| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/bitwriter.h" |
| #include "aom_dsp/quantize.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| |
| #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| |
| #include "av1/common/cfl.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/scan.h" |
| |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/hybrid_fwd_txfm.h" |
| #include "av1/encoder/txb_rdopt.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| |
| void av1_subtract_block(BitDepthInfo bd_info, int rows, int cols, int16_t *diff, |
| ptrdiff_t diff_stride, const uint8_t *src8, |
| ptrdiff_t src_stride, const uint8_t *pred8, |
| ptrdiff_t pred_stride) { |
| assert(rows >= 4 && cols >= 4); |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (bd_info.use_highbitdepth_buf) { |
| aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, |
| pred8, pred_stride, bd_info.bit_depth); |
| return; |
| } |
| #endif |
| (void)bd_info; |
| aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, |
| pred_stride); |
| } |
| |
| void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, |
| int blk_col, int blk_row, TX_SIZE tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const BitDepthInfo bd_info = get_bit_depth_info(xd); |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| const int tx1d_width = tx_size_wide[tx_size]; |
| const int tx1d_height = tx_size_high[tx_size]; |
| uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; |
| uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2]; |
| int16_t *src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2]; |
| av1_subtract_block(bd_info, tx1d_height, tx1d_width, src_diff, diff_stride, |
| src, src_stride, dst, dst_stride); |
| } |
| |
| void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane) { |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const BitDepthInfo bd_info = get_bit_depth_info(xd); |
| |
| av1_subtract_block(bd_info, bh, bw, p->src_diff, bw, p->src.buf, |
| p->src.stride, pd->dst.buf, pd->dst.stride); |
| } |
| |
| int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, |
| int block, TX_SIZE tx_size, TX_TYPE tx_type, |
| const TXB_CTX *const txb_ctx, int *rate_cost) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const int eob = p->eobs[block]; |
| const int segment_id = xd->mi[0]->segment_id; |
| |
| if (eob == 0 || !cpi->optimize_seg_arr[segment_id] || |
| xd->lossless[segment_id]) { |
| *rate_cost = av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size); |
| return eob; |
| } |
| |
| return av1_optimize_txb(cpi, x, plane, block, tx_size, tx_type, txb_ctx, |
| rate_cost, cpi->oxcf.algo_cfg.sharpness); |
| } |
| |
| // Hyper-parameters for dropout optimization, based on following logics. |
| // TODO(yjshen): These settings are tuned by experiments. They may still be |
| // optimized for better performance. |
| // (1) Coefficients which are large enough will ALWAYS be kept. |
| const tran_low_t DROPOUT_COEFF_MAX = 2; // Max dropout-able coefficient. |
| // (2) Continuous coefficients will ALWAYS be kept. Here rigorous continuity is |
| // NOT required. For example, `5 0 0 0 7` is treated as two continuous |
| // coefficients if three zeros do not fulfill the dropout condition. |
| const int DROPOUT_CONTINUITY_MAX = 2; // Max dropout-able continuous coeff. |
| // (3) Dropout operation is NOT applicable to blocks with large or small |
| // quantization index. |
| const int DROPOUT_Q_MAX = 128; |
| const int DROPOUT_Q_MIN = 16; |
| // (4) Recall that dropout optimization will forcibly set some quantized |
| // coefficients to zero. The key logic on determining whether a coefficient |
| // should be dropped is to check the number of continuous zeros before AND |
| // after this coefficient. The exact number of zeros for judgement depends |
| // on block size and quantization index. More concretely, block size |
| // determines the base number of zeros, while quantization index determines |
| // the multiplier. Intuitively, larger block requires more zeros and larger |
| // quantization index also requires more zeros (more information is lost |
| // when using larger quantization index). |
