
| if (!pc_tree->split[i]->none) { |
| pc_tree->split[i]->none = |
| av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); |
| if (!pc_tree->split[i]->none) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } else { |
| av1_reset_pmc(pc_tree->split[i]->none); |
| } |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, |
| &block_rdc, subsize, pc_tree->split[i]->none); |
| split_rdc.rate += block_rdc.rate; |
| split_rdc.dist += block_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &split_rdc); |
| if (none_rdc.rdcost < split_rdc.rdcost) break; |
| if (i != SUB_PARTITIONS_SPLIT - 1) |
| encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1, |
| subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); |
| } |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist); |
| const int split = split_rdc.rdcost < none_rdc.rdcost; |
| |
| return split; |
| } |
| |
| // Returns if SPLIT partitions should be evaluated |
| static bool calc_do_split_flag(const AV1_COMP *cpi, const MACROBLOCK *x, |
| const PC_TREE *pc_tree, const RD_STATS *none_rdc, |
| const CommonModeInfoParams *mi_params, |
| int mi_row, int mi_col, int hbs, |
| BLOCK_SIZE bsize, PARTITION_TYPE partition) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int is_larger_qindex = cm->quant_params.base_qindex > 100; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| bool do_split = |
| (cpi->sf.rt_sf.nonrd_check_partition_merge_mode == 3) |
| ? (bsize <= BLOCK_32X32 || (is_larger_qindex && bsize <= BLOCK_64X64)) |
| : true; |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN || |
| cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 || |
| cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) || |
| !none_rdc->skip_txfm) |
| return do_split; |
| |
| const int use_model_yrd_large = get_model_rd_flag(cpi, xd, bsize); |
| |
| // When model based skip is not used (i.e.,use_model_yrd_large = 0), skip_txfm |
| // would have been populated based on Hadamard transform and skip_txfm flag is |
| // more reliable. Hence SPLIT evaluation is disabled at all quantizers for 8x8 |
| // and 16x16 blocks. |
| // When model based skip is used (i.e.,use_model_yrd_large = 1), skip_txfm may |
| // not be reliable. Hence SPLIT evaluation is disabled only at lower |
| // quantizers for blocks >= 32x32. |
| if ((!use_model_yrd_large) || (!is_larger_qindex)) return false; |
| |
| // Use residual statistics to decide if SPLIT partition should be evaluated |
| // for 32x32 blocks. The pruning logic is avoided for larger block size to |
| // avoid the visual artifacts |
| if (pc_tree->none->mic.mode == NEWMV && bsize == BLOCK_32X32 && do_split) { |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| assert(subsize < BLOCK_SIZES_ALL); |
| double min_per_pixel_error = DBL_MAX; |
| double max_per_pixel_error = 0.; |
| int i; |
| for (i = 0; i < SUB_PARTITIONS_SPLIT; i++) { |
| const int x_idx = (i & 1) * hbs; |
| const int y_idx = (i >> 1) * hbs; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) { |
| break; |
| } |
| |
| // Populate the appropriate buffer pointers. |
| // Pass scale factors as NULL as the base pointer of the block would have |
| // been calculated appropriately. |
| struct buf_2d src_split_buf_2d, pred_split_buf_2d; |
| const struct buf_2d *src_none_buf_2d = &x->plane[AOM_PLANE_Y].src; |
| setup_pred_plane(&src_split_buf_2d, subsize, src_none_buf_2d->buf, |
| src_none_buf_2d->width, src_none_buf_2d->height, |
| src_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0); |
| const struct buf_2d *pred_none_buf_2d = &xd->plane[AOM_PLANE_Y].dst; |
| setup_pred_plane(&pred_split_buf_2d, subsize, pred_none_buf_2d->buf, |
| pred_none_buf_2d->width, pred_none_buf_2d->height, |
| pred_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0); |
| |
| unsigned int curr_uint_mse; |
| const unsigned int curr_uint_var = cpi->ppi->fn_ptr[subsize].vf( |
| src_split_buf_2d.buf, src_split_buf_2d.stride, pred_split_buf_2d.buf, |
| pred_split_buf_2d.stride, &curr_uint_mse); |
| const double curr_per_pixel_error = |
| sqrt((double)curr_uint_var / block_size_wide[subsize] / |
| block_size_high[subsize]); |
| if (curr_per_pixel_error < min_per_pixel_error) |
| min_per_pixel_error = curr_per_pixel_error; |
| if (curr_per_pixel_error > max_per_pixel_error) |
| max_per_pixel_error = curr_per_pixel_error; |
| } |
| |
| // Prune based on residual statistics only if all the sub-partitions are |
| // valid. |
| if (i == SUB_PARTITIONS_SPLIT) { |
| if (max_per_pixel_error - min_per_pixel_error <= 1.5) do_split = false; |
| } |
| } |
| |
| return do_split; |
| } |
| |
| static void try_merge(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, MB_MODE_INFO **mib, |
| TokenExtra **tp, const int mi_row, const int mi_col, |
| const BLOCK_SIZE bsize, PC_TREE *const pc_tree, |
| const PARTITION_TYPE partition, const BLOCK_SIZE subsize, |
| const int pl) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int num_planes = av1_num_planes(cm); |
| // Only square blocks from 8x8 to 128x128 are supported |
| assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128); |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| bool do_split = false; |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| RD_STATS split_rdc, none_rdc; |
| av1_invalid_rd_stats(&split_rdc); |
| av1_invalid_rd_stats(&none_rdc); |
| av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| pc_tree->partitioning = PARTITION_NONE; |
| if (!pc_tree->none) { |
| pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); |
| if (!pc_tree->none) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } else { |
| av1_reset_pmc(pc_tree->none); |
| } |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, |
| pc_tree->none); |
| none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 || |
| none_rdc.skip_txfm != 1 || pc_tree->none->mic.mode == NEWMV) { |
| do_split = calc_do_split_flag(cpi, x, pc_tree, &none_rdc, mi_params, mi_row, |
| mi_col, hbs, bsize, partition); |
| if (do_split) { |
| av1_init_rd_stats(&split_rdc); |
| split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { |
| RD_STATS block_rdc; |
| av1_invalid_rd_stats(&block_rdc); |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK); |
| if (!pc_tree->split[i]->none) { |
| pc_tree->split[i]->none = |
| av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); |
| if (!pc_tree->split[i]->none) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } else { |
| av1_reset_pmc(pc_tree->split[i]->none); |
| } |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, |
| &block_rdc, subsize, pc_tree->split[i]->none); |
| // TODO(yunqingwang): The rate here did not include the cost of |
| // signaling PARTITION_NONE token in the sub-blocks. |
| split_rdc.rate += block_rdc.rate; |
| split_rdc.dist += block_rdc.dist; |
| |
| av1_rd_cost_update(x->rdmult, &split_rdc); |
| |
| if (none_rdc.rdcost < split_rdc.rdcost) { |
| break; |
| } |
| |
| if (i != SUB_PARTITIONS_SPLIT - 1) |
| encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, |
| 1, subsize, PARTITION_NONE, pc_tree->split[i]->none, |
| NULL); |
| } |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist); |
| } |
| } |
| |
| if (none_rdc.rdcost < split_rdc.rdcost) { |
| /* Predicted samples can not be reused for PARTITION_NONE since same |
| * buffer is being used to store the reconstructed samples of |
| * PARTITION_SPLIT block. */ |
| if (do_split) x->reuse_inter_pred = false; |
| |
| mib[0]->bsize = bsize; |
| pc_tree->partitioning = PARTITION_NONE; |
| encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition, |
| pc_tree->none, NULL); |
| } else { |
| mib[0]->bsize = subsize; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| /* Predicted samples can not be reused for PARTITION_SPLIT since same |
| * buffer is being used to write the reconstructed samples. */ |
| // TODO(Cherma): Store and reuse predicted samples generated by |
| // encode_b_nonrd() in DRY_RUN_NORMAL mode. |
| x->reuse_inter_pred = false; |
| |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| |
| // Note: We don't reset pc_tree->split[i]->none here because it |
| // could contain results from the additional check. Instead, it is |
| // reset before we enter the nonrd_check_partition_merge_mode |
| // condition. |
| if (!pc_tree->split[i]->none) { |
| pc_tree->split[i]->none = |
| av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); |
| if (!pc_tree->split[i]->none) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } |
| encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0, |
| subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); |
| } |
| } |
| } |
| |
| // Evaluate if the sub-partitions can be merged directly into a large partition |
| // without calculating the RD cost. |
| static void direct_partition_merging(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, MB_MODE_INFO **mib, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| const PARTITION_TYPE partition = |
| (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) |
| : PARTITION_NONE; |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| |
| MB_MODE_INFO **b0 = mib; |
| MB_MODE_INFO **b1 = mib + hbs; |
| MB_MODE_INFO **b2 = mib + hbs * mi_params->mi_stride; |
| MB_MODE_INFO **b3 = mib + hbs * mi_params->mi_stride + hbs; |
| |
| // Check if the following conditions are met. This can be updated |
| // later with more support added. |
| const int further_split = b0[0]->bsize < subsize || b1[0]->bsize < subsize || |
| b2[0]->bsize < subsize || b3[0]->bsize < subsize; |
| if (further_split) return; |
| |
| const int no_skip = !b0[0]->skip_txfm || !b1[0]->skip_txfm || |
| !b2[0]->skip_txfm || !b3[0]->skip_txfm; |
| if (no_skip) return; |
| |
| const int compound = (b0[0]->ref_frame[1] != b1[0]->ref_frame[1] || |
| b0[0]->ref_frame[1] != b2[0]->ref_frame[1] || |
| b0[0]->ref_frame[1] != b3[0]->ref_frame[1] || |
| b0[0]->ref_frame[1] > NONE_FRAME); |
| if (compound) return; |
| |
| // Intra modes aren't considered here. |
| const int different_ref = (b0[0]->ref_frame[0] != b1[0]->ref_frame[0] || |
| b0[0]->ref_frame[0] != b2[0]->ref_frame[0] || |
| b0[0]->ref_frame[0] != b3[0]->ref_frame[0] || |
| b0[0]->ref_frame[0] <= INTRA_FRAME); |
| if (different_ref) return; |
| |
| const int different_mode = |
| (b0[0]->mode != b1[0]->mode || b0[0]->mode != b2[0]->mode || |
| b0[0]->mode != b3[0]->mode); |
| if (different_mode) return; |
| |
| const int unsupported_mode = |
| (b0[0]->mode != NEARESTMV && b0[0]->mode != GLOBALMV); |
| if (unsupported_mode) return; |
| |
| const int different_mv = (b0[0]->mv[0].as_int != b1[0]->mv[0].as_int || |
| b0[0]->mv[0].as_int != b2[0]->mv[0].as_int || |
| b0[0]->mv[0].as_int != b3[0]->mv[0].as_int); |
| if (different_mv) return; |
| |
| const int unsupported_motion_mode = |
| (b0[0]->motion_mode != b1[0]->motion_mode || |
| b0[0]->motion_mode != b2[0]->motion_mode || |
| b0[0]->motion_mode != b3[0]->motion_mode || |
| b0[0]->motion_mode != SIMPLE_TRANSLATION); |
| if (unsupported_motion_mode) return; |
| |
| const int diffent_filter = |
| (b0[0]->interp_filters.as_int != b1[0]->interp_filters.as_int || |
| b0[0]->interp_filters.as_int != b2[0]->interp_filters.as_int || |
| b0[0]->interp_filters.as_int != b3[0]->interp_filters.as_int); |
| if (diffent_filter) return; |
| |
| const int different_seg = (b0[0]->segment_id != b1[0]->segment_id || |
| b0[0]->segment_id != b2[0]->segment_id || |
| b0[0]->segment_id != b3[0]->segment_id); |
| if (different_seg) return; |
| |
| // Evaluate the ref_mv. |
| MB_MODE_INFO **this_mi = mib; |
| BLOCK_SIZE orig_bsize = this_mi[0]->bsize; |
| const PARTITION_TYPE orig_partition = this_mi[0]->partition; |
| |
| this_mi[0]->bsize = bsize; |
| this_mi[0]->partition = PARTITION_NONE; |
| this_mi[0]->skip_txfm = 1; |
| |
| // TODO(yunqing): functions called below can be optimized by |
| // removing unrelated operations. |
| av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row, |
| mi_col, bsize); |
| |
| const MV_REFERENCE_FRAME ref_frame = this_mi[0]->ref_frame[0]; |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES]; |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; |
| int force_skip_low_temp_var = 0; |
| int skip_pred_mv = 0; |
| bool use_scaled_ref; |
| |
| for (int i = 0; i < MB_MODE_COUNT; ++i) { |
| for (int j = 0; j < REF_FRAMES; ++j) { |
| frame_mv[i][j].as_int = INVALID_MV; |
| } |
| } |
| av1_copy(x->color_sensitivity, x->color_sensitivity_sb); |
| skip_pred_mv = (x->nonrd_prune_ref_frame_search > 2 && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] != 2 && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] != 2); |
| |
| find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, bsize, |
| force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref); |
| |
| int continue_merging = 1; |
| if (frame_mv[NEARESTMV][ref_frame].as_mv.row != b0[0]->mv[0].as_mv.row || |
| frame_mv[NEARESTMV][ref_frame].as_mv.col != b0[0]->mv[0].as_mv.col) |
| continue_merging = 0; |
| |
| if (!continue_merging) { |
| this_mi[0]->bsize = orig_bsize; |
| this_mi[0]->partition = orig_partition; |
| |
| // TODO(yunqing): Store the results and restore here instead of |
| // calling find_predictors() again. |
| av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row, |
| mi_col, this_mi[0]->bsize); |
| find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, this_mi[0]->bsize, |
| force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref); |
| } else { |
| struct scale_factors *sf = get_ref_scale_factors(cm, ref_frame); |
| const int is_scaled = av1_is_scaled(sf); |
| const int is_y_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 8) || |
| (abs(this_mi[0]->mv[0].as_mv.col) % 8); |
| const int is_uv_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 16) || |
| (abs(this_mi[0]->mv[0].as_mv.col) % 16); |
| |
| if (cpi->ppi->use_svc || is_scaled || is_y_subpel_mv || is_uv_subpel_mv) { |
| const int num_planes = av1_num_planes(cm); |
| set_ref_ptrs(cm, xd, ref_frame, this_mi[0]->ref_frame[1]); |
| const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame); |
| av1_setup_pre_planes(xd, 0, cfg, mi_row, mi_col, |
| xd->block_ref_scale_factors[0], num_planes); |
| |
| if (!cpi->ppi->use_svc && !is_scaled && !is_y_subpel_mv) { |
| assert(is_uv_subpel_mv == 1); |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 1, |
| num_planes - 1); |
| } else { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| num_planes - 1); |
| } |
| } |
| |
| // Copy out mbmi_ext information. |
| MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame = x->mbmi_ext_frame; |
| av1_copy_mbmi_ext_to_mbmi_ext_frame( |
| mbmi_ext_frame, mbmi_ext, av1_ref_frame_type(this_mi[0]->ref_frame)); |
| |
| const BLOCK_SIZE this_subsize = |
| get_partition_subsize(bsize, this_mi[0]->partition); |
| // Update partition contexts. |
| update_ext_partition_context(xd, mi_row, mi_col, this_subsize, bsize, |
| this_mi[0]->partition); |
| |
| const int num_planes = av1_num_planes(cm); |
| av1_reset_entropy_context(xd, bsize, num_planes); |
| |
| // Note: use x->txfm_search_params.tx_mode_search_type instead of |
| // cm->features.tx_mode here. |
| TX_SIZE tx_size = |
| tx_size_from_tx_mode(bsize, x->txfm_search_params.tx_mode_search_type); |
| if (xd->lossless[this_mi[0]->segment_id]) tx_size = TX_4X4; |
| this_mi[0]->tx_size = tx_size; |
| memset(this_mi[0]->inter_tx_size, this_mi[0]->tx_size, |
| sizeof(this_mi[0]->inter_tx_size)); |
| |
| // Update txfm contexts. |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| set_txfm_ctxs(this_mi[0]->tx_size, xd->width, xd->height, |
| this_mi[0]->skip_txfm && is_inter_block(this_mi[0]), xd); |
| |
| // Update mi for this partition block. |
| for (int y = 0; y < bs; y++) { |
| for (int x_idx = 0; x_idx < bs; x_idx++) { |
| this_mi[x_idx + y * mi_params->mi_stride] = this_mi[0]; |
| } |
| } |
| } |
| } |
| |
| /*!\brief AV1 block partition application (minimal RD search). |
| * |
| * \ingroup partition_search |
| * \callgraph |
| * \callergraph |
| * Encode the block by applying pre-calculated partition patterns that are |
| * represented by coding block sizes stored in the mbmi array. The only |
| * partition adjustment allowed is merging leaf split nodes if it leads to a |
| * lower rd cost. The partition types are limited to a basic set: none, horz, |
| * vert, and split. This function is only used in the real-time mode. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] td Pointer to thread data |
| * \param[in] tile_data Pointer to struct holding adaptive |
| data/contexts/models for the tile during encoding |
| * \param[in] mib Array representing MB_MODE_INFO pointers for mi |
| blocks starting from the first pixel of the current |
| block |
| * \param[in] tp Pointer to the starting token |
| * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step size of |
| MI_SIZE |
| * \param[in] bsize Current block size |
| * \param[in] pc_tree Pointer to the PC_TREE node holding the picked |
| partitions and mode info for the current block |
| * |
| * \remark Nothing is returned. The pc_tree struct is modified to store the |
| * picked partition and modes. |
| */ |
| void av1_nonrd_use_partition(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, MB_MODE_INFO **mib, |
| TokenExtra **tp, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| // Only square blocks from 8x8 to 128x128 are supported |
| assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128); |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| PARTITION_TYPE partition = (bsize >= BLOCK_8X8) |
