|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <immintrin.h> | 
|  |  | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/x86/masked_variance_intrin_ssse3.h" | 
|  | #include "aom_dsp/x86/synonyms.h" | 
|  |  | 
|  | static INLINE __m128i mm256_add_hi_lo_epi16(const __m256i val) { | 
|  | return _mm_add_epi16(_mm256_castsi256_si128(val), | 
|  | _mm256_extractf128_si256(val, 1)); | 
|  | } | 
|  |  | 
|  | static INLINE __m128i mm256_add_hi_lo_epi32(const __m256i val) { | 
|  | return _mm_add_epi32(_mm256_castsi256_si128(val), | 
|  | _mm256_extractf128_si256(val, 1)); | 
|  | } | 
|  |  | 
|  | static INLINE void variance_kernel_avx2(const __m256i src, const __m256i ref, | 
|  | __m256i *const sse, | 
|  | __m256i *const sum) { | 
|  | const __m256i adj_sub = _mm256_set1_epi16((short)0xff01);  // (1,-1) | 
|  |  | 
|  | // unpack into pairs of source and reference values | 
|  | const __m256i src_ref0 = _mm256_unpacklo_epi8(src, ref); | 
|  | const __m256i src_ref1 = _mm256_unpackhi_epi8(src, ref); | 
|  |  | 
|  | // subtract adjacent elements using src*1 + ref*-1 | 
|  | const __m256i diff0 = _mm256_maddubs_epi16(src_ref0, adj_sub); | 
|  | const __m256i diff1 = _mm256_maddubs_epi16(src_ref1, adj_sub); | 
|  | const __m256i madd0 = _mm256_madd_epi16(diff0, diff0); | 
|  | const __m256i madd1 = _mm256_madd_epi16(diff1, diff1); | 
|  |  | 
|  | // add to the running totals | 
|  | *sum = _mm256_add_epi16(*sum, _mm256_add_epi16(diff0, diff1)); | 
|  | *sse = _mm256_add_epi32(*sse, _mm256_add_epi32(madd0, madd1)); | 
|  | } | 
|  |  | 
|  | static INLINE int variance_final_from_32bit_sum_avx2(__m256i vsse, __m128i vsum, | 
|  | unsigned int *const sse) { | 
|  | // extract the low lane and add it to the high lane | 
|  | const __m128i sse_reg_128 = mm256_add_hi_lo_epi32(vsse); | 
|  |  | 
|  | // unpack sse and sum registers and add | 
|  | const __m128i sse_sum_lo = _mm_unpacklo_epi32(sse_reg_128, vsum); | 
|  | const __m128i sse_sum_hi = _mm_unpackhi_epi32(sse_reg_128, vsum); | 
|  | const __m128i sse_sum = _mm_add_epi32(sse_sum_lo, sse_sum_hi); | 
|  |  | 
|  | // perform the final summation and extract the results | 
|  | const __m128i res = _mm_add_epi32(sse_sum, _mm_srli_si128(sse_sum, 8)); | 
|  | *((int *)sse) = _mm_cvtsi128_si32(res); | 
|  | return _mm_extract_epi32(res, 1); | 
|  | } | 
|  |  | 
|  | // handle pixels (<= 512) | 
|  | static INLINE int variance_final_512_avx2(__m256i vsse, __m256i vsum, | 
|  | unsigned int *const sse) { | 
|  | // extract the low lane and add it to the high lane | 
|  | const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum); | 
|  | const __m128i vsum_64 = _mm_add_epi16(vsum_128, _mm_srli_si128(vsum_128, 8)); | 
|  | const __m128i sum_int32 = _mm_cvtepi16_epi32(vsum_64); | 
|  | return variance_final_from_32bit_sum_avx2(vsse, sum_int32, sse); | 
|  | } | 
|  |  | 
|  | // handle 1024 pixels (32x32, 16x64, 64x16) | 
|  | static INLINE int variance_final_1024_avx2(__m256i vsse, __m256i vsum, | 
|  | unsigned int *const sse) { | 
|  | // extract the low lane and add it to the high lane | 
|  | const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum); | 
|  | const __m128i vsum_64 = | 
|  | _mm_add_epi32(_mm_cvtepi16_epi32(vsum_128), | 
|  | _mm_cvtepi16_epi32(_mm_srli_si128(vsum_128, 8))); | 
|  | return variance_final_from_32bit_sum_avx2(vsse, vsum_64, sse); | 
|  | } | 
|  |  | 
|  | static INLINE __m256i sum_to_32bit_avx2(const __m256i sum) { | 
|  | const __m256i sum_lo = _mm256_cvtepi16_epi32(_mm256_castsi256_si128(sum)); | 
|  | const __m256i sum_hi = | 
|  | _mm256_cvtepi16_epi32(_mm256_extractf128_si256(sum, 1)); | 
|  | return _mm256_add_epi32(sum_lo, sum_hi); | 
|  | } | 
|  |  | 
|  | // handle 2048 pixels (32x64, 64x32) | 
|  | static INLINE int variance_final_2048_avx2(__m256i vsse, __m256i vsum, | 
|  | unsigned int *const sse) { | 
|  | vsum = sum_to_32bit_avx2(vsum); | 
|  | const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum); | 
|  | return variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse); | 
|  | } | 
|  |  | 
|  | static INLINE void variance16_kernel_avx2( | 
|  | const uint8_t *const src, const int src_stride, const uint8_t *const ref, | 
|  | const int ref_stride, __m256i *const sse, __m256i *const sum) { | 
|  | const __m128i s0 = _mm_loadu_si128((__m128i const *)(src + 0 * src_stride)); | 
|  | const __m128i s1 = _mm_loadu_si128((__m128i const *)(src + 1 * src_stride)); | 
|  | const __m128i r0 = _mm_loadu_si128((__m128i const *)(ref + 0 * ref_stride)); | 