| const int DROPOUT_BEFORE_BASE_MAX = 32; // Max base number for leading zeros. |
| const int DROPOUT_BEFORE_BASE_MIN = 16; // Min base number for leading zeros. |
| const int DROPOUT_AFTER_BASE_MAX = 32; // Max base number for trailing zeros. |
| const int DROPOUT_AFTER_BASE_MIN = 16; // Min base number for trailing zeros. |
| const int DROPOUT_MULTIPLIER_MAX = 8; // Max multiplier on number of zeros. |
| const int DROPOUT_MULTIPLIER_MIN = 2; // Min multiplier on number of zeros. |
| const int DROPOUT_MULTIPLIER_Q_BASE = 32; // Base Q to compute multiplier. |
| |
| void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, |
| TX_TYPE tx_type, int qindex) { |
| const int tx_width = tx_size_wide[tx_size]; |
| const int tx_height = tx_size_high[tx_size]; |
| |
| // Early return if `qindex` is out of range. |
| if (qindex > DROPOUT_Q_MAX || qindex < DROPOUT_Q_MIN) { |
| return; |
| } |
| |
| // Compute number of zeros used for dropout judgement. |
| const int base_size = AOMMAX(tx_width, tx_height); |
| const int multiplier = CLIP(qindex / DROPOUT_MULTIPLIER_Q_BASE, |
| DROPOUT_MULTIPLIER_MIN, DROPOUT_MULTIPLIER_MAX); |
| const int dropout_num_before = |
| multiplier * |
| CLIP(base_size, DROPOUT_BEFORE_BASE_MIN, DROPOUT_BEFORE_BASE_MAX); |
| const int dropout_num_after = |
| multiplier * |
| CLIP(base_size, DROPOUT_AFTER_BASE_MIN, DROPOUT_AFTER_BASE_MAX); |
| |
| av1_dropout_qcoeff_num(mb, plane, block, tx_size, tx_type, dropout_num_before, |
| dropout_num_after); |
| } |
| |
| void av1_dropout_qcoeff_num(MACROBLOCK *mb, int plane, int block, |
| TX_SIZE tx_size, TX_TYPE tx_type, |
| int dropout_num_before, int dropout_num_after) { |
| const struct macroblock_plane *const p = &mb->plane[plane]; |
| tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block); |
| tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); |
| const int max_eob = av1_get_max_eob(tx_size); |
| const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); |
| |
| // Early return if there are not enough non-zero coefficients. |
| if (p->eobs[block] == 0 || p->eobs[block] <= dropout_num_before) { |
| return; |
| } |
| |
| int count_zeros_before = 0; |
| int count_zeros_after = 0; |
| int count_nonzeros = 0; |
| // Index of the first non-zero coefficient after sufficient number of |
| // continuous zeros. If equals to `-1`, it means number of leading zeros |
| // hasn't reach `dropout_num_before`. |
| int idx = -1; |
| int eob = 0; // New end of block. |
| |
| for (int i = 0; i < p->eobs[block]; ++i) { |
| const int scan_idx = scan_order->scan[i]; |
| if (abs(qcoeff[scan_idx]) > DROPOUT_COEFF_MAX) { |
| // Keep large coefficients. |
| count_zeros_before = 0; |
| count_zeros_after = 0; |
| idx = -1; |
| eob = i + 1; |
| } else if (qcoeff[scan_idx] == 0) { // Count zeros. |
| if (idx == -1) { |
| ++count_zeros_before; |
| } else { |
| ++count_zeros_after; |
| } |
| } else { // Count non-zeros. |
| if (count_zeros_before >= dropout_num_before) { |
| idx = (idx == -1) ? i : idx; |
| ++count_nonzeros; |
| } else { |
| count_zeros_before = 0; |
| eob = i + 1; |
| } |
| } |
| |
| // Handle continuity. |
| if (count_nonzeros > DROPOUT_CONTINUITY_MAX) { |
| count_zeros_before = 0; |
| count_zeros_after = 0; |
| count_nonzeros = 0; |
| idx = -1; |
| eob = i + 1; |
| } |
| |
| // Handle the trailing zeros after original end of block. |
| if (idx != -1 && i == p->eobs[block] - 1) { |
| count_zeros_after += (max_eob - p->eobs[block]); |
| } |
| |
| // Set redundant coefficients to zeros if needed. |
| if (count_zeros_after >= dropout_num_after) { |
| for (int j = idx; j <= i; ++j) { |
| qcoeff[scan_order->scan[j]] = 0; |
| dqcoeff[scan_order->scan[j]] = 0; |
| } |
| count_zeros_before += (i - idx + 1); |
| count_zeros_after = 0; |
| count_nonzeros = 0; |
| } else if (i == p->eobs[block] - 1) { |
| eob = i + 1; |
| } |
| } |
| |
| if (eob != p->eobs[block]) { |
| p->eobs[block] = eob; |
| p->txb_entropy_ctx[block] = |
| av1_get_txb_entropy_context(qcoeff, scan_order, eob); |
| } |
| } |
| |
| // Settings for optimization type. NOTE: To set optimization type for all intra |