| ? get_partition(cm, mi_row, mi_col, bsize) |
| : PARTITION_NONE; |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| assert(subsize <= BLOCK_LARGEST); |
| const int pl = (bsize >= BLOCK_8X8) |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| |
| RD_STATS dummy_cost; |
| av1_invalid_rd_stats(&dummy_cost); |
| |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| // Initialize default mode evaluation params |
| set_mode_eval_params(cpi, x, DEFAULT_EVAL); |
| |
| x->reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd; |
| |
| int change_none_to_split = 0; |
| if (partition == PARTITION_NONE && |
| cpi->sf.rt_sf.nonrd_check_partition_split == 1) { |
| change_none_to_split = |
| try_split_partition(cpi, td, tile_data, tile_info, tp, x, xd, mi_params, |
| mi_row, mi_col, bsize, pl, pc_tree); |
| if (change_none_to_split) { |
| partition = PARTITION_SPLIT; |
| subsize = get_partition_subsize(bsize, partition); |
| assert(subsize <= BLOCK_LARGEST); |
| } |
| } |
| |
| pc_tree->partitioning = partition; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| if (!pc_tree->none) { |
| pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); |
| if (!pc_tree->none) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } else { |
| av1_reset_pmc(pc_tree->none); |
| } |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, bsize, |
| pc_tree->none); |
| encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, |
| partition, pc_tree->none, NULL); |
| break; |
| case PARTITION_VERT: |
| for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { |
| if (!pc_tree->vertical[i]) { |
| pc_tree->vertical[i] = |
| av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); |
| if (!pc_tree->vertical[i]) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } else { |
| av1_reset_pmc(pc_tree->vertical[i]); |
| } |
| } |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, |
| subsize, pc_tree->vertical[0]); |
| encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, |
| PARTITION_VERT, pc_tree->vertical[0], NULL); |
| if (mi_col + hbs < mi_params->mi_cols && bsize > BLOCK_8X8) { |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col + hbs, |
| &dummy_cost, subsize, pc_tree->vertical[1]); |
| encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize, |
| PARTITION_VERT, pc_tree->vertical[1], NULL); |
| } |
| break; |
| case PARTITION_HORZ: |
| for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { |
| if (!pc_tree->horizontal[i]) { |
| pc_tree->horizontal[i] = |
| av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); |
| if (!pc_tree->horizontal[i]) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } else { |
| av1_reset_pmc(pc_tree->horizontal[i]); |
| } |
| } |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, |
| subsize, pc_tree->horizontal[0]); |
| encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, |
| PARTITION_HORZ, pc_tree->horizontal[0], NULL); |
| |
| if (mi_row + hbs < mi_params->mi_rows && bsize > BLOCK_8X8) { |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + hbs, mi_col, |
| &dummy_cost, subsize, pc_tree->horizontal[1]); |
| encode_b_nonrd(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize, |
| PARTITION_HORZ, pc_tree->horizontal[1], NULL); |
| } |
| break; |
| case PARTITION_SPLIT: |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { |
| if (!pc_tree->split[i]) { |
| pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); |
| if (!pc_tree->split[i]) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| } |
| pc_tree->split[i]->index = i; |
| } |
| if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode && |
| av1_is_leaf_split_partition(cm, mi_row, mi_col, bsize) && |
| !frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { |
| try_merge(cpi, td, tile_data, mib, tp, mi_row, mi_col, bsize, pc_tree, |
| partition, subsize, pl); |
| } else { |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| int jj = i >> 1, ii = i & 0x01; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| av1_nonrd_use_partition( |
| cpi, td, tile_data, |
| mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp, |
| mi_row + y_idx, mi_col + x_idx, subsize, pc_tree->split[i]); |
| } |
| |
| if (!change_none_to_split) { |
| // Note: Palette, cfl are not supported. |
| if (!frame_is_intra_only(cm) && !tile_data->allow_update_cdf && |
| cpi->sf.rt_sf.partition_direct_merging && |
| mode_costs->partition_cost[pl][PARTITION_NONE] < |
| mode_costs->partition_cost[pl][PARTITION_SPLIT] && |
| (mi_row + bs <= mi_params->mi_rows) && |
| (mi_col + bs <= mi_params->mi_cols)) { |
| direct_partition_merging(cpi, td, tile_data, mib, mi_row, mi_col, |
| bsize); |
| } |
| } |
| } |
| break; |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: |
| assert(0 && "Cannot handle extended partition types"); |
| default: assert(0); break; |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Try searching for an encoding for the given subblock. Returns zero if the |
| // rdcost is already too high (to tell the caller not to bother searching for |
| // encodings of further subblocks). |
| static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, int is_last, |
| int mi_row, int mi_col, BLOCK_SIZE subsize, |
| RD_STATS best_rdcost, RD_STATS *sum_rdc, |
| PARTITION_TYPE partition, |
| PICK_MODE_CONTEXT *this_ctx) { |
| MACROBLOCK *const x = &td->mb; |
| const int orig_mult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL); |
| |
| av1_rd_cost_update(x->rdmult, &best_rdcost); |
| |
| RD_STATS rdcost_remaining; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining); |
| RD_STATS this_rdc; |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition, |
| subsize, this_ctx, rdcost_remaining); |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc->rdcost = INT64_MAX; |
| } else { |
| sum_rdc->rate += this_rdc.rate; |
| sum_rdc->dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, sum_rdc); |
| } |
| |
| if (sum_rdc->rdcost >= best_rdcost.rdcost) { |
| x->rdmult = orig_mult; |
| return 0; |
| } |
| |
| if (!is_last) { |
| av1_update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL); |
| } |
| |
| x->rdmult = orig_mult; |
| return 1; |
| } |
| |
| // Tests an AB partition, and updates the encoder status, the pick mode |
| // contexts, the best rdcost, and the best partition. |
| static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| PC_TREE *pc_tree, RD_STATS *best_rdc, |
| int64_t *this_rdcost, |
| PICK_MODE_CONTEXT *ctxs[SUB_PARTITIONS_AB], |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| PARTITION_TYPE partition, |
| const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB], |
| const int ab_mi_pos[SUB_PARTITIONS_AB][2], |
| const MB_MODE_INFO **mode_cache) { |
| MACROBLOCK *const x = &td->mb; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| RD_STATS sum_rdc; |
| av1_init_rd_stats(&sum_rdc); |
| sum_rdc.rate = x->mode_costs.partition_cost[pl][partition]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| // Loop over sub-partitions in AB partition type. |
| for (int i = 0; i < SUB_PARTITIONS_AB; i++) { |
| if (mode_cache && mode_cache[i]) { |
| x->use_mb_mode_cache = 1; |
| x->mb_mode_cache = mode_cache[i]; |
| } |
| const int mode_search_success = |
| rd_try_subblock(cpi, td, tile_data, tp, i == SUB_PARTITIONS_AB - 1, |
| ab_mi_pos[i][0], ab_mi_pos[i][1], ab_subsize[i], |
| *best_rdc, &sum_rdc, partition, ctxs[i]); |
| x->use_mb_mode_cache = 0; |
| x->mb_mode_cache = NULL; |
| if (!mode_search_success) { |
| return false; |
| } |
| } |
| |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| *this_rdcost = sum_rdc.rdcost; |
| if (sum_rdc.rdcost >= best_rdc->rdcost) return false; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| *this_rdcost = sum_rdc.rdcost; |
| if (sum_rdc.rdcost >= best_rdc->rdcost) return false; |
| |
| *best_rdc = sum_rdc; |
| pc_tree->partitioning = partition; |
| return true; |
| } |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| static void init_partition_block_timing_stats( |
| PartitionTimingStats *part_timing_stats) { |
| av1_zero(*part_timing_stats); |
| } |
| |
| static INLINE void start_partition_block_timer( |
| PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type) { |
| assert(!part_timing_stats->timer_is_on); |
| part_timing_stats->partition_attempts[partition_type] += 1; |
| aom_usec_timer_start(&part_timing_stats->timer); |
| part_timing_stats->timer_is_on = 1; |
| } |
| |
| static INLINE void end_partition_block_timer( |
| PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type, |
| int64_t rdcost) { |
| if (part_timing_stats->timer_is_on) { |
| aom_usec_timer_mark(&part_timing_stats->timer); |
| const int64_t time = aom_usec_timer_elapsed(&part_timing_stats->timer); |
| part_timing_stats->partition_times[partition_type] += time; |
| part_timing_stats->partition_rdcost[partition_type] = rdcost; |
| part_timing_stats->timer_is_on = 0; |
| } |
| } |
| static INLINE void print_partition_timing_stats_with_rdcost( |
| const PartitionTimingStats *part_timing_stats, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, FRAME_UPDATE_TYPE frame_update_type, int frame_number, |
| const RD_STATS *best_rdc, const char *filename) { |
| FILE *f = fopen(filename, "a"); |
| fprintf(f, "%d,%d,%d,%d,%d,%d,%" PRId64 ",%" PRId64 ",", bsize, frame_number, |
| frame_update_type, mi_row, mi_col, best_rdc->rate, best_rdc->dist, |
| best_rdc->rdcost); |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]); |
| } |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]); |
| } |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]); |
| } |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| if (part_timing_stats->partition_rdcost[idx] == INT64_MAX) { |
| fprintf(f, "%d,", -1); |
| } else { |
| fprintf(f, "%" PRId64 ",", part_timing_stats->partition_rdcost[idx]); |
| } |
| } |
| fprintf(f, "\n"); |
| fclose(f); |
| } |
| |
| static INLINE void print_partition_timing_stats( |
| const PartitionTimingStats *part_timing_stats, int intra_only, |
| int show_frame, const BLOCK_SIZE bsize, const char *filename) { |
| FILE *f = fopen(filename, "a"); |
| fprintf(f, "%d,%d,%d,", bsize, show_frame, intra_only); |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]); |
| } |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]); |
| } |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]); |
| } |
| fprintf(f, "\n"); |
| fclose(f); |
| } |
| |
| static INLINE void accumulate_partition_timing_stats( |
| FramePartitionTimingStats *fr_part_timing_stats, |
| const PartitionTimingStats *part_timing_stats, BLOCK_SIZE bsize) { |
| const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize); |
| int *agg_attempts = fr_part_timing_stats->partition_attempts[bsize_idx]; |
| int *agg_decisions = fr_part_timing_stats->partition_decisions[bsize_idx]; |
| int64_t *agg_times = fr_part_timing_stats->partition_times[bsize_idx]; |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| agg_attempts[idx] += part_timing_stats->partition_attempts[idx]; |
| agg_decisions[idx] += part_timing_stats->partition_decisions[idx]; |
| agg_times[idx] += part_timing_stats->partition_times[idx]; |
| } |
| } |
| #endif // CONFIG_COLLECT_PARTITION_STATS |
| |
| // Initialize state variables of partition search used in |
| // av1_rd_pick_partition(). |
| static void init_partition_search_state_params( |
| MACROBLOCK *x, AV1_COMP *const cpi, PartitionSearchState *part_search_state, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const AV1_COMMON *const cm = &cpi->common; |
| PartitionBlkParams *blk_params = &part_search_state->part_blk_params; |
| const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; |
| |
| // Initialization of block size related parameters. |
| blk_params->mi_step = mi_size_wide[bsize] / 2; |
| blk_params->mi_row = mi_row; |
| blk_params->mi_col = mi_col; |
| blk_params->mi_row_edge = mi_row + blk_params->mi_step; |
| blk_params->mi_col_edge = mi_col + blk_params->mi_step; |
| blk_params->width = block_size_wide[bsize]; |
| blk_params->min_partition_size_1d = |
| block_size_wide[x->sb_enc.min_partition_size]; |
| blk_params->subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| blk_params->split_bsize2 = blk_params->subsize; |
| blk_params->bsize_at_least_8x8 = (bsize >= BLOCK_8X8); |
| blk_params->bsize = bsize; |
| |
| // Check if the partition corresponds to edge block. |
| blk_params->has_rows = (blk_params->mi_row_edge < mi_params->mi_rows); |
| blk_params->has_cols = (blk_params->mi_col_edge < mi_params->mi_cols); |
| |
| // Update intra partitioning related info. |
| part_search_state->intra_part_info = &x->part_search_info; |
| // Prepare for segmentation CNN-based partitioning for intra-frame. |
| if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) { |
| part_search_state->intra_part_info->quad_tree_idx = 0; |
| part_search_state->intra_part_info->cnn_output_valid = 0; |
| } |
| |
| // Set partition plane context index. |
| part_search_state->pl_ctx_idx = |
| blk_params->bsize_at_least_8x8 |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| |
| // Partition cost buffer update |
| ModeCosts *mode_costs = &x->mode_costs; |
| part_search_state->partition_cost = |
| mode_costs->partition_cost[part_search_state->pl_ctx_idx]; |
| |
| // Initialize HORZ and VERT win flags as true for all split partitions. |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { |
| part_search_state->split_part_rect_win[i].rect_part_win[HORZ] = true; |
| part_search_state->split_part_rect_win[i].rect_part_win[VERT] = true; |
| } |
| |
| // Initialize the rd cost. |
| av1_init_rd_stats(&part_search_state->this_rdc); |
| |
| // Initialize RD costs for partition types to 0. |
| part_search_state->none_rd = 0; |
| av1_zero(part_search_state->split_rd); |
| av1_zero(part_search_state->rect_part_rd); |
| |
| // Initialize SPLIT partition to be not ready. |
| av1_zero(part_search_state->is_split_ctx_is_ready); |
| // Initialize HORZ and VERT partitions to be not ready. |
| av1_zero(part_search_state->is_rect_ctx_is_ready); |
| |
| // Chroma subsampling. |
| part_search_state->ss_x = x->e_mbd.plane[1].subsampling_x; |
| part_search_state->ss_y = x->e_mbd.plane[1].subsampling_y; |
| |
| // Initialize partition search flags to defaults. |
| part_search_state->terminate_partition_search = 0; |
| part_search_state->do_square_split = blk_params->bsize_at_least_8x8; |
| part_search_state->do_rectangular_split = |
| cpi->oxcf.part_cfg.enable_rect_partitions && |
| blk_params->bsize_at_least_8x8; |
| av1_zero(part_search_state->prune_rect_part); |
| |
| // Initialize allowed partition types for the partition block. |
| part_search_state->partition_none_allowed = |
| av1_blk_has_rows_and_cols(blk_params); |
| part_search_state->partition_rect_allowed[HORZ] = |
| part_search_state->do_rectangular_split && blk_params->has_cols && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ), |
| part_search_state->ss_x, |
| part_search_state->ss_y) != BLOCK_INVALID; |
| part_search_state->partition_rect_allowed[VERT] = |
| part_search_state->do_rectangular_split && blk_params->has_rows && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT), |
| part_search_state->ss_x, |
| part_search_state->ss_y) != BLOCK_INVALID; |
| |
| // Reset the flag indicating whether a partition leading to a rdcost lower |
| // than the bound best_rdc has been found. |
| part_search_state->found_best_partition = false; |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| init_partition_block_timing_stats(&part_search_state->part_timing_stats); |
| #endif // CONFIG_COLLECT_PARTITION_STATS |
| } |
| |
| // Override partition cost buffer for the edge blocks. |
| static void set_partition_cost_for_edge_blk( |
| AV1_COMMON const *cm, PartitionSearchState *part_search_state) { |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| assert(blk_params.bsize_at_least_8x8 && part_search_state->pl_ctx_idx >= 0); |
| const aom_cdf_prob *partition_cdf = |
| cm->fc->partition_cdf[part_search_state->pl_ctx_idx]; |
| const int max_cost = av1_cost_symbol(0); |
| for (PARTITION_TYPE i = 0; i < PARTITION_TYPES; ++i) |
| part_search_state->tmp_partition_cost[i] = max_cost; |
| if (blk_params.has_cols) { |
| // At the bottom, the two possibilities are HORZ and SPLIT. |
| aom_cdf_prob bot_cdf[2]; |
| partition_gather_vert_alike(bot_cdf, partition_cdf, blk_params.bsize); |
| static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, bot_cdf, |
| bot_inv_map); |
| } else if (blk_params.has_rows) { |
| // At the right, the two possibilities are VERT and SPLIT. |
| aom_cdf_prob rhs_cdf[2]; |
| partition_gather_horz_alike(rhs_cdf, partition_cdf, blk_params.bsize); |
| static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, rhs_cdf, |
| rhs_inv_map); |
| } else { |
| // At the bottom right, we always split. |
| part_search_state->tmp_partition_cost[PARTITION_SPLIT] = 0; |
| } |
| // Override the partition cost buffer. |
| part_search_state->partition_cost = part_search_state->tmp_partition_cost; |
| } |
| |
| // Reset the partition search state flags when |
| // must_find_valid_partition is equal to 1. |
| static AOM_INLINE void reset_part_limitations( |
| AV1_COMP *const cpi, PartitionSearchState *part_search_state) { |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| const int is_rect_part_allowed = |
| blk_params.bsize_at_least_8x8 && |
| cpi->oxcf.part_cfg.enable_rect_partitions && |
| (blk_params.width > blk_params.min_partition_size_1d); |