| // frames, both `KEY_BLOCK_OPT_TYPE` and `INTRA_BLOCK_OPT_TYPE` should be set. |
| // TODO(yjshen): These settings are hard-coded and look okay for now. They |
| // should be made configurable later. |
| // Blocks of key frames ONLY. |
| const OPT_TYPE KEY_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT; |
| // Blocks of intra frames (key frames EXCLUSIVE). |
| const OPT_TYPE INTRA_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT; |
| // Blocks of inter frames. (NOTE: Dropout optimization is DISABLED by default |
| // if trellis optimization is on for inter frames.) |
| const OPT_TYPE INTER_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT; |
| |
| enum { |
| QUANT_FUNC_LOWBD = 0, |
| QUANT_FUNC_HIGHBD = 1, |
| QUANT_FUNC_TYPES = 2 |
| } UENUM1BYTE(QUANT_FUNC); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static AV1_QUANT_FACADE |
| quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = { |
| { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, |
| { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, |
| { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, |
| { NULL, NULL } |
| }; |
| #else |
| static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] = { |
| av1_quantize_fp_facade, av1_quantize_b_facade, av1_quantize_dc_facade, NULL |
| }; |
| #endif |
| |
| // Computes the transform for DC only blocks |
| void av1_xform_dc_only(MACROBLOCK *x, int plane, int block, |
| TxfmParam *txfm_param, int64_t per_px_mean) { |
| assert(per_px_mean != INT64_MAX); |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const int block_offset = BLOCK_OFFSET(block); |
| tran_low_t *const coeff = p->coeff + block_offset; |
| const int n_coeffs = av1_get_max_eob(txfm_param->tx_size); |
| memset(coeff, 0, sizeof(*coeff) * n_coeffs); |
| coeff[0] = |
| (tran_low_t)((per_px_mean * dc_coeff_scale[txfm_param->tx_size]) >> 12); |
| } |
| |
| void av1_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row, |
| int blk_col, BLOCK_SIZE plane_bsize, TxfmParam *txfm_param, |
| const QUANT_PARAM *qparam) { |
| av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param); |
| av1_quant(x, plane, block, txfm_param, qparam); |
| } |
| |
| void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TxfmParam *txfm_param) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const int block_offset = BLOCK_OFFSET(block); |
| tran_low_t *const coeff = p->coeff + block_offset; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| |
| const int src_offset = (blk_row * diff_stride + blk_col); |
| const int16_t *src_diff = &p->src_diff[src_offset << MI_SIZE_LOG2]; |
| |
| av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param); |
| } |
| |
| void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param, |
| const QUANT_PARAM *qparam) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const SCAN_ORDER *const scan_order = |
| get_scan(txfm_param->tx_size, txfm_param->tx_type); |
| const int block_offset = BLOCK_OFFSET(block); |
| tran_low_t *const coeff = p->coeff + block_offset; |
| tran_low_t *const qcoeff = p->qcoeff + block_offset; |
| tran_low_t *const dqcoeff = p->dqcoeff + block_offset; |
| uint16_t *const eob = &p->eobs[block]; |
| |
| if (qparam->xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { |
| const int n_coeffs = av1_get_max_eob(txfm_param->tx_size); |
| if (LIKELY(!x->seg_skip_block)) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| quant_func_list[qparam->xform_quant_idx][txfm_param->is_hbd]( |
| coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam); |
| #else |
| quant_func_list[qparam->xform_quant_idx]( |
| coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam); |
| #endif |
| } else { |
| av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob); |
| } |
| } |
| // use_optimize_b is true means av1_optimze_b will be called, |
| // thus cannot update entropy ctx now (performed in optimize_b) |
| if (qparam->use_optimize_b) { |
| p->txb_entropy_ctx[block] = 0; |
| } else { |
| p->txb_entropy_ctx[block] = |
| av1_get_txb_entropy_context(qcoeff, scan_order, *eob); |
| } |
| } |
| |
| void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, TX_SIZE tx_size, |