| part_search_state->do_square_split = |
| blk_params.bsize_at_least_8x8 && |
| (blk_params.width > blk_params.min_partition_size_1d); |
| part_search_state->partition_none_allowed = |
| av1_blk_has_rows_and_cols(&blk_params) && |
| (blk_params.width >= blk_params.min_partition_size_1d); |
| part_search_state->partition_rect_allowed[HORZ] = |
| blk_params.has_cols && is_rect_part_allowed && |
| get_plane_block_size( |
| get_partition_subsize(blk_params.bsize, PARTITION_HORZ), |
| part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; |
| part_search_state->partition_rect_allowed[VERT] = |
| blk_params.has_rows && is_rect_part_allowed && |
| get_plane_block_size( |
| get_partition_subsize(blk_params.bsize, PARTITION_VERT), |
| part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; |
| part_search_state->terminate_partition_search = 0; |
| } |
| |
| // Rectangular partitions evaluation at sub-block level. |
| static void rd_pick_rect_partition(AV1_COMP *const cpi, TileDataEnc *tile_data, |
| MACROBLOCK *x, |
| PICK_MODE_CONTEXT *cur_partition_ctx, |
| PartitionSearchState *part_search_state, |
| RD_STATS *best_rdc, const int idx, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| PARTITION_TYPE partition_type) { |
| // Obtain the remainder from the best rd cost |
| // for further processing of partition. |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, best_rdc, &part_search_state->sum_rdc, |
| &best_remain_rdcost); |
| |
| // Obtain the best mode for the partition sub-block. |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &part_search_state->this_rdc, |
| partition_type, bsize, cur_partition_ctx, best_remain_rdcost); |
| av1_rd_cost_update(x->rdmult, &part_search_state->this_rdc); |
| |
| // Update the partition rd cost with the current sub-block rd. |
| if (part_search_state->this_rdc.rate == INT_MAX) { |
| part_search_state->sum_rdc.rdcost = INT64_MAX; |
| } else { |
| part_search_state->sum_rdc.rate += part_search_state->this_rdc.rate; |
| part_search_state->sum_rdc.dist += part_search_state->this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc); |
| } |
| const RECT_PART_TYPE rect_part = |
| partition_type == PARTITION_HORZ ? HORZ : VERT; |
| part_search_state->rect_part_rd[rect_part][idx] = |
| part_search_state->this_rdc.rdcost; |
| } |
| |
| typedef int (*active_edge_info)(const AV1_COMP *cpi, int mi_col, int mi_step); |
| |
| // Checks if HORZ / VERT partition search is allowed. |
| static AOM_INLINE int is_rect_part_allowed( |
| const AV1_COMP *cpi, const PartitionSearchState *part_search_state, |
| const active_edge_info *active_edge, RECT_PART_TYPE rect_part, |
| const int mi_pos) { |
| const PartitionBlkParams *blk_params = &part_search_state->part_blk_params; |
| const int is_part_allowed = |
| (!part_search_state->terminate_partition_search && |
| part_search_state->partition_rect_allowed[rect_part] && |
| !part_search_state->prune_rect_part[rect_part] && |
| (part_search_state->do_rectangular_split || |
| active_edge[rect_part](cpi, mi_pos, blk_params->mi_step))); |
| return is_part_allowed; |
| } |
| |
| static void rectangular_partition_search( |
| AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, |
| TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree, |
| RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, |
| PartitionSearchState *part_search_state, RD_STATS *best_rdc, |
| RD_RECT_PART_WIN_INFO *rect_part_win_info, const RECT_PART_TYPE start_type, |
| const RECT_PART_TYPE end_type) { |
| const AV1_COMMON *const cm = &cpi->common; |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| RD_STATS *sum_rdc = &part_search_state->sum_rdc; |
| const int rect_partition_type[NUM_RECT_PARTS] = { PARTITION_HORZ, |
| PARTITION_VERT }; |
| |
| // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][0]: mi_row postion of |
| // HORZ and VERT partition types. |
| // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][1]: mi_col postion of |
| // HORZ and VERT partition types. |
| const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2] = { |
| { { blk_params.mi_row, blk_params.mi_col }, |
| { blk_params.mi_row_edge, blk_params.mi_col } }, |
| { { blk_params.mi_row, blk_params.mi_col }, |
| { blk_params.mi_row, blk_params.mi_col_edge } } |
| }; |
| |
| // Initialize active edge_type function pointer |
| // for HOZR and VERT partition types. |
| active_edge_info active_edge_type[NUM_RECT_PARTS] = { av1_active_h_edge, |
| av1_active_v_edge }; |
| |
| // Indicates edge blocks for HORZ and VERT partition types. |
| const int is_not_edge_block[NUM_RECT_PARTS] = { blk_params.has_rows, |
| blk_params.has_cols }; |
| |
| // Initialize pc tree context for HORZ and VERT partition types. |
| PICK_MODE_CONTEXT **cur_ctx[NUM_RECT_PARTS][SUB_PARTITIONS_RECT] = { |
| { &pc_tree->horizontal[0], &pc_tree->horizontal[1] }, |
| { &pc_tree->vertical[0], &pc_tree->vertical[1] } |
| }; |
| |
| // Loop over rectangular partition types. |
| for (RECT_PART_TYPE i = start_type; i <= end_type; i++) { |
| assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, |
| !part_search_state->partition_rect_allowed[i])); |
| |
| // Check if the HORZ / VERT partition search is to be performed. |
| if (!is_rect_part_allowed(cpi, part_search_state, active_edge_type, i, |
| mi_pos_rect[i][0][i])) |
| continue; |
| |
| // Sub-partition idx. |
| int sub_part_idx = 0; |
| PARTITION_TYPE partition_type = rect_partition_type[i]; |
| blk_params.subsize = |
| get_partition_subsize(blk_params.bsize, partition_type); |
| assert(blk_params.subsize <= BLOCK_LARGEST); |
| av1_init_rd_stats(sum_rdc); |
| for (int j = 0; j < SUB_PARTITIONS_RECT; j++) { |
| if (cur_ctx[i][j][0] == NULL) { |
| cur_ctx[i][j][0] = |
| av1_alloc_pmc(cpi, blk_params.subsize, &td->shared_coeff_buf); |
| if (!cur_ctx[i][j][0]) |
| aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } |
| } |
| sum_rdc->rate = part_search_state->partition_cost[partition_type]; |
| sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| PartitionTimingStats *part_timing_stats = |
| &part_search_state->part_timing_stats; |
| if (best_rdc->rdcost - sum_rdc->rdcost >= 0) { |
| start_partition_block_timer(part_timing_stats, partition_type); |
| } |
| #endif |
| |
| // First sub-partition evaluation in HORZ / VERT partition type. |
| rd_pick_rect_partition( |
| cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state, |
| best_rdc, 0, mi_pos_rect[i][sub_part_idx][0], |
| mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type); |
| |
| // Start of second sub-partition evaluation. |
| // Evaluate second sub-partition if the first sub-partition cost |
| // is less than the best cost and if it is not an edge block. |
| if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[i]) { |
| const MB_MODE_INFO *const mbmi = &cur_ctx[i][sub_part_idx][0]->mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted. |
| if (pmi->palette_size[PLANE_TYPE_Y] == 0 && |
| pmi->palette_size[PLANE_TYPE_UV] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) |
| part_search_state->is_rect_ctx_is_ready[i] = 1; |
| } |
| av1_update_state(cpi, td, cur_ctx[i][sub_part_idx][0], blk_params.mi_row, |
| blk_params.mi_col, blk_params.subsize, DRY_RUN_NORMAL); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, |
| blk_params.subsize, NULL); |
| |
| // Second sub-partition evaluation in HORZ / VERT partition type. |
| sub_part_idx = 1; |
| rd_pick_rect_partition( |
| cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state, |
| best_rdc, 1, mi_pos_rect[i][sub_part_idx][0], |
| mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type); |
| } |
| // Update HORZ / VERT best partition. |
| if (sum_rdc->rdcost < best_rdc->rdcost) { |
| sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, sum_rdc->dist); |
| if (sum_rdc->rdcost < best_rdc->rdcost) { |
| *best_rdc = *sum_rdc; |
| part_search_state->found_best_partition = true; |
| pc_tree->partitioning = partition_type; |
| } |
| } else { |
| // Update HORZ / VERT win flag. |
| if (rect_part_win_info != NULL) |
| rect_part_win_info->rect_part_win[i] = false; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (part_timing_stats->timer_is_on) { |
| end_partition_block_timer(part_timing_stats, partition_type, |
| sum_rdc->rdcost); |
| } |
| #endif |
| av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col, |
| blk_params.bsize, av1_num_planes(cm)); |
| } |
| } |
| |
| // AB partition type evaluation. |
| static void rd_pick_ab_part( |
| AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, |
| TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, |
| PC_TREE *pc_tree, PICK_MODE_CONTEXT *dst_ctxs[SUB_PARTITIONS_AB], |
| PartitionSearchState *part_search_state, RD_STATS *best_rdc, |
| const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB], |
| const int ab_mi_pos[SUB_PARTITIONS_AB][2], const PARTITION_TYPE part_type, |
| const MB_MODE_INFO **mode_cache) { |
| const AV1_COMMON *const cm = &cpi->common; |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| const int mi_row = blk_params.mi_row; |
| const int mi_col = blk_params.mi_col; |
| const BLOCK_SIZE bsize = blk_params.bsize; |
| int64_t this_rdcost = 0; |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| PartitionTimingStats *part_timing_stats = |
| &part_search_state->part_timing_stats; |
| { |
| RD_STATS tmp_sum_rdc; |
| av1_init_rd_stats(&tmp_sum_rdc); |
| tmp_sum_rdc.rate = part_search_state->partition_cost[part_type]; |
| tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); |
| if (best_rdc->rdcost - tmp_sum_rdc.rdcost >= 0) { |
| start_partition_block_timer(part_timing_stats, part_type); |
| } |
| } |
| #endif |
| |
| // Test this partition and update the best partition. |
| const bool find_best_ab_part = rd_test_partition3( |
| cpi, td, tile_data, tp, pc_tree, best_rdc, &this_rdcost, dst_ctxs, mi_row, |
| mi_col, bsize, part_type, ab_subsize, ab_mi_pos, mode_cache); |
| part_search_state->found_best_partition |= find_best_ab_part; |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (part_timing_stats->timer_is_on) { |
| if (!find_best_ab_part) this_rdcost = INT64_MAX; |
| end_partition_block_timer(part_timing_stats, part_type, this_rdcost); |
| } |
| #endif |
| av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); |
| } |
| |
| // Set mode search context. |
| static AOM_INLINE void set_mode_search_ctx( |
| PC_TREE *pc_tree, const int is_ctx_ready[NUM_AB_PARTS][2], |
| PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]) { |
| mode_srch_ctx[HORZ_B][0] = &pc_tree->horizontal[0]; |
| mode_srch_ctx[VERT_B][0] = &pc_tree->vertical[0]; |
| |
| if (is_ctx_ready[HORZ_A][0]) |
| mode_srch_ctx[HORZ_A][0] = &pc_tree->split[0]->none; |
| |
| if (is_ctx_ready[VERT_A][0]) |
| mode_srch_ctx[VERT_A][0] = &pc_tree->split[0]->none; |
| |
| if (is_ctx_ready[HORZ_A][1]) |
| mode_srch_ctx[HORZ_A][1] = &pc_tree->split[1]->none; |
| } |
| |
| static AOM_INLINE void copy_partition_mode_from_mode_context( |
| const MB_MODE_INFO **dst_mode, const PICK_MODE_CONTEXT *ctx) { |
| if (ctx && ctx->rd_stats.rate < INT_MAX) { |
| *dst_mode = &ctx->mic; |
| } else { |
| *dst_mode = NULL; |
| } |
| } |
| |
| static AOM_INLINE void copy_partition_mode_from_pc_tree( |
| const MB_MODE_INFO **dst_mode, const PC_TREE *pc_tree) { |
| if (pc_tree) { |
| copy_partition_mode_from_mode_context(dst_mode, pc_tree->none); |
| } else { |
| *dst_mode = NULL; |
| } |
| } |
| |
| static AOM_INLINE void set_mode_cache_for_partition_ab( |
| const MB_MODE_INFO **mode_cache, const PC_TREE *pc_tree, |
| AB_PART_TYPE ab_part_type) { |
| switch (ab_part_type) { |
| case HORZ_A: |
| copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]); |
| copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]); |
| copy_partition_mode_from_mode_context(&mode_cache[2], |
| pc_tree->horizontal[1]); |
| break; |
| case HORZ_B: |
| copy_partition_mode_from_mode_context(&mode_cache[0], |
| pc_tree->horizontal[0]); |
| copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]); |
| copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]); |
| break; |
| case VERT_A: |
| copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]); |
| copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]); |
| copy_partition_mode_from_mode_context(&mode_cache[2], |
| pc_tree->vertical[1]); |
| break; |
| case VERT_B: |
| copy_partition_mode_from_mode_context(&mode_cache[0], |
| pc_tree->vertical[0]); |
| copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]); |
| copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]); |
| break; |
| default: assert(0 && "Invalid ab partition type!\n"); |
| } |
| } |
| |
| // AB Partitions type search. |
| static void ab_partitions_search( |
| AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, |
| TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, |
| PC_TREE *pc_tree, PartitionSearchState *part_search_state, |
| RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info, |
| int pb_source_variance, int ext_partition_allowed, |
| const AB_PART_TYPE start_type, const AB_PART_TYPE end_type) { |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| const int mi_row = blk_params.mi_row; |
| const int mi_col = blk_params.mi_col; |
| const BLOCK_SIZE bsize = blk_params.bsize; |
| |
| if (part_search_state->terminate_partition_search) { |
| return; |
| } |
| |
| int ab_partitions_allowed[NUM_AB_PARTS]; |
| // Prune AB partitions |
| av1_prune_ab_partitions(cpi, x, pc_tree, pb_source_variance, best_rdc->rdcost, |
| rect_part_win_info, ext_partition_allowed, |
| part_search_state, ab_partitions_allowed); |
| |
| // Flags to indicate whether the mode search is done. |
| const int is_ctx_ready[NUM_AB_PARTS][2] = { |
| { part_search_state->is_split_ctx_is_ready[0], |
| part_search_state->is_split_ctx_is_ready[1] }, |
| { part_search_state->is_rect_ctx_is_ready[HORZ], 0 }, |
| { part_search_state->is_split_ctx_is_ready[0], 0 }, |
| { part_search_state->is_rect_ctx_is_ready[VERT], 0 } |
| }; |
| |
| // Current partition context. |
| PICK_MODE_CONTEXT **cur_part_ctxs[NUM_AB_PARTS] = { pc_tree->horizontala, |
| pc_tree->horizontalb, |
| pc_tree->verticala, |
| pc_tree->verticalb }; |
| |
| // Context of already evaluted partition types. |
| PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]; |
| // Set context of already evaluted partition types. |
| set_mode_search_ctx(pc_tree, is_ctx_ready, mode_srch_ctx); |
| |
| // Array of sub-partition size of AB partition types. |
| const BLOCK_SIZE ab_subsize[NUM_AB_PARTS][SUB_PARTITIONS_AB] = { |
| { blk_params.split_bsize2, blk_params.split_bsize2, |
| get_partition_subsize(bsize, PARTITION_HORZ_A) }, |
| { get_partition_subsize(bsize, PARTITION_HORZ_B), blk_params.split_bsize2, |
| blk_params.split_bsize2 }, |
| { blk_params.split_bsize2, blk_params.split_bsize2, |
| get_partition_subsize(bsize, PARTITION_VERT_A) }, |
| { get_partition_subsize(bsize, PARTITION_VERT_B), blk_params.split_bsize2, |
| blk_params.split_bsize2 } |
| }; |
| |
| // Array of mi_row, mi_col positions corresponds to each sub-partition in AB |
| // partition types. |
| const int ab_mi_pos[NUM_AB_PARTS][SUB_PARTITIONS_AB][2] = { |
| { { mi_row, mi_col }, |
| { mi_row, blk_params.mi_col_edge }, |
| { blk_params.mi_row_edge, mi_col } }, |
| { { mi_row, mi_col }, |
| { blk_params.mi_row_edge, mi_col }, |
| { blk_params.mi_row_edge, blk_params.mi_col_edge } }, |
| { { mi_row, mi_col }, |
| { blk_params.mi_row_edge, mi_col }, |
| { mi_row, blk_params.mi_col_edge } }, |
| { { mi_row, mi_col }, |
| { mi_row, blk_params.mi_col_edge }, |
| { blk_params.mi_row_edge, blk_params.mi_col_edge } } |
| }; |
| |
| // Loop over AB partition types. |
| for (AB_PART_TYPE ab_part_type = start_type; ab_part_type <= end_type; |
| ab_part_type++) { |
| const PARTITION_TYPE part_type = ab_part_type + PARTITION_HORZ_A; |
| |
| // Check if the AB partition search is to be performed. |
| if (!ab_partitions_allowed[ab_part_type]) { |
| continue; |
| } |
| |
| blk_params.subsize = get_partition_subsize(bsize, part_type); |
| for (int i = 0; i < SUB_PARTITIONS_AB; i++) { |
| // Set AB partition context. |
| cur_part_ctxs[ab_part_type][i] = av1_alloc_pmc( |
| cpi, ab_subsize[ab_part_type][i], &td->shared_coeff_buf); |
| if (!cur_part_ctxs[ab_part_type][i]) |
| aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| // Set mode as not ready. |
| cur_part_ctxs[ab_part_type][i]->rd_mode_is_ready = 0; |
| } |
| |
| if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab) { |
| // We can copy directly the mode search results if we have already |
| // searched the current block and the contexts match. |
| if (is_ctx_ready[ab_part_type][0]) { |
| av1_copy_tree_context(cur_part_ctxs[ab_part_type][0], |
| mode_srch_ctx[ab_part_type][0][0]); |
| cur_part_ctxs[ab_part_type][0]->mic.partition = part_type; |
| cur_part_ctxs[ab_part_type][0]->rd_mode_is_ready = 1; |
| if (is_ctx_ready[ab_part_type][1]) { |
| av1_copy_tree_context(cur_part_ctxs[ab_part_type][1], |
| mode_srch_ctx[ab_part_type][1][0]); |
| cur_part_ctxs[ab_part_type][1]->mic.partition = part_type; |
| cur_part_ctxs[ab_part_type][1]->rd_mode_is_ready = 1; |
| } |
| } |
| } |
| |
| // Even if the contexts don't match, we can still speed up by reusing the |
| // previous prediction mode. |
| const MB_MODE_INFO *mode_cache[3] = { NULL, NULL, NULL }; |
| if (cpi->sf.part_sf.reuse_best_prediction_for_part_ab) { |
| set_mode_cache_for_partition_ab(mode_cache, pc_tree, ab_part_type); |
| } |
| |