| TX_TYPE tx_type, TxfmParam *txfm_param) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| txfm_param->tx_type = tx_type; |
| txfm_param->tx_size = tx_size; |
| txfm_param->lossless = xd->lossless[mbmi->segment_id]; |
| txfm_param->tx_set_type = av1_get_ext_tx_set_type( |
| tx_size, is_inter_block(mbmi), cm->features.reduced_tx_set_used); |
| |
| txfm_param->bd = xd->bd; |
| txfm_param->is_hbd = is_cur_buf_hbd(xd); |
| } |
| void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx, |
| int use_quant_b_adapt, QUANT_PARAM *qparam) { |
| qparam->log_scale = av1_get_tx_scale(tx_size); |
| qparam->tx_size = tx_size; |
| |
| qparam->use_quant_b_adapt = use_quant_b_adapt; |
| |
| // TODO(bohanli): optimize_b and quantization idx has relationship, |
| // but is kind of buried and complicated in different encoding stages. |
| // Should have a unified function to derive quant_idx, rather than |
| // determine and pass in the quant_idx |
| qparam->use_optimize_b = use_optimize_b; |
| qparam->xform_quant_idx = xform_quant_idx; |
| |
| qparam->qmatrix = NULL; |
| qparam->iqmatrix = NULL; |
| } |
| void av1_setup_qmatrix(const CommonQuantParams *quant_params, |
| const MACROBLOCKD *xd, int plane, TX_SIZE tx_size, |
| TX_TYPE tx_type, QUANT_PARAM *qparam) { |
| qparam->qmatrix = av1_get_qmatrix(quant_params, xd, plane, tx_size, tx_type); |
| qparam->iqmatrix = |
| av1_get_iqmatrix(quant_params, xd, plane, tx_size, tx_type); |
| } |
| |
| static void encode_block(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg, |
| RUN_TYPE dry_run) { |
| (void)dry_run; |
| struct encode_b_args *const args = arg; |
| const AV1_COMP *const cpi = args->cpi; |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); |
| uint8_t *dst; |
| ENTROPY_CONTEXT *a, *l; |
| int dummy_rate_cost = 0; |
| |
| const int bw = mi_size_wide[plane_bsize]; |
| dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2]; |
| |
| a = &args->ta[blk_col]; |
| l = &args->tl[blk_row]; |
| |
| TX_TYPE tx_type = DCT_DCT; |
| const int blk_skip_idx = cpi->sf.rt_sf.use_nonrd_pick_mode |
| ? blk_row * bw / 4 + blk_col / 2 |
| : blk_row * bw + blk_col; |
| if (!is_blk_skip(x->txfm_search_info.blk_skip, plane, blk_skip_idx) && |
| !mbmi->skip_mode) { |
| tx_type = av1_get_tx_type(xd, pd->plane_type, blk_row, blk_col, tx_size, |
| cm->features.reduced_tx_set_used); |
| TxfmParam txfm_param; |
| QUANT_PARAM quant_param; |
| const int use_trellis = is_trellis_used(args->enable_optimize_b, dry_run); |
| int quant_idx; |
| if (use_trellis) |
| quant_idx = AV1_XFORM_QUANT_FP; |
| else |
| quant_idx = |
| USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP; |
| av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param); |
| av1_setup_quant(tx_size, use_trellis, quant_idx, |
| cpi->oxcf.q_cfg.quant_b_adapt, &quant_param); |
| av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type, |
| &quant_param); |
| av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, |
| &quant_param); |
| |
| // Whether trellis or dropout optimization is required for inter frames. |
| const bool do_trellis = INTER_BLOCK_OPT_TYPE == TRELLIS_OPT || |
| INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT; |
| const bool do_dropout = INTER_BLOCK_OPT_TYPE == DROPOUT_OPT || |
| INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT; |
| |
| if (quant_param.use_optimize_b && do_trellis) { |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); |
| av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx, |
| &dummy_rate_cost); |
| } |
| if (!quant_param.use_optimize_b && do_dropout) { |
| av1_dropout_qcoeff(x, plane, block, tx_size, tx_type, |
| cm->quant_params.base_qindex); |
| } |
| } else { |
| p->eobs[block] = 0; |
| p->txb_entropy_ctx[block] = 0; |
| } |
| |
| av1_set_txb_context(x, plane, block, tx_size, a, l); |
| |
| if (p->eobs[block]) { |
| *(args->skip) = 0; |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, |
| pd->dst.stride, p->eobs[block], |
| cm->features.reduced_tx_set_used); |
| } |
| |
| // TODO(debargha, jingning): Temporarily disable txk_type check for eob=0 |
| // case. It is possible that certain collision in hash index would cause |