| // Evaluation of AB partition type. |
| rd_pick_ab_part(cpi, td, tile_data, tp, x, x_ctx, pc_tree, |
| cur_part_ctxs[ab_part_type], part_search_state, best_rdc, |
| ab_subsize[ab_part_type], ab_mi_pos[ab_part_type], |
| part_type, mode_cache); |
| } |
| } |
| |
| // Set mi positions for HORZ4 / VERT4 sub-block partitions. |
| static void set_mi_pos_partition4(const int inc_step[NUM_PART4_TYPES], |
| int mi_pos[SUB_PARTITIONS_PART4][2], |
| const int mi_row, const int mi_col) { |
| for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; i++) { |
| mi_pos[i][0] = mi_row + i * inc_step[HORZ4]; |
| mi_pos[i][1] = mi_col + i * inc_step[VERT4]; |
| } |
| } |
| |
| // Set context and RD cost for HORZ4 / VERT4 partition types. |
| static void set_4_part_ctx_and_rdcost( |
| MACROBLOCK *x, const AV1_COMP *const cpi, ThreadData *td, |
| PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4], |
| PartitionSearchState *part_search_state, PARTITION_TYPE partition_type, |
| BLOCK_SIZE bsize) { |
| // Initialize sum_rdc RD cost structure. |
| av1_init_rd_stats(&part_search_state->sum_rdc); |
| const int subsize = get_partition_subsize(bsize, partition_type); |
| part_search_state->sum_rdc.rate = |
| part_search_state->partition_cost[partition_type]; |
| part_search_state->sum_rdc.rdcost = |
| RDCOST(x->rdmult, part_search_state->sum_rdc.rate, 0); |
| for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) { |
| cur_part_ctx[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); |
| if (!cur_part_ctx[i]) |
| aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| } |
| } |
| |
| // Partition search of HORZ4 / VERT4 partition types. |
| static void rd_pick_4partition( |
| AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, |
| TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, |
| PC_TREE *pc_tree, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4], |
| PartitionSearchState *part_search_state, RD_STATS *best_rdc, |
| const int inc_step[NUM_PART4_TYPES], PARTITION_TYPE partition_type) { |
| const AV1_COMMON *const cm = &cpi->common; |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| // mi positions needed for HORZ4 and VERT4 partition types. |
| int mi_pos_check[NUM_PART4_TYPES] = { cm->mi_params.mi_rows, |
| cm->mi_params.mi_cols }; |
| const PART4_TYPES part4_idx = (partition_type != PARTITION_HORZ_4); |
| int mi_pos[SUB_PARTITIONS_PART4][2]; |
| |
| blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type); |
| // Set partition context and RD cost. |
| set_4_part_ctx_and_rdcost(x, cpi, td, cur_part_ctx, part_search_state, |
| partition_type, blk_params.bsize); |
| // Set mi positions for sub-block sizes. |
| set_mi_pos_partition4(inc_step, mi_pos, blk_params.mi_row, blk_params.mi_col); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| PartitionTimingStats *part_timing_stats = |
| &part_search_state->part_timing_stats; |
| if (best_rdc->rdcost - part_search_state->sum_rdc.rdcost >= 0) { |
| start_partition_block_timer(part_timing_stats, partition_type); |
| } |
| #endif |
| // Loop over sub-block partitions. |
| for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) { |
| if (i > 0 && mi_pos[i][part4_idx] >= mi_pos_check[part4_idx]) break; |
| |
| // Sub-block evaluation of Horz4 / Vert4 partition type. |
| cur_part_ctx[i]->rd_mode_is_ready = 0; |
| if (!rd_try_subblock( |
| cpi, td, tile_data, tp, (i == SUB_PARTITIONS_PART4 - 1), |
| mi_pos[i][0], mi_pos[i][1], blk_params.subsize, *best_rdc, |
| &part_search_state->sum_rdc, partition_type, cur_part_ctx[i])) { |
| av1_invalid_rd_stats(&part_search_state->sum_rdc); |
| break; |
| } |
| } |
| |
| // Calculate the total cost and update the best partition. |
| av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc); |
| if (part_search_state->sum_rdc.rdcost < best_rdc->rdcost) { |
| *best_rdc = part_search_state->sum_rdc; |
| part_search_state->found_best_partition = true; |
| pc_tree->partitioning = partition_type; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (part_timing_stats->timer_is_on) { |
| end_partition_block_timer(part_timing_stats, partition_type, |
| part_search_state->sum_rdc.rdcost); |
| } |
| #endif |
| av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col, |
| blk_params.bsize, av1_num_planes(cm)); |
| } |
| |
| // Do not evaluate extended partitions if NONE partition is skippable. |
| static INLINE int prune_ext_part_none_skippable( |
| PICK_MODE_CONTEXT *part_none, int must_find_valid_partition, |
| int skip_non_sq_part_based_on_none, BLOCK_SIZE bsize) { |
| if ((skip_non_sq_part_based_on_none >= 1) && (part_none != NULL)) { |
| if (part_none->skippable && !must_find_valid_partition && |
| bsize >= BLOCK_16X16) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| // Allow ab partition search |
| static int allow_ab_partition_search(PartitionSearchState *part_search_state, |
| PARTITION_SPEED_FEATURES *part_sf, |
| PARTITION_TYPE curr_best_part, |
| int must_find_valid_partition, |
| int prune_ext_part_state, |
| int64_t best_rdcost) { |
| const PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| const BLOCK_SIZE bsize = blk_params.bsize; |
| |
| // Do not prune if there is no valid partition |
| if (best_rdcost == INT64_MAX) return 1; |
| |
| // Determine bsize threshold to evaluate ab partitions |
| BLOCK_SIZE ab_bsize_thresh = part_sf->ext_partition_eval_thresh; |
| if (part_sf->ext_part_eval_based_on_cur_best && !must_find_valid_partition && |
| !(curr_best_part == PARTITION_HORZ || curr_best_part == PARTITION_VERT)) |
| ab_bsize_thresh = BLOCK_128X128; |
| |
| // ab partitions are only allowed for square block sizes BLOCK_16X16 or |
| // higher, so ab_bsize_thresh must be large enough to exclude BLOCK_4X4 and |
| // BLOCK_8X8. |
| assert(ab_bsize_thresh >= BLOCK_8X8); |
| |
| int ab_partition_allowed = |
| part_search_state->do_rectangular_split && bsize > ab_bsize_thresh && |
| av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state; |
| |
| return ab_partition_allowed; |
| } |
| |
| // Prune 4-way partitions based on the number of horz/vert wins |
| // in the current block and sub-blocks in PARTITION_SPLIT. |
| static void prune_4_partition_using_split_info( |
| AV1_COMP *const cpi, MACROBLOCK *x, PartitionSearchState *part_search_state, |
| int part4_search_allowed[NUM_PART4_TYPES]) { |
| PART4_TYPES cur_part[NUM_PART4_TYPES] = { HORZ4, VERT4 }; |
| // Count of child blocks in which HORZ or VERT partition has won |
| int num_child_rect_win[NUM_RECT_PARTS] = { 0, 0 }; |
| // Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of |
| // split partiitons. |
| // Conservative pruning for high quantizers. |
| const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3); |
| |
| for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) { |
| if (!(cpi->sf.part_sf.prune_ext_part_using_split_info && |
| part4_search_allowed[cur_part[i]])) |
| continue; |
| // Loop over split partitions. |
| // Get rectangular partitions winner info of split partitions. |
| for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; idx++) |
| num_child_rect_win[i] += |
| (part_search_state->split_part_rect_win[idx].rect_part_win[i]) ? 1 |
| : 0; |
| if (num_child_rect_win[i] < num_win_thresh) { |
| part4_search_allowed[cur_part[i]] = 0; |
| } |
| } |
| } |
| |
| // Prune 4-way partition search. |
| static void prune_4_way_partition_search( |
| AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, |
| PartitionSearchState *part_search_state, RD_STATS *best_rdc, |
| int pb_source_variance, int prune_ext_part_state, |
| int part4_search_allowed[NUM_PART4_TYPES]) { |
| const PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| const BLOCK_SIZE bsize = blk_params.bsize; |
| |
| // Do not prune if there is no valid partition |
| if (best_rdc->rdcost == INT64_MAX) return; |
| |
| // Determine bsize threshold to evaluate 4-way partitions |
| BLOCK_SIZE part4_bsize_thresh = cpi->sf.part_sf.ext_partition_eval_thresh; |
| if (cpi->sf.part_sf.ext_part_eval_based_on_cur_best && |
| !x->must_find_valid_partition && pc_tree->partitioning == PARTITION_NONE) |
| part4_bsize_thresh = BLOCK_128X128; |
| |
| // 4-way partitions are only allowed for BLOCK_16X16, BLOCK_32X32, and |
| // BLOCK_64X64, so part4_bsize_thresh must be large enough to exclude |
| // BLOCK_4X4 and BLOCK_8X8. |
| assert(part4_bsize_thresh >= BLOCK_8X8); |
| |
| bool partition4_allowed = |
| part_search_state->do_rectangular_split && bsize > part4_bsize_thresh && |
| av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state; |
| |
| // Disable 4-way partition search flags for width less than a multiple of the |
| // minimum partition width. |
| if (blk_params.width < (blk_params.min_partition_size_1d |
| << cpi->sf.part_sf.prune_part4_search)) { |
| part4_search_allowed[HORZ4] = 0; |
| part4_search_allowed[VERT4] = 0; |
| return; |
| } |
| |
| PARTITION_TYPE cur_part[NUM_PART4_TYPES] = { PARTITION_HORZ_4, |
| PARTITION_VERT_4 }; |
| const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg; |
| // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or |
| // PARTITION_VERT_4 for this block. This is almost the same as |
| // partition4_allowed, except that we don't allow 128x32 or 32x128 |
| // blocks, so we require that bsize is not BLOCK_128X128. |
| partition4_allowed &= |
| part_cfg->enable_1to4_partitions && bsize != BLOCK_128X128; |
| |
| for (PART4_TYPES i = HORZ4; i < NUM_PART4_TYPES; i++) { |
| part4_search_allowed[i] = |
| partition4_allowed && part_search_state->partition_rect_allowed[i] && |
| get_plane_block_size(get_partition_subsize(bsize, cur_part[i]), |
| part_search_state->ss_x, |
| part_search_state->ss_y) != BLOCK_INVALID; |
| } |
| // Pruning: pruning out 4-way partitions based on the current best partition. |
| if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) { |
| part4_search_allowed[HORZ4] &= (pc_tree->partitioning == PARTITION_HORZ || |
| pc_tree->partitioning == PARTITION_HORZ_A || |
| pc_tree->partitioning == PARTITION_HORZ_B || |
| pc_tree->partitioning == PARTITION_SPLIT || |
| pc_tree->partitioning == PARTITION_NONE); |
| part4_search_allowed[VERT4] &= (pc_tree->partitioning == PARTITION_VERT || |
| pc_tree->partitioning == PARTITION_VERT_A || |
| pc_tree->partitioning == PARTITION_VERT_B || |
| pc_tree->partitioning == PARTITION_SPLIT || |
| pc_tree->partitioning == PARTITION_NONE); |
| } |
| |
| // Pruning: pruning out some 4-way partitions using a DNN taking rd costs of |
| // sub-blocks from basic partition types. |
| if (cpi->sf.part_sf.ml_prune_partition && partition4_allowed && |
| part_search_state->partition_rect_allowed[HORZ] && |
| part_search_state->partition_rect_allowed[VERT]) { |
| av1_ml_prune_4_partition(cpi, x, pc_tree->partitioning, best_rdc->rdcost, |
| part_search_state, part4_search_allowed, |
| pb_source_variance); |
| } |
| |
| // Pruning: pruning out 4-way partitions based on the number of horz/vert wins |
| // in the current block and sub-blocks in PARTITION_SPLIT. |
| prune_4_partition_using_split_info(cpi, x, part_search_state, |
| part4_search_allowed); |
| } |
| |
| // Set params needed for PARTITION_NONE search. |
| static void set_none_partition_params(const AV1_COMP *const cpi, ThreadData *td, |
| MACROBLOCK *x, PC_TREE *pc_tree, |
| PartitionSearchState *part_search_state, |
| RD_STATS *best_remain_rdcost, |
| RD_STATS *best_rdc, int *pt_cost) { |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| RD_STATS partition_rdcost; |
| // Set PARTITION_NONE context. |
| if (pc_tree->none == NULL) |
| pc_tree->none = av1_alloc_pmc(cpi, blk_params.bsize, &td->shared_coeff_buf); |
| if (!pc_tree->none) |
| aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| |
| // Set PARTITION_NONE type cost. |
| if (part_search_state->partition_none_allowed) { |
| if (blk_params.bsize_at_least_8x8) { |
| *pt_cost = part_search_state->partition_cost[PARTITION_NONE] < INT_MAX |
| ? part_search_state->partition_cost[PARTITION_NONE] |
| : 0; |
| } |
| |
| // Initialize the RD stats structure. |
| av1_init_rd_stats(&partition_rdcost); |
| partition_rdcost.rate = *pt_cost; |
| av1_rd_cost_update(x->rdmult, &partition_rdcost); |
| av1_rd_stats_subtraction(x->rdmult, best_rdc, &partition_rdcost, |
| best_remain_rdcost); |
| } |
| } |
| |
| // Skip other partitions based on PARTITION_NONE rd cost. |
| static void prune_partitions_after_none(AV1_COMP *const cpi, MACROBLOCK *x, |
| SIMPLE_MOTION_DATA_TREE *sms_tree, |
| PICK_MODE_CONTEXT *ctx_none, |
| PartitionSearchState *part_search_state, |
| RD_STATS *best_rdc, |
| unsigned int *pb_source_variance) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| RD_STATS *this_rdc = &part_search_state->this_rdc; |
| const BLOCK_SIZE bsize = blk_params.bsize; |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| if (!frame_is_intra_only(cm) && |
| (part_search_state->do_square_split || |
| part_search_state->do_rectangular_split) && |
| !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) { |
| const int use_ml_based_breakout = |
| bsize <= cpi->sf.part_sf.use_square_partition_only_threshold && |
| bsize > BLOCK_4X4 && cpi->sf.part_sf.ml_predict_breakout_level >= 1; |
| if (use_ml_based_breakout) { |
| av1_ml_predict_breakout(cpi, x, this_rdc, *pb_source_variance, xd->bd, |
| part_search_state); |
| } |
| |
| // Adjust dist breakout threshold according to the partition size. |
| const int64_t dist_breakout_thr = |
| cpi->sf.part_sf.partition_search_breakout_dist_thr >> |
| ((2 * (MAX_SB_SIZE_LOG2 - 2)) - |
| (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); |
| const int rate_breakout_thr = |
| cpi->sf.part_sf.partition_search_breakout_rate_thr * |
| num_pels_log2_lookup[bsize]; |
| // If all y, u, v transform blocks in this partition are skippable, |
| // and the dist & rate are within the thresholds, the partition |
| // search is terminated for current branch of the partition search |
| // tree. The dist & rate thresholds are set to 0 at speed 0 to |
| // disable the early termination at that speed. |
| if (best_rdc->dist < dist_breakout_thr && |
| best_rdc->rate < rate_breakout_thr) { |
| part_search_state->do_square_split = 0; |
| part_search_state->do_rectangular_split = 0; |
| } |
| } |
| |
| // Early termination: using simple_motion_search features and the |
| // rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a |
| // decision on early terminating at PARTITION_NONE. |
| if (cpi->sf.part_sf.simple_motion_search_early_term_none && cm->show_frame && |
| !frame_is_intra_only(cm) && bsize >= BLOCK_16X16 && |
| av1_blk_has_rows_and_cols(&blk_params) && this_rdc->rdcost < INT64_MAX && |
| this_rdc->rdcost >= 0 && this_rdc->rate < INT_MAX && |
| this_rdc->rate >= 0 && |
| (part_search_state->do_square_split || |
| part_search_state->do_rectangular_split)) { |
| av1_simple_motion_search_early_term_none(cpi, x, sms_tree, this_rdc, |
| part_search_state); |
| } |
| } |
| |
| // Decide early termination and rectangular partition pruning |
| // based on PARTITION_NONE and PARTITION_SPLIT costs. |
| static void prune_partitions_after_split( |
| AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, |
| PartitionSearchState *part_search_state, RD_STATS *best_rdc, |
| int64_t part_none_rd, int64_t part_split_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| const int mi_row = blk_params.mi_row; |
| const int mi_col = blk_params.mi_col; |
| const BLOCK_SIZE bsize = blk_params.bsize; |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| // Early termination: using the rd costs of PARTITION_NONE and subblocks |
| // from PARTITION_SPLIT to determine an early breakout. |
| if (cpi->sf.part_sf.ml_early_term_after_part_split_level && |
| !frame_is_intra_only(cm) && |
| !part_search_state->terminate_partition_search && |
| part_search_state->do_rectangular_split && |
| (part_search_state->partition_rect_allowed[HORZ] || |
| part_search_state->partition_rect_allowed[VERT])) { |
| av1_ml_early_term_after_split( |
| cpi, x, sms_tree, best_rdc->rdcost, part_none_rd, part_split_rd, |
| part_search_state->split_rd, part_search_state); |
| } |
| |
| // Use the rd costs of PARTITION_NONE and subblocks from PARTITION_SPLIT |
| // to prune out rectangular partitions in some directions. |
| if (!cpi->sf.part_sf.ml_early_term_after_part_split_level && |
| cpi->sf.part_sf.ml_prune_partition && !frame_is_intra_only(cm) && |
| (part_search_state->partition_rect_allowed[HORZ] || |
| part_search_state->partition_rect_allowed[VERT]) && |
| !(part_search_state->prune_rect_part[HORZ] || |
| part_search_state->prune_rect_part[VERT]) && |
| !part_search_state->terminate_partition_search) { |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(cm), |
| bsize); |
| av1_ml_prune_rect_partition(cpi, x, best_rdc->rdcost, |
| part_search_state->none_rd, |
| part_search_state->split_rd, part_search_state); |
| } |
| } |
| |
| // PARTITION_NONE search. |
| static void none_partition_search( |
| AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MACROBLOCK *x, |
| PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree, |
| RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, |
| PartitionSearchState *part_search_state, RD_STATS *best_rdc, |
| unsigned int *pb_source_variance, int64_t *none_rd, int64_t *part_none_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| RD_STATS *this_rdc = &part_search_state->this_rdc; |
| const int mi_row = blk_params.mi_row; |
| const int mi_col = blk_params.mi_col; |