| // the assertion failure. To further optimize the rate-distortion |
| // performance, we need to re-visit this part and enable this assert |
| // again. |
| if (p->eobs[block] == 0 && plane == 0) { |
| #if 0 |
| if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ && |
| args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) { |
| // TODO(jingning,angiebird,huisu@google.com): enable txk_check when |
| // enable_optimize_b is true to detect potential RD bug. |
| const uint8_t disable_txk_check = args->enable_optimize_b; |
| if (!disable_txk_check) { |
| assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] == |
| DCT_DCT); |
| } |
| } |
| #endif |
| update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); |
| } |
| |
| #if CONFIG_MISMATCH_DEBUG |
| if (dry_run == OUTPUT_ENABLED) { |
| int pixel_c, pixel_r; |
| BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; |
| int blk_w = block_size_wide[bsize]; |
| int blk_h = block_size_high[bsize]; |
| mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col, |
| blk_row, pd->subsampling_x, pd->subsampling_y); |
| mismatch_record_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint, |
| plane, pixel_c, pixel_r, blk_w, blk_h, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); |
| } |
| #endif |
| } |
| |
| static void encode_block_inter(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg, RUN_TYPE dry_run) { |
| struct encode_b_args *const args = arg; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| if (!plane) { |
| assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] && |
| tx_size_high[tx_size] >= tx_size_high[plane_tx_size]); |
| } |
| |
| if (tx_size == plane_tx_size || plane) { |
| encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg, |
| dry_run); |
| } else { |
| assert(tx_size < TX_SIZES_ALL); |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); |
| assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); |
| // This is the square transform block partition entry point. |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int step = bsh * bsw; |
| const int row_end = |
| AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); |
| const int col_end = |
| AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); |
| assert(bsw > 0 && bsh > 0); |
| |
| for (int row = 0; row < row_end; row += bsh) { |
| const int offsetr = blk_row + row; |
| for (int col = 0; col < col_end; col += bsw) { |
| const int offsetc = blk_col + col; |
| |
| encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, |
| arg, dry_run); |
| block += step; |
| } |
| } |
| } |
| } |
| |
| void av1_foreach_transformed_block_in_plane( |
| const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane, |
| foreach_transformed_block_visitor visit, void *arg) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") |
| // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 |
| // transform size varies per plane, look it up in a common way. |
| const TX_SIZE tx_size = av1_get_tx_size(plane, xd); |
| const uint8_t txw_unit = tx_size_wide_unit[tx_size]; |
| const uint8_t txh_unit = tx_size_high_unit[tx_size]; |
| const int step = txw_unit * txh_unit; |
| |
| // If mb_to_right_edge is < 0 we are in a situation in which |
| // the current block size extends into the UMV and we won't |
| // visit the sub blocks that are wholly within the UMV. |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const BLOCK_SIZE max_unit_bsize = |
| get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); |
| const int mu_blocks_wide = |
| AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide); |
| const int mu_blocks_high = |
| AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high); |
| |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| int i = 0; |
| for (int r = 0; r < max_blocks_high; r += mu_blocks_high) { |
| const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high); |
| // Skip visiting the sub blocks that are wholly within the UMV. |
| for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) { |
| const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide); |
| for (int blk_row = r; blk_row < unit_height; blk_row += txh_unit) { |