| const BLOCK_SIZE bsize = blk_params.bsize; |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| if (part_search_state->terminate_partition_search || |
| !part_search_state->partition_none_allowed) |
| return; |
| |
| int pt_cost = 0; |
| RD_STATS best_remain_rdcost; |
| av1_invalid_rd_stats(&best_remain_rdcost); |
| |
| // Set PARTITION_NONE context and cost. |
| set_none_partition_params(cpi, td, x, pc_tree, part_search_state, |
| &best_remain_rdcost, best_rdc, &pt_cost); |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| // Timer start for partition None. |
| PartitionTimingStats *part_timing_stats = |
| &part_search_state->part_timing_stats; |
| if (best_remain_rdcost.rdcost >= 0) { |
| start_partition_block_timer(part_timing_stats, PARTITION_NONE); |
| } |
| #endif |
| // PARTITION_NONE evaluation and cost update. |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, PARTITION_NONE, |
| bsize, pc_tree->none, best_remain_rdcost); |
| |
| av1_rd_cost_update(x->rdmult, this_rdc); |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| // Timer end for partition None. |
| if (part_timing_stats->timer_is_on) { |
| RD_STATS tmp_rdc; |
| av1_init_rd_stats(&tmp_rdc); |
| if (this_rdc->rate != INT_MAX) { |
| tmp_rdc.rate = this_rdc->rate; |
| tmp_rdc.dist = this_rdc->dist; |
| tmp_rdc.rdcost = this_rdc->rdcost; |
| if (blk_params.bsize_at_least_8x8) { |
| tmp_rdc.rate += pt_cost; |
| tmp_rdc.rdcost = RDCOST(x->rdmult, tmp_rdc.rate, tmp_rdc.dist); |
| } |
| } |
| end_partition_block_timer(part_timing_stats, PARTITION_NONE, |
| tmp_rdc.rdcost); |
| } |
| #endif |
| *pb_source_variance = x->source_variance; |
| if (none_rd) *none_rd = this_rdc->rdcost; |
| part_search_state->none_rd = this_rdc->rdcost; |
| if (this_rdc->rate != INT_MAX) { |
| // Record picked ref frame to prune ref frames for other partition types. |
| if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) { |
| const int ref_type = av1_ref_frame_type(pc_tree->none->mic.ref_frame); |
| av1_update_picked_ref_frames_mask( |
| x, ref_type, bsize, cm->seq_params->mib_size, mi_row, mi_col); |
| } |
| |
| // Calculate the total cost and update the best partition. |
| if (blk_params.bsize_at_least_8x8) { |
| this_rdc->rate += pt_cost; |
| this_rdc->rdcost = RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist); |
| } |
| *part_none_rd = this_rdc->rdcost; |
| if (this_rdc->rdcost < best_rdc->rdcost) { |
| *best_rdc = *this_rdc; |
| part_search_state->found_best_partition = true; |
| if (blk_params.bsize_at_least_8x8) { |
| pc_tree->partitioning = PARTITION_NONE; |
| } |
| |
| // Disable split and rectangular partition search |
| // based on PARTITION_NONE cost. |
| prune_partitions_after_none(cpi, x, sms_tree, pc_tree->none, |
| part_search_state, best_rdc, |
| pb_source_variance); |
| } |
| } |
| av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); |
| } |
| |
| // PARTITION_SPLIT search. |
| static void split_partition_search( |
| AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, |
| TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree, |
| SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, |
| PartitionSearchState *part_search_state, RD_STATS *best_rdc, |
| SB_MULTI_PASS_MODE multi_pass_mode, int64_t *part_split_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int mi_row = blk_params.mi_row; |
| const int mi_col = blk_params.mi_col; |
| const BLOCK_SIZE bsize = blk_params.bsize; |
| assert(bsize < BLOCK_SIZES_ALL); |
| RD_STATS sum_rdc = part_search_state->sum_rdc; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| // Check if partition split is allowed. |
| if (part_search_state->terminate_partition_search || |
| !part_search_state->do_square_split) |
| return; |
| |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { |
| if (pc_tree->split[i] == NULL) |
| pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); |
| if (!pc_tree->split[i]) |
| aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| pc_tree->split[i]->index = i; |
| } |
| |
| // Initialization of this partition RD stats. |
| av1_init_rd_stats(&sum_rdc); |
| sum_rdc.rate = part_search_state->partition_cost[PARTITION_SPLIT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| |
| int idx; |
| #if CONFIG_COLLECT_PARTITION_STATS |
| PartitionTimingStats *part_timing_stats = |
| &part_search_state->part_timing_stats; |
| if (best_rdc->rdcost - sum_rdc.rdcost >= 0) { |
| start_partition_block_timer(part_timing_stats, PARTITION_SPLIT); |
| } |
| #endif |
| // Recursive partition search on 4 sub-blocks. |
| for (idx = 0; idx < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc->rdcost; |
| ++idx) { |
| const int x_idx = (idx & 1) * blk_params.mi_step; |
| const int y_idx = (idx >> 1) * blk_params.mi_step; |
| |
| if (mi_row + y_idx >= mi_params->mi_rows || |
| mi_col + x_idx >= mi_params->mi_cols) |
| continue; |
| |
| pc_tree->split[idx]->index = idx; |
| int64_t *p_split_rd = &part_search_state->split_rd[idx]; |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| |
| int curr_quad_tree_idx = 0; |
| if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { |
| curr_quad_tree_idx = part_search_state->intra_part_info->quad_tree_idx; |
| part_search_state->intra_part_info->quad_tree_idx = |
| 4 * curr_quad_tree_idx + idx + 1; |
| } |
| // Split partition evaluation of corresponding idx. |
| // If the RD cost exceeds the best cost then do not |
| // evaluate other split sub-partitions. |
| SIMPLE_MOTION_DATA_TREE *const sms_tree_split = |
| (sms_tree == NULL) ? NULL : sms_tree->split[idx]; |
| if (!av1_rd_pick_partition( |
| cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, |
| &part_search_state->this_rdc, best_remain_rdcost, |
| pc_tree->split[idx], sms_tree_split, p_split_rd, multi_pass_mode, |
| &part_search_state->split_part_rect_win[idx])) { |
| av1_invalid_rd_stats(&sum_rdc); |
| break; |
| } |
| if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { |
| part_search_state->intra_part_info->quad_tree_idx = curr_quad_tree_idx; |
| } |
| |
| sum_rdc.rate += part_search_state->this_rdc.rate; |
| sum_rdc.dist += part_search_state->this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| |
| // Set split ctx as ready for use. |
| if (idx <= 1 && (bsize <= BLOCK_8X8 || |
| pc_tree->split[idx]->partitioning == PARTITION_NONE)) { |
| const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted. |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) |
| part_search_state->is_split_ctx_is_ready[idx] = 1; |
| } |
| } |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (part_timing_stats->timer_is_on) { |
| end_partition_block_timer(part_timing_stats, PARTITION_SPLIT, |
| sum_rdc.rdcost); |
| } |
| #endif |
| const int reached_last_index = (idx == SUB_PARTITIONS_SPLIT); |
| |
| // Calculate the total cost and update the best partition. |
| *part_split_rd = sum_rdc.rdcost; |
| if (reached_last_index && sum_rdc.rdcost < best_rdc->rdcost) { |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost < best_rdc->rdcost) { |
| *best_rdc = sum_rdc; |
| part_search_state->found_best_partition = true; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| } |
| } else if (cpi->sf.part_sf.less_rectangular_check_level > 0) { |
| // Skip rectangular partition test when partition type none gives better |
| // rd than partition type split. |
| if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) { |
| const int partition_none_valid = part_search_state->none_rd > 0; |
| const int partition_none_better = |
| part_search_state->none_rd < sum_rdc.rdcost; |
| part_search_state->do_rectangular_split &= |
| !(partition_none_valid && partition_none_better); |
| } |
| } |
| // Restore the context for the following cases: |
| // 1) Current block size not more than maximum partition size as dry run |
| // encode happens for these cases |
| // 2) Current block size same as superblock size as the final encode |
| // happens for this case |
| if (bsize <= x->sb_enc.max_partition_size || bsize == cm->seq_params->sb_size) |
| av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); |
| } |
| |
| // The max number of nodes in the partition tree. |
| // The number of leaf nodes is (128x128) / (4x4) = 1024. |
| // The number of All possible parent nodes is 1 + 2 + ... + 512 = 1023. |
| #define NUM_NODES 2048 |
| |
| static void write_partition_tree(AV1_COMP *const cpi, |
| const PC_TREE *const pc_tree, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col) { |
| (void)mi_row; |
| (void)mi_col; |
| const char *path = cpi->oxcf.partition_info_path; |
| char filename[256]; |
| snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path, |
| cpi->sb_counter, 0); |
| FILE *pfile = fopen(filename, "w"); |
| fprintf(pfile, "%d", bsize); |
| |
| // Write partition type with BFS order. |
| const PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; |
| int q_idx = 0; |
| int last_idx = 1; |
| int num_nodes = 1; |
| |
| // First traversal to get number of leaf nodes. |
| tree_node_queue[q_idx] = pc_tree; |
| while (num_nodes > 0) { |
| const PC_TREE *node = tree_node_queue[q_idx]; |
| if (node->partitioning == PARTITION_SPLIT) { |
| for (int i = 0; i < 4; ++i) { |
| tree_node_queue[last_idx] = node->split[i]; |
| ++last_idx; |
| } |
| num_nodes += 4; |
| } |
| --num_nodes; |
| ++q_idx; |
| } |
| const int num_leafs = last_idx; |
| fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1); |
| |
| // Write partitions for each node. |
| q_idx = 0; |
| last_idx = 1; |
| num_nodes = 1; |
| tree_node_queue[q_idx] = pc_tree; |
| while (num_nodes > 0) { |
| const PC_TREE *node = tree_node_queue[q_idx]; |
| fprintf(pfile, ",%d", node->partitioning); |
| if (node->partitioning == PARTITION_SPLIT) { |
| for (int i = 0; i < 4; ++i) { |
| tree_node_queue[last_idx] = node->split[i]; |
| ++last_idx; |
| } |
| num_nodes += 4; |
| } |
| --num_nodes; |
| ++q_idx; |
| } |
| fprintf(pfile, "\n"); |
| |
| fclose(pfile); |
| } |
| |
| #if CONFIG_PARTITION_SEARCH_ORDER |
| static void verify_write_partition_tree(const AV1_COMP *const cpi, |
| const PC_TREE *const pc_tree, |
| const BLOCK_SIZE bsize, |
| const int config_id, const int mi_row, |
| const int mi_col) { |
| (void)mi_row; |
| (void)mi_col; |
| const char *path = cpi->oxcf.partition_info_path; |
| char filename[256]; |
| snprintf(filename, sizeof(filename), "%s/verify_partition_tree_sb%d_c%d", |
| path, cpi->sb_counter, config_id); |
| FILE *pfile = fopen(filename, "w"); |
| fprintf(pfile, "%d", bsize); |
| |
| // Write partition type with BFS order. |
| const PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; |
| int q_idx = 0; |
| int last_idx = 1; |
| int num_nodes = 1; |
| |
| // First traversal to get number of leaf nodes. |
| tree_node_queue[q_idx] = pc_tree; |
| while (num_nodes > 0) { |
| const PC_TREE *node = tree_node_queue[q_idx]; |
| if (node != NULL && node->partitioning == PARTITION_SPLIT) { |
| for (int i = 0; i < 4; ++i) { |
| tree_node_queue[last_idx] = node->split[i]; |
| ++last_idx; |
| } |
| num_nodes += 4; |
| } |
| --num_nodes; |
| ++q_idx; |
| } |
| const int num_leafs = last_idx; |
| fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1); |
| |
| // Write partitions for each node. |
| q_idx = 0; |
| last_idx = 1; |
| num_nodes = 1; |
| tree_node_queue[q_idx] = pc_tree; |
| while (num_nodes > 0) { |
| const PC_TREE *node = tree_node_queue[q_idx]; |
| if (node != NULL) { // suppress warning |
| fprintf(pfile, ",%d", node->partitioning); |
| if (node->partitioning == PARTITION_SPLIT) { |
| for (int i = 0; i < 4; ++i) { |
| tree_node_queue[last_idx] = node->split[i]; |
| ++last_idx; |
| } |
| num_nodes += 4; |
| } |
| } |
| --num_nodes; |
| ++q_idx; |
| } |
| fprintf(pfile, "\n"); |
| |
| fclose(pfile); |
| } |
| |
| static int read_partition_tree(AV1_COMP *const cpi, PC_TREE *const pc_tree, |
| struct aom_internal_error_info *error_info, |
| const int config_id) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const char *path = cpi->oxcf.partition_info_path; |
| char filename[256]; |
| snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path, |
| cpi->sb_counter, config_id); |
| FILE *pfile = fopen(filename, "r"); |
| if (pfile == NULL) { |
| aom_internal_error(cm->error, AOM_CODEC_ERROR, "Can't find input file: %s.", |
| filename); |
| } |
| |
| int read_bsize; |
| int num_nodes; |
| int num_configs; |
| fscanf(pfile, "%d,%d,%d", &read_bsize, &num_nodes, &num_configs); |
| assert(read_bsize == cpi->common.seq_params->sb_size); |
| BLOCK_SIZE bsize = (BLOCK_SIZE)read_bsize; |
| assert(bsize == pc_tree->block_size); |
| |
| PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; |
| int last_idx = 1; |
| int q_idx = 0; |
| tree_node_queue[q_idx] = pc_tree; |
| while (num_nodes > 0) { |
| int partitioning; |
| fscanf(pfile, ",%d", &partitioning); |
| assert(partitioning >= PARTITION_NONE && |
| partitioning < EXT_PARTITION_TYPES); |
| PC_TREE *node = tree_node_queue[q_idx]; |
| if (node != NULL) { |
| node->partitioning = partitioning; |
| bsize = node->block_size; |
| } |
| if (partitioning == PARTITION_SPLIT) { |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| for (int i = 0; i < 4; ++i) { |
| if (node != NULL) { // Suppress warning |
| node->split[i] = av1_alloc_pc_tree_node(subsize); |
| if (!node->split[i]) |
| aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| node->split[i]->index = i; |
| tree_node_queue[last_idx] = node->split[i]; |
| ++last_idx; |
| } |
| } |
| } |
| --num_nodes; |
| ++q_idx; |
| } |
| fclose(pfile); |
| |
| return num_configs; |
| } |
| |
| static RD_STATS rd_search_for_fixed_partition( |
| AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, |
| TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_tree, int mi_row, int mi_col, |
| const BLOCK_SIZE bsize, PC_TREE *pc_tree) { |
| const PARTITION_TYPE partition = pc_tree->partitioning; |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| RD_STATS best_rdc; |
| av1_invalid_rd_stats(&best_rdc); |
| int sum_subblock_rate = 0; |
| int64_t sum_subblock_dist = 0; |
| PartitionSearchState part_search_state; |
| init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col, |
| bsize); |
| // Override partition costs at the edges of the frame in the same |
| // way as in read_partition (see decodeframe.c). |
| PartitionBlkParams blk_params = part_search_state.part_blk_params; |
| if (!av1_blk_has_rows_and_cols(&blk_params)) |
| set_partition_cost_for_edge_blk(cm, &part_search_state); |
| |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| (void)orig_rdmult; |
| |
| // Set the context. |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| assert(bsize < BLOCK_SIZES_ALL); |
| unsigned int pb_source_variance = UINT_MAX; |
| int64_t part_none_rd = INT64_MAX; |
| int64_t none_rd = INT64_MAX; |
| int inc_step[NUM_PART4_TYPES] = { 0 }; |
| if (partition == PARTITION_HORZ_4) inc_step[HORZ4] = mi_size_high[bsize] / 4; |
| if (partition == PARTITION_VERT_4) inc_step[VERT4] = mi_size_wide[bsize] / 4; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx, |
| &part_search_state, &best_rdc, &pb_source_variance, |
| &none_rd, &part_none_rd); |
| break; |
| case PARTITION_HORZ: |
| rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx, |
| &part_search_state, &best_rdc, NULL, HORZ, |
| HORZ); |
| break; |
| case PARTITION_VERT: |
| rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx, |
| &part_search_state, &best_rdc, NULL, VERT, |
| VERT); |
| break; |
| case PARTITION_HORZ_A: |
| ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, |
| &part_search_state, &best_rdc, NULL, |
| pb_source_variance, 1, HORZ_A, HORZ_A); |
| break; |
| case PARTITION_HORZ_B: |
| ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, |
| &part_search_state, &best_rdc, NULL, |
| pb_source_variance, 1, HORZ_B, HORZ_B); |
| break; |
| case PARTITION_VERT_A: |
| ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, |
| &part_search_state, &best_rdc, NULL, |
| pb_source_variance, 1, VERT_A, VERT_A); |
| break; |
| case PARTITION_VERT_B: |
| ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, |
| &part_search_state, &best_rdc, NULL, |
| pb_source_variance, 1, VERT_B, VERT_B); |
| break; |
| case PARTITION_HORZ_4: |
| rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, |
| pc_tree->horizontal4, &part_search_state, &best_rdc, |
| inc_step, PARTITION_HORZ_4); |
| break; |
| case PARTITION_VERT_4: |
| rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, |
| pc_tree->vertical4, &part_search_state, &best_rdc, |
| inc_step, PARTITION_VERT_4); |
| break; |
| case PARTITION_SPLIT: |
| for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; ++idx) { |
| const BLOCK_SIZE subsize = |
| get_partition_subsize(bsize, PARTITION_SPLIT); |
| assert(subsize < BLOCK_SIZES_ALL); |
| const int next_mi_row = |
| idx < 2 ? mi_row : mi_row + mi_size_high[subsize]; |
| const int next_mi_col = |
| idx % 2 == 0 ? mi_col : mi_col + mi_size_wide[subsize]; |
| if (next_mi_row >= cm->mi_params.mi_rows || |
| next_mi_col >= cm->mi_params.mi_cols) { |
| continue; |
| } |
| const RD_STATS subblock_rdc = rd_search_for_fixed_partition( |
| cpi, td, tile_data, tp, sms_tree->split[idx], next_mi_row, |
| next_mi_col, subsize, pc_tree->split[idx]); |
| sum_subblock_rate += subblock_rdc.rate; |
| sum_subblock_dist += subblock_rdc.dist; |
| } |
| best_rdc.rate = sum_subblock_rate; |
| best_rdc.rate += part_search_state.partition_cost[PARTITION_SPLIT]; |
| best_rdc.dist = sum_subblock_dist; |
| best_rdc.rdcost = RDCOST(x->rdmult, best_rdc.rate, best_rdc.dist); |
| break; |
| default: |
| assert(0 && "invalid partition type."); |
| aom_internal_error(cm->error, AOM_CODEC_ERROR, "Invalid partition type."); |
| } |
| // Note: it is necessary to restore context information. |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| if (bsize != cm->seq_params->sb_size) { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| x->rdmult = orig_rdmult; |
| |
| return best_rdc; |
| } |
| |
| static void prepare_sb_features_before_search( |
| AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, |
| int mi_col, const BLOCK_SIZE bsize, aom_partition_features_t *features) { |
| av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col, |
| bsize, features); |
| collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, features); |
| } |
| |
| static void update_partition_stats(const RD_STATS *const this_rdcost, |
| aom_partition_stats_t *stats) { |
| stats->rate = this_rdcost->rate; |
| stats->dist = this_rdcost->dist; |
| stats->rdcost = this_rdcost->rdcost; |
| } |
| |
| static void build_pc_tree_from_part_decision( |
| const aom_partition_decision_t *partition_decision, |
| const BLOCK_SIZE this_bsize, PC_TREE *pc_tree, |
| struct aom_internal_error_info *error_info) { |
| BLOCK_SIZE bsize = this_bsize; |
| int num_nodes = partition_decision->num_nodes; |
| PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; |
| int last_idx = 1; |
| int q_idx = 0; |
| tree_node_queue[q_idx] = pc_tree; |
| while (num_nodes > 0) { |
| const int partitioning = partition_decision->partition_decision[q_idx]; |
| assert(partitioning >= PARTITION_NONE && |
| partitioning < EXT_PARTITION_TYPES); |
| PC_TREE *node = tree_node_queue[q_idx]; |
| if (node != NULL) { |
| node->partitioning = partitioning; |
| bsize = node->block_size; |
| } |
| if (partitioning == PARTITION_SPLIT) { |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| for (int i = 0; i < 4; ++i) { |
| if (node != NULL) { // Suppress warning |
| node->split[i] = av1_alloc_pc_tree_node(subsize); |
| if (!node->split[i]) |
| aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| node->split[i]->index = i; |
| tree_node_queue[last_idx] = node->split[i]; |
| ++last_idx; |
| } |
| } |
| } |
| --num_nodes; |
| ++q_idx; |
| } |
| } |
| |
| // The ML model needs to provide the whole decision tree for the superblock. |
| static bool ml_partition_search_whole_tree(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, |
| TokenExtra **tp, |
| SIMPLE_MOTION_DATA_TREE *sms_root, |
| int mi_row, int mi_col, |
| const BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| ExtPartController *const ext_part_controller = &cpi->ext_part_controller; |
| struct aom_internal_error_info *error_info = x->e_mbd.error_info; |
| aom_partition_features_t features; |
| prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize, |
| &features); |
| features.mi_row = mi_row; |
| features.mi_col = mi_col; |
| features.frame_width = cpi->frame_info.frame_width; |
| features.frame_height = cpi->frame_info.frame_height; |
| features.block_size = bsize; |
| av1_ext_part_send_features(ext_part_controller, &features); |
| |
| // rd mode search (dry run) for a valid partition decision from the ml model. |
| aom_partition_decision_t partition_decision; |
| do { |
| const bool valid_decision = av1_ext_part_get_partition_decision( |
| ext_part_controller, &partition_decision); |
| if (!valid_decision) return false; |
| |
| // First, let's take the easy approach. |
| // We require that the ml model has to provide partition decisions for the |
| // whole superblock. |
| td->pc_root = av1_alloc_pc_tree_node(bsize); |
| if (!td->pc_root) |
| aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| build_pc_tree_from_part_decision(&partition_decision, bsize, td->pc_root, |
| error_info); |
| |
| const RD_STATS this_rdcost = rd_search_for_fixed_partition( |
| cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root); |
| aom_partition_stats_t stats; |
| update_partition_stats(&this_rdcost, &stats); |
| av1_ext_part_send_partition_stats(ext_part_controller, &stats); |
| if (!partition_decision.is_final_decision) { |
| av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, |
| cpi->sf.part_sf.partition_search_type); |
| td->pc_root = NULL; |
| } |
| } while (!partition_decision.is_final_decision); |
| |
| // Encode with the selected mode and partition. |
| set_cb_offsets(x->cb_offset, 0, 0); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| td->pc_root, NULL); |
| av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, |
| cpi->sf.part_sf.partition_search_type); |
| td->pc_root = NULL; |
| |
| return true; |
| } |
| |
| // Use a bitmask to represent the valid partition types for the current |
| // block. "1" represents the corresponding partition type is vaild. |
| // The least significant bit represents "PARTITION_NONE", the |
| // largest significant bit represents "PARTITION_VERT_4", follow |
| // the enum order for PARTITION_TYPE in "enums.h" |
| static int get_valid_partition_types( |
| const AV1_COMP *const cpi, |
| const PartitionSearchState *const part_search_state, |
| const BLOCK_SIZE bsize) { |
| const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg; |
| const PartitionBlkParams blk_params = part_search_state->part_blk_params; |
| int valid_types = 0; |
| // PARTITION_NONE |
| valid_types |= (part_search_state->partition_none_allowed << 0); |
| // PARTITION_HORZ |
| valid_types |= (part_search_state->partition_rect_allowed[HORZ] << 1); |
| // PARTITION_VERT |
| valid_types |= (part_search_state->partition_rect_allowed[VERT] << 2); |
| // PARTITION_SPLIT |
| valid_types |= (part_search_state->do_square_split << 3); |
| // PARTITION_HORZ_A |
| const int ext_partition_allowed = part_search_state->do_rectangular_split && |
| av1_blk_has_rows_and_cols(&blk_params); |
| const int horzab_partition_allowed = |
| ext_partition_allowed && part_cfg->enable_ab_partitions && |
| part_search_state->partition_rect_allowed[HORZ]; |
| valid_types |= (horzab_partition_allowed << 4); |
| // PARTITION_HORZ_B |
| valid_types |= (horzab_partition_allowed << 5); |
| // PARTITION_VERT_A |
| const int vertab_partition_allowed = |
| ext_partition_allowed && part_cfg->enable_ab_partitions && |
| part_search_state->partition_rect_allowed[VERT]; |
| valid_types |= (vertab_partition_allowed << 6); |
| // PARTITION_VERT_B |
| valid_types |= (vertab_partition_allowed << 7); |
| // PARTITION_HORZ_4 |
| const int partition4_allowed = part_cfg->enable_1to4_partitions && |
| ext_partition_allowed && |
| bsize != BLOCK_128X128; |
| const int horz4_allowed = |
| partition4_allowed && part_search_state->partition_rect_allowed[HORZ] && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ_4), |
| part_search_state->ss_x, |
| part_search_state->ss_y) != BLOCK_INVALID; |
| valid_types |= (horz4_allowed << 8); |
| // PARTITION_VERT_4 |
| const int vert4_allowed = |
| partition4_allowed && part_search_state->partition_rect_allowed[HORZ] && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT_4), |
| part_search_state->ss_x, |
| part_search_state->ss_y) != BLOCK_INVALID; |
| valid_types |= (vert4_allowed << 9); |
| |
| return valid_types; |
| } |
| |
| static void prepare_tpl_stats_block(const AV1_COMP *const cpi, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col, int64_t *intra_cost, |
| int64_t *inter_cost, int64_t *mc_dep_cost) { |
| const AV1_COMMON *const cm = &cpi->common; |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE || |
| gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) { |
| return; |
| } |
| |
| TplParams *const tpl_data = &cpi->ppi->tpl_data; |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| // If tpl stats is not established, early return |
| if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) { |
| return; |
| } |
| |
| const int tpl_stride = tpl_frame->stride; |
| const int step = 1 << tpl_data->tpl_stats_block_mis_log2; |
| const int mi_width = |
| AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); |
| const int mi_height = |
| AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); |
| |
| int64_t sum_intra_cost = 0; |
| int64_t sum_inter_cost = 0; |
| int64_t sum_mc_dep_cost = 0; |
| for (int row = 0; row < mi_height; row += step) { |
| for (int col = 0; col < mi_width; col += step) { |
| TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, |
| tpl_data->tpl_stats_block_mis_log2)]; |
| sum_intra_cost += this_stats->intra_cost; |
| sum_inter_cost += this_stats->inter_cost; |
| const int64_t mc_dep_delta = |
| RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
| this_stats->mc_dep_dist); |
| sum_mc_dep_cost += mc_dep_delta; |
| } |
| } |
| |
| *intra_cost = sum_intra_cost; |
| *inter_cost = sum_inter_cost; |
| *mc_dep_cost = sum_mc_dep_cost; |
| } |
| |
| static bool recursive_partition(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| SIMPLE_MOTION_DATA_TREE *sms_root, |
| PC_TREE *pc_tree, int mi_row, int mi_col, |
| const BLOCK_SIZE bsize, RD_STATS *this_rdcost) { |
| const AV1_COMMON *const cm = &cpi->common; |
| ExtPartController *const ext_part_controller = &cpi->ext_part_controller; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) { |
| return false; |
| } |
| aom_partition_decision_t partition_decision; |
| do { |
| PartitionSearchState part_search_state; |
| // Initialization of state variables used in partition search. |
| // TODO(chengchen): check if there is hidden conditions that don't allow |
| // all possible partition types. |
| init_partition_search_state_params(x, cpi, &part_search_state, mi_row, |
| mi_col, bsize); |
| // Override partition costs at the edges of the frame in the same |
| // way as in read_partition (see decodeframe.c). |
| PartitionBlkParams blk_params = part_search_state.part_blk_params; |
| if (!av1_blk_has_rows_and_cols(&blk_params)) |
| set_partition_cost_for_edge_blk(cm, &part_search_state); |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| const int valid_partition_types = |
| get_valid_partition_types(cpi, &part_search_state, bsize); |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| const int qindex = av1_get_qindex(&cm->seg, xd->mi[0]->segment_id, |
| cm->quant_params.base_qindex); |
| // RD multiplier |
| const int rdmult = x->rdmult; |
| // pyramid level |
| const int pyramid_level = |
| cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index]; |
| x->rdmult = orig_rdmult; |
| // Neighbor information |
| const int has_above = !!xd->above_mbmi; |
| const int has_left = !!xd->left_mbmi; |
| const BLOCK_SIZE above_bsize = |
| has_above ? xd->above_mbmi->bsize : BLOCK_INVALID; |
| const BLOCK_SIZE left_bsize = |
| has_left ? xd->left_mbmi->bsize : BLOCK_INVALID; |
| const int above_block_width = |
| above_bsize == BLOCK_INVALID ? -1 : block_size_wide[above_bsize]; |
| const int above_block_height = |
| above_bsize == BLOCK_INVALID ? -1 : block_size_high[above_bsize]; |
| const int left_block_width = |
| left_bsize == BLOCK_INVALID ? -1 : block_size_wide[left_bsize]; |
| const int left_block_height = |
| left_bsize == BLOCK_INVALID ? -1 : block_size_high[left_bsize]; |
| // Prepare simple motion search stats as features |
| unsigned int block_sse = -1; |
| unsigned int block_var = -1; |
| unsigned int sub_block_sse[4] = { -1, -1, -1, -1 }; |
| unsigned int sub_block_var[4] = { -1, -1, -1, -1 }; |
| unsigned int horz_block_sse[2] = { -1, -1 }; |
| unsigned int horz_block_var[2] = { -1, -1 }; |
| unsigned int vert_block_sse[2] = { -1, -1 }; |
| unsigned int vert_block_var[2] = { -1, -1 }; |
| av1_prepare_motion_search_features_block( |
| cpi, td, tile_data, mi_row, mi_col, bsize, valid_partition_types, |
| &block_sse, &block_var, sub_block_sse, sub_block_var, horz_block_sse, |
| horz_block_var, vert_block_sse, vert_block_var); |
| // Prepare tpl stats for the current block as features |
| int64_t tpl_intra_cost = -1; |
| int64_t tpl_inter_cost = -1; |
| int64_t tpl_mc_dep_cost = -1; |
| prepare_tpl_stats_block(cpi, bsize, mi_row, mi_col, &tpl_intra_cost, |
| &tpl_inter_cost, &tpl_mc_dep_cost); |
| |
| aom_partition_features_t features; |
| features.mi_row = mi_row; |
| features.mi_col = mi_col; |
| features.frame_width = cpi->frame_info.frame_width; |
| features.frame_height = cpi->frame_info.frame_height; |
| features.block_size = bsize; |
| features.valid_partition_types = valid_partition_types; |
| features.update_type = update_type; |
| features.qindex = qindex; |
| features.rdmult = rdmult; |
| features.pyramid_level = pyramid_level; |
| features.has_above_block = has_above; |
| features.above_block_width = above_block_width; |
| features.above_block_height = above_block_height; |
| features.has_left_block = has_left; |
| features.left_block_width = left_block_width; |
| features.left_block_height = left_block_height; |
| features.block_sse = block_sse; |
| features.block_var = block_var; |
| for (int i = 0; i < 4; ++i) { |
| features.sub_block_sse[i] = sub_block_sse[i]; |
| features.sub_block_var[i] = sub_block_var[i]; |
| } |
| for (int i = 0; i < 2; ++i) { |
| features.horz_block_sse[i] = horz_block_sse[i]; |
| features.horz_block_var[i] = horz_block_var[i]; |
| features.vert_block_sse[i] = vert_block_sse[i]; |
| features.vert_block_var[i] = vert_block_var[i]; |
| } |
| features.tpl_intra_cost = tpl_intra_cost; |
| features.tpl_inter_cost = tpl_inter_cost; |
| features.tpl_mc_dep_cost = tpl_mc_dep_cost; |
| av1_ext_part_send_features(ext_part_controller, &features); |
| const bool valid_decision = av1_ext_part_get_partition_decision( |
| ext_part_controller, &partition_decision); |
| if (!valid_decision) return false; |
| pc_tree->partitioning = partition_decision.current_decision; |
| |
| av1_init_rd_stats(this_rdcost); |
| if (partition_decision.current_decision == PARTITION_SPLIT) { |
| assert(block_size_wide[bsize] >= 8 && block_size_high[bsize] >= 8); |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| RD_STATS split_rdc[SUB_PARTITIONS_SPLIT]; |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { |
| av1_init_rd_stats(&split_rdc[i]); |
| if (pc_tree->split[i] == NULL) |
| pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); |
| if (!pc_tree->split[i]) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| pc_tree->split[i]->index = i; |
| } |
| const int orig_rdmult_tmp = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| // TODO(chengchen): check boundary conditions |
| // top-left |
| recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[0], |
| mi_row, mi_col, subsize, &split_rdc[0]); |
| // top-right |
| recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[1], |
| mi_row, mi_col + mi_size_wide[subsize], subsize, |
| &split_rdc[1]); |
| // bottom-left |
| recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[2], |
| mi_row + mi_size_high[subsize], mi_col, subsize, |
| &split_rdc[2]); |
| // bottom_right |
| recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[3], |
| mi_row + mi_size_high[subsize], |
| mi_col + mi_size_wide[subsize], subsize, |
| &split_rdc[3]); |
| this_rdcost->rate += part_search_state.partition_cost[PARTITION_SPLIT]; |
| // problem is here, the rdmult is different from the rdmult in sub block. |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { |
| this_rdcost->rate += split_rdc[i].rate; |
| this_rdcost->dist += split_rdc[i].dist; |
| av1_rd_cost_update(x->rdmult, this_rdcost); |
| } |
| x->rdmult = orig_rdmult_tmp; |
| } else { |
| *this_rdcost = rd_search_for_fixed_partition( |
| cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, pc_tree); |
| } |
| |
| aom_partition_stats_t stats; |
| update_partition_stats(this_rdcost, &stats); |
| av1_ext_part_send_partition_stats(ext_part_controller, &stats); |
| if (!partition_decision.is_final_decision) { |
| if (partition_decision.current_decision == PARTITION_SPLIT) { |
| for (int i = 0; i < 4; ++i) { |
| if (pc_tree->split[i] != NULL) { |
| av1_free_pc_tree_recursive(pc_tree->split[i], av1_num_planes(cm), 0, |
| 0, |
| cpi->sf.part_sf.partition_search_type); |
| pc_tree->split[i] = NULL; |
| } |
| } |
| } |
| } |
| } while (!partition_decision.is_final_decision); |
| |
| return true; |
| } |
| |
| // The ML model only needs to make decisions for the current block each time. |
| static bool ml_partition_search_partial(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| SIMPLE_MOTION_DATA_TREE *sms_root, |
| int mi_row, int mi_col, |
| const BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| ExtPartController *const ext_part_controller = &cpi->ext_part_controller; |
| aom_partition_features_t features; |
| prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize, |
| &features); |
| features.mi_row = mi_row; |
| features.mi_col = mi_col; |
| features.frame_width = cpi->frame_info.frame_width; |
| features.frame_height = cpi->frame_info.frame_height; |
| features.block_size = bsize; |
| av1_ext_part_send_features(ext_part_controller, &features); |
| td->pc_root = av1_alloc_pc_tree_node(bsize); |
| if (!td->pc_root) |
| aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| |
| RD_STATS rdcost; |
| const bool valid_partition = |
| recursive_partition(cpi, td, tile_data, tp, sms_root, td->pc_root, mi_row, |
| mi_col, bsize, &rdcost); |
| if (!valid_partition) { |
| return false; |
| } |
| |
| // Encode with the selected mode and partition. |
| set_cb_offsets(x->cb_offset, 0, 0); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| td->pc_root, NULL); |
| av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, |
| cpi->sf.part_sf.partition_search_type); |
| td->pc_root = NULL; |