| for (int blk_col = c; blk_col < unit_width; blk_col += txw_unit) { |
| visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg); |
| i += step; |
| } |
| } |
| } |
| } |
| } |
| |
| typedef struct encode_block_pass1_args { |
| AV1_COMP *cpi; |
| MACROBLOCK *x; |
| } encode_block_pass1_args; |
| |
| static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| encode_block_pass1_args *args = (encode_block_pass1_args *)arg; |
| AV1_COMP *cpi = args->cpi; |
| AV1_COMMON *cm = &cpi->common; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); |
| |
| uint8_t *dst; |
| dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2]; |
| |
| TxfmParam txfm_param; |
| QUANT_PARAM quant_param; |
| |
| av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param); |
| av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt, |
| &quant_param); |
| av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, DCT_DCT, |
| &quant_param); |
| |
| av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, |
| &quant_param); |
| |
| if (p->eobs[block] > 0) { |
| txfm_param.eob = p->eobs[block]; |
| if (txfm_param.is_hbd) { |
| av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); |
| return; |
| } |
| av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); |
| } |
| } |
| |
| void av1_encode_sby_pass1(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) { |
| encode_block_pass1_args args = { cpi, x }; |
| av1_subtract_plane(x, bsize, 0); |
| av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, |
| encode_block_pass1, &args); |
| } |
| |
| void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| RUN_TYPE dry_run) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| mbmi->skip_txfm = 1; |
| if (x->txfm_search_info.skip_txfm) return; |
| |
| struct optimize_ctx ctx; |
| struct encode_b_args arg = { |
| cpi, x, &ctx, &mbmi->skip_txfm, |
| NULL, NULL, dry_run, cpi->optimize_seg_arr[mbmi->segment_id] |
| }; |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int subsampling_x = pd->subsampling_x; |
| const int subsampling_y = pd->subsampling_y; |
| if (plane && !xd->is_chroma_ref) break; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, subsampling_x, subsampling_y); |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); |
| const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; |
| const int bw = mi_size_wide[txb_size]; |
| const int bh = mi_size_high[txb_size]; |
| int block = 0; |
| const int step = |
| tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| av1_get_entropy_contexts(plane_bsize, pd, ctx.ta[plane], ctx.tl[plane]); |
| av1_subtract_plane(x, plane_bsize, plane); |
| arg.ta = ctx.ta[plane]; |
| arg.tl = ctx.tl[plane]; |
| const BLOCK_SIZE max_unit_bsize = |
| get_plane_block_size(BLOCK_64X64, subsampling_x, subsampling_y); |
| int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(mi_height, mu_blocks_high); |
| |
| for (int idy = 0; idy < mi_height; idy += mu_blocks_high) { |
| for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) { |
| int blk_row, blk_col; |
| const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height); |
| const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width); |
| for (blk_row = idy; blk_row < unit_height; blk_row += bh) { |
| for (blk_col = idx; blk_col < unit_width; blk_col += bw) { |
| encode_block_inter(plane, block, blk_row, blk_col, plane_bsize, |
| max_tx_size, &arg, dry_run); |
| block += step; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void encode_block_intra_and_set_context(int plane, int block, |
| int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, void *arg) { |
| av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| arg); |
| |
| struct encode_b_args *const args = arg; |
| MACROBLOCK *x = args->x; |
| ENTROPY_CONTEXT *a = &args->ta[blk_col]; |
| ENTROPY_CONTEXT *l = &args->tl[blk_row]; |
| av1_set_txb_context(x, plane, block, tx_size, a, l); |
| } |
| |
| void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| struct encode_b_args *const args = arg; |
| const AV1_COMP *const cpi = args->cpi; |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| uint16_t *eob = &p->eobs[block]; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; |