| |
| return true; |
| } |
| |
| bool av1_rd_partition_search(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row, |
| int mi_col, const BLOCK_SIZE bsize, |
| RD_STATS *best_rd_cost) { |
| AV1_COMMON *const cm = &cpi->common; |
| if (cpi->ext_part_controller.ready) { |
| bool valid_search = true; |
| const aom_ext_part_decision_mode_t decision_mode = |
| av1_get_ext_part_decision_mode(&cpi->ext_part_controller); |
| if (decision_mode == AOM_EXT_PART_WHOLE_TREE) { |
| valid_search = ml_partition_search_whole_tree( |
| cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize); |
| } else if (decision_mode == AOM_EXT_PART_RECURSIVE) { |
| valid_search = ml_partition_search_partial( |
| cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize); |
| } else { |
| assert(0 && "Unknown decision mode."); |
| return false; |
| } |
| if (!valid_search) { |
| aom_internal_error( |
| cm->error, AOM_CODEC_ERROR, |
| "Invalid search from ML model, partition search failed"); |
| } |
| return true; |
| } |
| |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int best_idx = 0; |
| int64_t min_rdcost = INT64_MAX; |
| int num_configs; |
| int i = 0; |
| do { |
| td->pc_root = av1_alloc_pc_tree_node(bsize); |
| if (!td->pc_root) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| num_configs = read_partition_tree(cpi, td->pc_root, xd->error_info, i); |
| if (num_configs <= 0) { |
| av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, |
| cpi->sf.part_sf.partition_search_type); |
| td->pc_root = NULL; |
| aom_internal_error(xd->error_info, AOM_CODEC_ERROR, "Invalid configs."); |
| } |
| verify_write_partition_tree(cpi, td->pc_root, bsize, i, mi_row, mi_col); |
| if (i == 0) { |
| AOM_CHECK_MEM_ERROR(xd->error_info, x->rdcost, |
| aom_calloc(num_configs, sizeof(*x->rdcost))); |
| } |
| // Encode the block with the given partition tree. Get rdcost and encoding |
| // time. |
| x->rdcost[i] = rd_search_for_fixed_partition( |
| cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root); |
| |
| if (x->rdcost[i].rdcost < min_rdcost) { |
| min_rdcost = x->rdcost[i].rdcost; |
| best_idx = i; |
| *best_rd_cost = x->rdcost[i]; |
| } |
| av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, |
| cpi->sf.part_sf.partition_search_type); |
| td->pc_root = NULL; |
| ++i; |
| } while (i < num_configs); |
| |
| aom_free(x->rdcost); |
| x->rdcost = NULL; |
| // Encode with the partition configuration with the smallest rdcost. |
| td->pc_root = av1_alloc_pc_tree_node(bsize); |
| if (!td->pc_root) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| read_partition_tree(cpi, td->pc_root, xd->error_info, best_idx); |
| rd_search_for_fixed_partition(cpi, td, tile_data, tp, sms_root, mi_row, |
| mi_col, bsize, td->pc_root); |
| set_cb_offsets(x->cb_offset, 0, 0); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| td->pc_root, NULL); |
| av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, |
| cpi->sf.part_sf.partition_search_type); |
| td->pc_root = NULL; |
| ++cpi->sb_counter; |
| |
| return true; |
| } |
| #endif // CONFIG_PARTITION_SEARCH_ORDER |
| |
| static AOM_INLINE bool should_do_dry_run_encode_for_current_block( |
| BLOCK_SIZE sb_size, BLOCK_SIZE max_partition_size, int curr_block_index, |
| BLOCK_SIZE bsize) { |
| if (bsize > max_partition_size) return false; |
| |
| // Enable the reconstruction with dry-run for the 4th sub-block only if its |
| // parent block's reconstruction with dry-run is skipped. If |
| // max_partition_size is the same as immediate split of superblock, then avoid |
| // reconstruction of the 4th sub-block, as this data is not consumed. |
| if (curr_block_index != 3) return true; |
| |
| const BLOCK_SIZE sub_sb_size = |
| get_partition_subsize(sb_size, PARTITION_SPLIT); |
| return bsize == max_partition_size && sub_sb_size != max_partition_size; |
| } |
| |
| static void log_sub_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs, |
| double *var_min, double *var_max) { |
| // This functions returns a the minimum and maximum log variances for 4x4 |
| // sub blocks in the current block. |
| |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const int is_hbd = is_cur_buf_hbd(xd); |
| const int right_overflow = |
| (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; |
| const int bottom_overflow = |
| (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; |
| const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow; |
| const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow; |
| |
| // Initialize minimum variance to a large value and maximum variance to 0. |
| double min_var_4x4 = (double)INT_MAX; |
| double max_var_4x4 = 0.0; |
| |
| for (int i = 0; i < bh; i += MI_SIZE) { |
| for (int j = 0; j < bw; j += MI_SIZE) { |
| int var; |
| // Calculate the 4x4 sub-block variance. |
| var = av1_calc_normalized_variance( |
| cpi->ppi->fn_ptr[BLOCK_4X4].vf, |
| x->plane[0].src.buf + (i * x->plane[0].src.stride) + j, |
| x->plane[0].src.stride, is_hbd); |
| |
| // Record min and max for over-arching block |
| min_var_4x4 = AOMMIN(min_var_4x4, var); |
| max_var_4x4 = AOMMAX(max_var_4x4, var); |
| } |
| } |
| *var_min = log1p(min_var_4x4 / 16.0); |
| *var_max = log1p(max_var_4x4 / 16.0); |
| } |
| |
| static AOM_INLINE void set_sms_tree_partitioning( |
| SIMPLE_MOTION_DATA_TREE *sms_tree, PARTITION_TYPE partition) { |
| if (sms_tree == NULL) return; |
| sms_tree->partitioning = partition; |
| } |
| |
| /*!\brief AV1 block partition search (full search). |
| * |
| * \ingroup partition_search |
| * \callgraph |
| * Searches for the best partition pattern for a block based on the |
| * rate-distortion cost, and returns a bool value to indicate whether a valid |
| * partition pattern is found. The partition can recursively go down to the |
| * smallest block size. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] td Pointer to thread data |
| * \param[in] tile_data Pointer to struct holding adaptive |
| data/contexts/models for the tile during |
| encoding |
| * \param[in] tp Pointer to the starting token |
| * \param[in] mi_row Row coordinate of the block in a step size |
| of MI_SIZE |
| * \param[in] mi_col Column coordinate of the block in a step |
| size of MI_SIZE |
| * \param[in] bsize Current block size |
| * \param[in] rd_cost Pointer to the final rd cost of the block |
| * \param[in] best_rdc Upper bound of rd cost of a valid partition |
| * \param[in] pc_tree Pointer to the PC_TREE node storing the |
| picked partitions and mode info for the |
| current block |
| * \param[in] sms_tree Pointer to struct holding simple motion |
| search data for the current block |
| * \param[in] none_rd Pointer to the rd cost in the case of not |
| splitting the current block |
| * \param[in] multi_pass_mode SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS |
| * \param[in] rect_part_win_info Pointer to struct storing whether horz/vert |
| partition outperforms previously tested |
| partitions |
| * |
| * \return A bool value is returned indicating if a valid partition is found. |
| * The pc_tree struct is modified to store the picked partition and modes. |
| * The rd_cost struct is also updated with the RD stats corresponding to the |
| * best partition found. |
| */ |
| bool av1_rd_pick_partition(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost, |
| RD_STATS best_rdc, PC_TREE *pc_tree, |
| SIMPLE_MOTION_DATA_TREE *sms_tree, int64_t *none_rd, |
| SB_MULTI_PASS_MODE multi_pass_mode, |
| RD_RECT_PART_WIN_INFO *rect_part_win_info) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| const TokenExtra *const tp_orig = *tp; |
| PartitionSearchState part_search_state; |
| |
| // Initialization of state variables used in partition search. |
| init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col, |
| bsize); |
| PartitionBlkParams blk_params = part_search_state.part_blk_params; |
| |
| set_sms_tree_partitioning(sms_tree, PARTITION_NONE); |
| if (best_rdc.rdcost < 0) { |
| av1_invalid_rd_stats(rd_cost); |
| return part_search_state.found_best_partition; |
| } |
| if (bsize == cm->seq_params->sb_size) x->must_find_valid_partition = 0; |
| |
| // Override skipping rectangular partition operations for edge blocks. |
| if (none_rd) *none_rd = 0; |
| (void)*tp_orig; |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| // Stats at the current quad tree |
| PartitionTimingStats *part_timing_stats = |
| &part_search_state.part_timing_stats; |
| // Stats aggregated at frame level |
| FramePartitionTimingStats *fr_part_timing_stats = &cpi->partition_stats; |
| #endif // CONFIG_COLLECT_PARTITION_STATS |
| |
| // Override partition costs at the edges of the frame in the same |
| // way as in read_partition (see decodeframe.c). |
| if (!av1_blk_has_rows_and_cols(&blk_params)) |
| set_partition_cost_for_edge_blk(cm, &part_search_state); |
| |
| // Disable rectangular partitions for inner blocks when the current block is |
| // forced to only use square partitions. |
| if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) { |
| part_search_state.partition_rect_allowed[HORZ] &= !blk_params.has_rows; |
| part_search_state.partition_rect_allowed[VERT] &= !blk_params.has_cols; |
| } |
| |
| #ifndef NDEBUG |
| // Nothing should rely on the default value of this array (which is just |
| // leftover from encoding the previous block. Setting it to fixed pattern |
| // when debugging. |
| // bit 0, 1, 2 are blk_skip of each plane |
| // bit 4, 5, 6 are initialization checking of each plane |
| memset(x->txfm_search_info.blk_skip, 0x77, |
| sizeof(x->txfm_search_info.blk_skip)); |
| #endif // NDEBUG |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| // Set buffers and offsets. |
| av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| if (cpi->oxcf.mode == ALLINTRA) { |
| if (bsize == cm->seq_params->sb_size) { |
| double var_min, var_max; |
| log_sub_block_var(cpi, x, bsize, &var_min, &var_max); |
| |
| x->intra_sb_rdmult_modifier = 128; |
| if ((var_min < 2.0) && (var_max > 4.0)) { |
| if ((var_max - var_min) > 8.0) { |
| x->intra_sb_rdmult_modifier -= 48; |
| } else { |
| x->intra_sb_rdmult_modifier -= (int)((var_max - var_min) * 6); |
| } |
| } |
| } |
| } |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| |
| // Apply simple motion search for the entire super block with fixed block |
| // size, e.g., 16x16, to collect features and write to files for the |
| // external ML model. |
| // TODO(chengchen): reduce motion search. This function is similar to |
| // av1_get_max_min_partition_features(). |
| if (COLLECT_MOTION_SEARCH_FEATURE_SB && !frame_is_intra_only(cm) && |
| bsize == cm->seq_params->sb_size) { |
| av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col, |
| bsize, /*features=*/NULL); |
| collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, /*features=*/NULL); |
| } |
| |
| // Update rd cost of the bound using the current multiplier. |
| av1_rd_cost_update(x->rdmult, &best_rdc); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) |
| x->mb_energy = av1_log_block_var(cpi, x, bsize); |
| |
| // Set the context. |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_prune_partitions_time); |
| #endif |
| // Pruning: before searching any partition type, using source and simple |
| // motion search results to prune out unlikely partitions. |
| av1_prune_partitions_before_search(cpi, x, sms_tree, &part_search_state); |
| |
| // Pruning: eliminating partition types leading to coding block sizes outside |
| // the min and max bsize limitations set from the encoder. |
| av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_prune_partitions_time); |
| #endif |
| |
| // Partition search |
| BEGIN_PARTITION_SEARCH: |
| // If a valid partition is required, usually when the first round cannot find |
| // a valid one under the cost limit after pruning, reset the limitations on |
| // partition types and intra cnn output. |
| if (x->must_find_valid_partition) { |
| reset_part_limitations(cpi, &part_search_state); |
| av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state); |
| // Invalidate intra cnn output for key frames. |
| if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) { |
| part_search_state.intra_part_info->quad_tree_idx = 0; |
| part_search_state.intra_part_info->cnn_output_valid = 0; |
| } |
| } |
| // Partition block source pixel variance. |
| unsigned int pb_source_variance = UINT_MAX; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, none_partition_search_time); |
| #endif |
| |
| if (cpi->oxcf.mode == ALLINTRA) { |
| const bool bsize_at_least_16x16 = (bsize >= BLOCK_16X16); |
| const bool prune_rect_part_using_4x4_var_deviation = |
| (cpi->sf.part_sf.prune_rect_part_using_4x4_var_deviation && |
| !x->must_find_valid_partition); |
| |
| if (bsize_at_least_16x16 || prune_rect_part_using_4x4_var_deviation) { |
| double var_min, var_max; |
| log_sub_block_var(cpi, x, bsize, &var_min, &var_max); |
| |
| // Further pruning or in some cases reverse pruning when allintra is set. |
| // This code helps visual and in some cases metrics quality where the |
| // current block comprises at least one very low variance sub-block and at |
| // least one where the variance is much higher. |
| // |
| // The idea is that in such cases there is danger of ringing and other |
| // visual artifacts from a high variance feature such as an edge into a |
| // very low variance region. |
| // |
| // The approach taken is to force break down / split to a smaller block |
| // size to try and separate out the low variance and well predicted blocks |
| // from the more complex ones and to prevent propagation of ringing over a |
| // large region. |
| if (bsize_at_least_16x16 && (var_min < 0.272) && |
| ((var_max - var_min) > 3.0)) { |
| part_search_state.partition_none_allowed = 0; |
| part_search_state.terminate_partition_search = 0; |
| part_search_state.do_square_split = 1; |
| } else if (prune_rect_part_using_4x4_var_deviation && |
| (var_max - var_min < 3.0)) { |
| // Prune rectangular partitions if the variance deviation of 4x4 |
| // sub-blocks within the block is less than a threshold (derived |
| // empirically). |
| part_search_state.do_rectangular_split = 0; |
| } |
| } |
| } |
| |
| // PARTITION_NONE search stage. |
| int64_t part_none_rd = INT64_MAX; |
| none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx, |
| &part_search_state, &best_rdc, &pb_source_variance, |
| none_rd, &part_none_rd); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, none_partition_search_time); |
| #endif |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, split_partition_search_time); |
| #endif |
| // PARTITION_SPLIT search stage. |
| int64_t part_split_rd = INT64_MAX; |
| split_partition_search(cpi, td, tile_data, tp, x, pc_tree, sms_tree, &x_ctx, |
| &part_search_state, &best_rdc, multi_pass_mode, |
| &part_split_rd); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, split_partition_search_time); |
| #endif |
| // Terminate partition search for child partition, |
| // when NONE and SPLIT partition rd_costs are INT64_MAX. |
| if (cpi->sf.part_sf.early_term_after_none_split && |
| part_none_rd == INT64_MAX && part_split_rd == INT64_MAX && |
| !x->must_find_valid_partition && (bsize != cm->seq_params->sb_size)) { |
| part_search_state.terminate_partition_search = 1; |
| } |
| |
| // Do not evaluate non-square partitions if NONE partition did not choose a |
| // newmv mode and is skippable. |
| if ((cpi->sf.part_sf.skip_non_sq_part_based_on_none >= 2) && |
| (pc_tree->none != NULL)) { |
| if (x->qindex <= 200 && is_inter_mode(pc_tree->none->mic.mode) && |
| !have_newmv_in_inter_mode(pc_tree->none->mic.mode) && |
| pc_tree->none->skippable && !x->must_find_valid_partition && |
| bsize >= BLOCK_16X16) |
| part_search_state.do_rectangular_split = 0; |
| } |
| |
| // Prune partitions based on PARTITION_NONE and PARTITION_SPLIT. |
| prune_partitions_after_split(cpi, x, sms_tree, &part_search_state, &best_rdc, |
| part_none_rd, part_split_rd); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rectangular_partition_search_time); |
| #endif |
| // Rectangular partitions search stage. |
| rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx, |
| &part_search_state, &best_rdc, |
| rect_part_win_info, HORZ, VERT); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rectangular_partition_search_time); |
| #endif |
| |
| if (pb_source_variance == UINT_MAX) { |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); |
| pb_source_variance = av1_get_perpixel_variance_facade( |
| cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); |
| } |
| |
| assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, |
| !part_search_state.do_rectangular_split)); |
| |
| const int prune_ext_part_state = prune_ext_part_none_skippable( |
| pc_tree->none, x->must_find_valid_partition, |
| cpi->sf.part_sf.skip_non_sq_part_based_on_none, bsize); |
| |
| const int ab_partition_allowed = allow_ab_partition_search( |
| &part_search_state, &cpi->sf.part_sf, pc_tree->partitioning, |
| x->must_find_valid_partition, prune_ext_part_state, best_rdc.rdcost); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, ab_partitions_search_time); |
| #endif |
| // AB partitions search stage. |
| ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, |
| &part_search_state, &best_rdc, rect_part_win_info, |
| pb_source_variance, ab_partition_allowed, HORZ_A, |
| VERT_B); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, ab_partitions_search_time); |
| #endif |
| |