| int dummy_rate_cost = 0; |
| |
| av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); |
| |
| TX_TYPE tx_type = DCT_DCT; |
| const int bw = mi_size_wide[plane_bsize]; |
| if (plane == 0 && is_blk_skip(x->txfm_search_info.blk_skip, plane, |
| blk_row * bw + blk_col)) { |
| *eob = 0; |
| p->txb_entropy_ctx[block] = 0; |
| } else { |
| av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); |
| |
| const ENTROPY_CONTEXT *a = &args->ta[blk_col]; |
| const ENTROPY_CONTEXT *l = &args->tl[blk_row]; |
| tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size, |
| cm->features.reduced_tx_set_used); |
| TxfmParam txfm_param; |
| QUANT_PARAM quant_param; |
| const int use_trellis = |
| is_trellis_used(args->enable_optimize_b, args->dry_run); |
| int quant_idx; |
| if (use_trellis) |
| quant_idx = AV1_XFORM_QUANT_FP; |
| else |
| quant_idx = |
| USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP; |
| |
| av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param); |
| av1_setup_quant(tx_size, use_trellis, quant_idx, |
| cpi->oxcf.q_cfg.quant_b_adapt, &quant_param); |
| av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type, |
| &quant_param); |
| |
| av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, |
| &quant_param); |
| |
| // Whether trellis or dropout optimization is required for key frames and |
| // intra frames. |
| const bool do_trellis = (frame_is_intra_only(cm) && |
| (KEY_BLOCK_OPT_TYPE == TRELLIS_OPT || |
| KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) || |
| (!frame_is_intra_only(cm) && |
| (INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT || |
| INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)); |
| const bool do_dropout = (frame_is_intra_only(cm) && |
| (KEY_BLOCK_OPT_TYPE == DROPOUT_OPT || |
| KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) || |
| (!frame_is_intra_only(cm) && |
| (INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT || |
| INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)); |
| |
| if (quant_param.use_optimize_b && do_trellis) { |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); |
| av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx, |
| &dummy_rate_cost); |
| } |
| if (do_dropout) { |
| av1_dropout_qcoeff(x, plane, block, tx_size, tx_type, |
| cm->quant_params.base_qindex); |
| } |
| } |
| |
| if (*eob) { |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, |
| dst_stride, *eob, |
| cm->features.reduced_tx_set_used); |
| } |
| |
| // TODO(jingning): Temporarily disable txk_type check for eob=0 case. |
| // It is possible that certain collision in hash index would cause |
| // the assertion failure. To further optimize the rate-distortion |
| // performance, we need to re-visit this part and enable this assert |
| // again. |
| if (*eob == 0 && plane == 0) { |
| #if 0 |
| if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ |
| && args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) { |
| assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] == |
| DCT_DCT); |
| } |
| #endif |
| update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); |
| } |
| |
| // For intra mode, skipped blocks are so rare that transmitting skip=1 is |
| // very expensive. |
| *(args->skip) = 0; |
| |
| if (plane == AOM_PLANE_Y && xd->cfl.store_y) { |
| cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); |
| } |
| } |
| |
| void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run, |
| TRELLIS_OPT_TYPE enable_optimize_b) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| if (plane && !xd->is_chroma_ref) return; |
| |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 }; |
| ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 }; |
| struct encode_b_args arg = { cpi, x, NULL, &(xd->mi[0]->skip_txfm), |
| ta, tl, dry_run, enable_optimize_b }; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y); |
| if (enable_optimize_b) { |
| av1_get_entropy_contexts(plane_bsize, pd, ta, tl); |
| } |
| av1_foreach_transformed_block_in_plane( |
| xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg); |
| } |