| // 4-way partitions search stage. |
| int part4_search_allowed[NUM_PART4_TYPES] = { 1, 1 }; |
| // Prune 4-way partition search. |
| prune_4_way_partition_search(cpi, x, pc_tree, &part_search_state, &best_rdc, |
| pb_source_variance, prune_ext_part_state, |
| part4_search_allowed); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rd_pick_4partition_time); |
| #endif |
| // PARTITION_HORZ_4 |
| assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, |
| !part4_search_allowed[HORZ4])); |
| if (!part_search_state.terminate_partition_search && |
| part4_search_allowed[HORZ4]) { |
| const int inc_step[NUM_PART4_TYPES] = { mi_size_high[blk_params.bsize] / 4, |
| 0 }; |
| // Evaluation of Horz4 partition type. |
| rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, |
| pc_tree->horizontal4, &part_search_state, &best_rdc, |
| inc_step, PARTITION_HORZ_4); |
| } |
| |
| // PARTITION_VERT_4 |
| assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, |
| !part4_search_allowed[VERT4])); |
| if (!part_search_state.terminate_partition_search && |
| part4_search_allowed[VERT4] && blk_params.has_cols) { |
| const int inc_step[NUM_PART4_TYPES] = { 0, mi_size_wide[blk_params.bsize] / |
| 4 }; |
| // Evaluation of Vert4 partition type. |
| rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, |
| pc_tree->vertical4, &part_search_state, &best_rdc, |
| inc_step, PARTITION_VERT_4); |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rd_pick_4partition_time); |
| #endif |
| |
| if (bsize == cm->seq_params->sb_size && |
| !part_search_state.found_best_partition) { |
| // Did not find a valid partition, go back and search again, with less |
| // constraint on which partition types to search. |
| x->must_find_valid_partition = 1; |
| #if CONFIG_COLLECT_PARTITION_STATS |
| fr_part_timing_stats->partition_redo += 1; |
| #endif // CONFIG_COLLECT_PARTITION_STATS |
| goto BEGIN_PARTITION_SEARCH; |
| } |
| |
| // Store the final rd cost |
| *rd_cost = best_rdc; |
| |
| // Also record the best partition in simple motion data tree because it is |
| // necessary for the related speed features. |
| set_sms_tree_partitioning(sms_tree, pc_tree->partitioning); |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) { |
| part_timing_stats->partition_decisions[pc_tree->partitioning] += 1; |
| } |
| |
| // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each |
| // prediction block. |
| print_partition_timing_stats_with_rdcost( |
| part_timing_stats, mi_row, mi_col, bsize, |
| cpi->ppi->gf_group.update_type[cpi->gf_frame_index], |
| cm->current_frame.frame_number, &best_rdc, "part_timing.csv"); |
| const bool print_timing_stats = false; |
| if (print_timing_stats) { |
| print_partition_timing_stats(part_timing_stats, cm->show_frame, |
| frame_is_intra_only(cm), bsize, |
| "part_timing_data.csv"); |
| } |
| // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for |
| // the whole clip. So we need to pass the information upstream to the encoder. |
| accumulate_partition_timing_stats(fr_part_timing_stats, part_timing_stats, |
| bsize); |
| #endif // CONFIG_COLLECT_PARTITION_STATS |
| |
| // Reset the PC_TREE deallocation flag. |
| int pc_tree_dealloc = 0; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, encode_sb_time); |
| #endif |
| if (part_search_state.found_best_partition) { |
| if (bsize == cm->seq_params->sb_size) { |
| // Encode the superblock. |
| const int emit_output = multi_pass_mode != SB_DRY_PASS; |
| const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL; |
| |
| // Write partition tree to file. Not used by default. |
| if (COLLECT_MOTION_SEARCH_FEATURE_SB) { |
| write_partition_tree(cpi, pc_tree, bsize, mi_row, mi_col); |
| ++cpi->sb_counter; |
| } |
| |
| set_cb_offsets(x->cb_offset, 0, 0); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize, |
| pc_tree, NULL); |
| assert(pc_tree == td->pc_root); |
| // Dealloc the whole PC_TREE after a superblock is done. |
| av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0, |
| cpi->sf.part_sf.partition_search_type); |
| pc_tree = NULL; |
| td->pc_root = NULL; |
| pc_tree_dealloc = 1; |
| } else if (should_do_dry_run_encode_for_current_block( |
| cm->seq_params->sb_size, x->sb_enc.max_partition_size, |
| pc_tree->index, bsize)) { |
| // Encode the smaller blocks in DRY_RUN mode. |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, encode_sb_time); |
| #endif |
| |
| // If the tree still exists (non-superblock), dealloc most nodes, only keep |
| // nodes for the best partition and PARTITION_NONE. |
| if (pc_tree_dealloc == 0) |
| av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1, |
| cpi->sf.part_sf.partition_search_type); |
| |
| if (bsize == cm->seq_params->sb_size) { |
| assert(best_rdc.rate < INT_MAX); |
| assert(best_rdc.dist < INT64_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| |
| // Restore the rd multiplier. |
| x->rdmult = orig_rdmult; |
| return part_search_state.found_best_partition; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #undef COLLECT_MOTION_SEARCH_FEATURE_SB |
| |
| #if CONFIG_RT_ML_PARTITIONING |
| #define FEATURES 6 |
| #define LABELS 2 |
| static int ml_predict_var_partitioning(AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, |
| int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| const NN_CONFIG *nn_config = NULL; |
| const float *means = NULL; |
| const float *vars = NULL; |
| switch (bsize) { |
| case BLOCK_64X64: |
| nn_config = &av1_var_part_nnconfig_64; |
| means = av1_var_part_means_64; |
| vars = av1_var_part_vars_64; |
| break; |
| case BLOCK_32X32: |
| nn_config = &av1_var_part_nnconfig_32; |
| means = av1_var_part_means_32; |
| vars = av1_var_part_vars_32; |
| break; |
| case BLOCK_16X16: |
| nn_config = &av1_var_part_nnconfig_16; |
| means = av1_var_part_means_16; |
| vars = av1_var_part_vars_16; |
| break; |
| case BLOCK_8X8: |
| default: assert(0 && "Unexpected block size."); return -1; |
| } |
| |
| if (!nn_config) return -1; |
| |
| { |
| const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f; |
| float features[FEATURES] = { 0.0f }; |
| const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0, |
| cm->seq_params->bit_depth); |
| int feature_idx = 0; |
| float score[LABELS]; |
| |
| features[feature_idx] = |
| (log1pf((float)(dc_q * dc_q) / 256.0f) - means[feature_idx]) / |
| sqrtf(vars[feature_idx]); |
| feature_idx++; |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize); |
| { |
| const int bs = block_size_wide[bsize]; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| const int sb_offset_row = 4 * (mi_row & 15); |
| const int sb_offset_col = 4 * (mi_col & 15); |
| const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col; |
| const uint8_t *src = x->plane[0].src.buf; |
| const int src_stride = x->plane[0].src.stride; |
| const int pred_stride = 64; |
| unsigned int sse; |
| int i; |
| // Variance of whole block. |
| const unsigned int var = |
| cpi->ppi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse); |
| const float factor = (var == 0) ? 1.0f : (1.0f / (float)var); |
| |
| features[feature_idx] = |
| (log1pf((float)var) - means[feature_idx]) / sqrtf(vars[feature_idx]); |
| feature_idx++; |
| for (i = 0; i < 4; ++i) { |
| const int x_idx = (i & 1) * bs / 2; |
| const int y_idx = (i >> 1) * bs / 2; |
| const int src_offset = y_idx * src_stride + x_idx; |
| const int pred_offset = y_idx * pred_stride + x_idx; |
| // Variance of quarter block. |
| const unsigned int sub_var = |
| cpi->ppi->fn_ptr[subsize].vf(src + src_offset, src_stride, |
| pred + pred_offset, pred_stride, &sse); |
| const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var; |
| features[feature_idx] = |
| (var_ratio - means[feature_idx]) / sqrtf(vars[feature_idx]); |
| feature_idx++; |
| } |
| } |
| // for (int i = 0; i<FEATURES; i++) |
| // printf("F_%d, %f; ", i, features[i]); |
| assert(feature_idx == FEATURES); |
| av1_nn_predict(features, nn_config, 1, score); |
| // printf("Score %f, thr %f ", (float)score[0], thresh); |
| if (score[0] > thresh) return PARTITION_SPLIT; |
| if (score[0] < -thresh) return PARTITION_NONE; |
| return -1; |
| } |
| } |
| #undef FEATURES |
| #undef LABELS |
| |
| // Uncomment for collecting data for ML-based partitioning |
| // #define _COLLECT_GROUND_TRUTH_ |
| |
| #ifdef _COLLECT_GROUND_TRUTH_ |
| static int store_partition_data(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, PARTITION_TYPE part) { |
| AV1_COMMON *const cm = &cpi->common; |
| char fname[128]; |
| switch (bsize) { |
| case BLOCK_64X64: sprintf(fname, "data_64x64.txt"); break; |
| case BLOCK_32X32: sprintf(fname, "data_32x32.txt"); break; |
| case BLOCK_16X16: sprintf(fname, "data_16x16.txt"); break; |
| case BLOCK_8X8: sprintf(fname, "data_8x8.txt"); break; |
| default: assert(0 && "Unexpected block size."); return -1; |
| } |
| |
| float features[6]; // DC_Q, VAR, VAR_RATIO-0..3 |
| |
| FILE *f = fopen(fname, "a"); |
| |
| { |
| const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0, |
| cm->seq_params->bit_depth); |
| int feature_idx = 0; |
| |
| features[feature_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f); |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize); |
| { |
| const int bs = block_size_wide[bsize]; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| const int sb_offset_row = 4 * (mi_row & 15); |
| const int sb_offset_col = 4 * (mi_col & 15); |
| const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col; |
| const uint8_t *src = x->plane[0].src.buf; |
| const int src_stride = x->plane[0].src.stride; |
| const int pred_stride = 64; |
| unsigned int sse; |
| int i; |
| // Variance of whole block. |
| /* |
| if (bs == 8) |
| { |
| int r, c; |
| printf("%d %d\n", mi_row, mi_col); |
| for (r = 0; r < bs; ++r) { |
| for (c = 0; c < bs; ++c) { |
| printf("%3d ", |
| src[r * src_stride + c] - pred[64 * r + c]); |
| } |
| printf("\n"); |
| } |
| printf("\n"); |
| } |
| */ |
| const unsigned int var = |
| cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse); |
| const float factor = (var == 0) ? 1.0f : (1.0f / (float)var); |
| |
| features[feature_idx++] = log1pf((float)var); |
| |
| fprintf(f, "%f,%f,", features[0], features[1]); |
| for (i = 0; i < 4; ++i) { |
| const int x_idx = (i & 1) * bs / 2; |
| const int y_idx = (i >> 1) * bs / 2; |
| const int src_offset = y_idx * src_stride + x_idx; |
| const int pred_offset = y_idx * pred_stride + x_idx; |
| // Variance of quarter block. |
| const unsigned int sub_var = |
| cpi->fn_ptr[subsize].vf(src + src_offset, src_stride, |
| pred + pred_offset, pred_stride, &sse); |
| const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var; |
| features[feature_idx++] = var_ratio; |
| fprintf(f, "%f,", var_ratio); |
| } |
| |
| fprintf(f, "%d\n", part == PARTITION_NONE ? 0 : 1); |
| } |
| |
| fclose(f); |
| return -1; |
| } |
| } |
| #endif |
| |
| static void duplicate_mode_info_in_sb(AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const int block_width = |
| AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); |
| const int block_height = |
| AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); |
| const int mi_stride = xd->mi_stride; |
| MB_MODE_INFO *const src_mi = xd->mi[0]; |
| int i, j; |
| |
| for (j = 0; j < block_height; ++j) |
| for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi; |
| } |
| |
| static INLINE void copy_mbmi_ext_frame_to_mbmi_ext( |
| MB_MODE_INFO_EXT *const mbmi_ext, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_best, uint8_t ref_frame_type) { |
| memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack, |
| sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE])); |
| memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight, |
| sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE])); |
| mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context; |
| mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count; |
| memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs, |
| sizeof(mbmi_ext->global_mvs)); |
| } |
| |
| static void fill_mode_info_sb(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| int hbs = mi_size_wide[bsize] >> 1; |
| PARTITION_TYPE partition = pc_tree->partitioning; |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| |
| assert(bsize >= BLOCK_8X8); |
| |
| if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) |
| return; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| set_mode_info_offsets(&cm->mi_params, &cpi->mbmi_ext_info, x, xd, mi_row, |
| mi_col); |
| *(xd->mi[0]) = pc_tree->none->mic; |
| copy_mbmi_ext_frame_to_mbmi_ext( |
| &x->mbmi_ext, &pc_tree->none->mbmi_ext_best, LAST_FRAME); |
| duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); |
| break; |
| case PARTITION_SPLIT: { |
| fill_mode_info_sb(cpi, x, mi_row, mi_col, subsize, pc_tree->split[0]); |
| fill_mode_info_sb(cpi, x, mi_row, mi_col + hbs, subsize, |
| pc_tree->split[1]); |
| fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col, subsize, |
| pc_tree->split[2]); |
| fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col + hbs, subsize, |
| pc_tree->split[3]); |
| break; |
| } |
| default: break; |
| } |
| } |
| |
| void av1_nonrd_pick_partition(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| RD_STATS *rd_cost, int do_recon, int64_t best_rd, |
| PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int hbs = mi_size_wide[bsize] >> 1; |
| TokenExtra *tp_orig = *tp; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| RD_STATS this_rdc, best_rdc; |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| int do_split = bsize > BLOCK_8X8; |
| // Override skipping rectangular partition operations for edge blocks |
| const int force_horz_split = (mi_row + 2 * hbs > cm->mi_params.mi_rows); |
| const int force_vert_split = (mi_col + 2 * hbs > cm->mi_params.mi_cols); |
| |
| int partition_none_allowed = !force_horz_split && !force_vert_split; |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); // Square partition only |
| assert(cm->seq_params->sb_size == BLOCK_64X64); // Small SB so far |
| |
| (void)*tp_orig; |
| |
| av1_invalid_rd_stats(&best_rdc); |
| best_rdc.rdcost = best_rd; |
| #ifndef _COLLECT_GROUND_TRUTH_ |
| if (partition_none_allowed && do_split) { |
| const int ml_predicted_partition = |
| ml_predict_var_partitioning(cpi, x, bsize, mi_row, mi_col); |
| if (ml_predicted_partition == PARTITION_NONE) do_split = 0; |
| if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0; |
| } |
| #endif |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| |
| // PARTITION_NONE |
| if (partition_none_allowed) { |
| pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); |
| if (!pc_tree->none) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PICK_MODE_CONTEXT"); |
| PICK_MODE_CONTEXT *ctx = pc_tree->none; |
| |
| // Flip for RDO based pick mode |
| #if 0 |
| RD_STATS dummy; |
| av1_invalid_rd_stats(&dummy); |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, |
| PARTITION_NONE, bsize, ctx, dummy); |
| #else |
| pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, |
| ctx); |
| #endif |
| if (this_rdc.rate != INT_MAX) { |
| const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| |
| this_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; |
| } |
| } |
| } |
| |
| // PARTITION_SPLIT |
| if (do_split) { |
| RD_STATS sum_rdc; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| av1_init_rd_stats(&sum_rdc); |
| |
| for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { |
| pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); |
| if (!pc_tree->split[i]) |
| aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate PC_TREE"); |
| pc_tree->split[i]->index = i; |
| } |
| |
| int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| sum_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| for (int i = 0; |
| i < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc.rdcost; ++i) { |
| const int x_idx = (i & 1) * hbs; |
| const int y_idx = (i >> 1) * hbs; |
| |
| if (mi_row + y_idx >= cm->mi_params.mi_rows || |
| mi_col + x_idx >= cm->mi_params.mi_cols) |
| continue; |
| av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, |
| mi_col + x_idx, subsize, &this_rdc, i < 3, |
| best_rdc.rdcost - sum_rdc.rdcost, |
| pc_tree->split[i]); |
| |
| if (this_rdc.rate == INT_MAX) { |
| av1_invalid_rd_stats(&sum_rdc); |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| } |
| } |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| } |
| } |
| |
| #ifdef _COLLECT_GROUND_TRUTH_ |
| store_partition_data(cpi, x, bsize, mi_row, mi_col, pc_tree->partitioning); |
| #endif |
| |
| *rd_cost = best_rdc; |
| |
| av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| |
| if (best_rdc.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_cost); |
| return; |
| } |
| |
| // update mode info array |
| fill_mode_info_sb(cpi, x, mi_row, mi_col, bsize, pc_tree); |
| |
| if (do_recon) { |
| if (bsize == cm->seq_params->sb_size) { |
| // NOTE: To get estimate for rate due to the tokens, use: |
| // int rate_coeffs = 0; |
| // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, |
| // bsize, pc_tree, &rate_coeffs); |
| set_cb_offsets(x->cb_offset, 0, 0); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| pc_tree, NULL); |
| } else { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| if (bsize == BLOCK_64X64 && do_recon) { |
| assert(best_rdc.rate < INT_MAX); |
| assert(best_rdc.dist < INT64_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| } |
| #endif // CONFIG_RT_ML_PARTITIONING |