|  | const __m128i r1 = _mm_loadu_si128((__m128i const *)(ref + 1 * ref_stride)); | 
|  | const __m256i s = _mm256_inserti128_si256(_mm256_castsi128_si256(s0), s1, 1); | 
|  | const __m256i r = _mm256_inserti128_si256(_mm256_castsi128_si256(r0), r1, 1); | 
|  | variance_kernel_avx2(s, r, sse, sum); | 
|  | } | 
|  |  | 
|  | static INLINE void variance32_kernel_avx2(const uint8_t *const src, | 
|  | const uint8_t *const ref, | 
|  | __m256i *const sse, | 
|  | __m256i *const sum) { | 
|  | const __m256i s = _mm256_loadu_si256((__m256i const *)(src)); | 
|  | const __m256i r = _mm256_loadu_si256((__m256i const *)(ref)); | 
|  | variance_kernel_avx2(s, r, sse, sum); | 
|  | } | 
|  |  | 
|  | static INLINE void variance16_avx2(const uint8_t *src, const int src_stride, | 
|  | const uint8_t *ref, const int ref_stride, | 
|  | const int h, __m256i *const vsse, | 
|  | __m256i *const vsum) { | 
|  | *vsum = _mm256_setzero_si256(); | 
|  |  | 
|  | for (int i = 0; i < h; i += 2) { | 
|  | variance16_kernel_avx2(src, src_stride, ref, ref_stride, vsse, vsum); | 
|  | src += 2 * src_stride; | 
|  | ref += 2 * ref_stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void variance32_avx2(const uint8_t *src, const int src_stride, | 
|  | const uint8_t *ref, const int ref_stride, | 
|  | const int h, __m256i *const vsse, | 
|  | __m256i *const vsum) { | 
|  | *vsum = _mm256_setzero_si256(); | 
|  |  | 
|  | for (int i = 0; i < h; i++) { | 
|  | variance32_kernel_avx2(src, ref, vsse, vsum); | 
|  | src += src_stride; | 
|  | ref += ref_stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void variance64_avx2(const uint8_t *src, const int src_stride, | 
|  | const uint8_t *ref, const int ref_stride, | 
|  | const int h, __m256i *const vsse, | 
|  | __m256i *const vsum) { | 
|  | *vsum = _mm256_setzero_si256(); | 
|  |  | 
|  | for (int i = 0; i < h; i++) { | 
|  | variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum); | 
|  | variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum); | 
|  | src += src_stride; | 
|  | ref += ref_stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void variance128_avx2(const uint8_t *src, const int src_stride, | 
|  | const uint8_t *ref, const int ref_stride, | 
|  | const int h, __m256i *const vsse, | 
|  | __m256i *const vsum) { | 
|  | *vsum = _mm256_setzero_si256(); | 
|  |  | 
|  | for (int i = 0; i < h; i++) { | 
|  | variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum); | 
|  | variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum); | 
|  | variance32_kernel_avx2(src + 64, ref + 64, vsse, vsum); | 
|  | variance32_kernel_avx2(src + 96, ref + 96, vsse, vsum); | 
|  | src += src_stride; | 
|  | ref += ref_stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define AOM_VAR_NO_LOOP_AVX2(bw, bh, bits, max_pixel)                         \ | 
|  | unsigned int aom_variance##bw##x##bh##_avx2(                                \ | 
|  | const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ | 
|  | unsigned int *sse) {                                                    \ | 
|  | __m256i vsse = _mm256_setzero_si256();                                    \ | 
|  | __m256i vsum;                                                             \ | 
|  | variance##bw##_avx2(src, src_stride, ref, ref_stride, bh, &vsse, &vsum);  \ | 
|  | const int sum = variance_final_##max_pixel##_avx2(vsse, vsum, sse);       \ | 
|  | return *sse - (uint32_t)(((int64_t)sum * sum) >> bits);                   \ | 
|  | } | 
|  |  | 
|  | AOM_VAR_NO_LOOP_AVX2(16, 8, 7, 512) | 
|  | AOM_VAR_NO_LOOP_AVX2(16, 16, 8, 512) | 
|  | AOM_VAR_NO_LOOP_AVX2(16, 32, 9, 512) | 
|  |  | 
|  | AOM_VAR_NO_LOOP_AVX2(32, 16, 9, 512) | 
|  | AOM_VAR_NO_LOOP_AVX2(32, 32, 10, 1024) | 
|  | AOM_VAR_NO_LOOP_AVX2(32, 64, 11, 2048) | 
|  |  | 
|  | AOM_VAR_NO_LOOP_AVX2(64, 32, 11, 2048) | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | AOM_VAR_NO_LOOP_AVX2(64, 16, 10, 1024) | 
|  | AOM_VAR_NO_LOOP_AVX2(32, 8, 8, 512) | 
|  | AOM_VAR_NO_LOOP_AVX2(16, 64, 10, 1024) | 
|  | AOM_VAR_NO_LOOP_AVX2(16, 4, 6, 512) | 
|  | #endif | 
|  |  | 
|  | #define AOM_VAR_LOOP_AVX2(bw, bh, bits, uh)                                   \ | 
|  | unsigned int aom_variance##bw##x##bh##_avx2(                                \ | 
|  | const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ | 
|  | unsigned int *sse) {                                                    \ | 
|  | __m256i vsse = _mm256_setzero_si256();                                    \ | 
|  | __m256i vsum = _mm256_setzero_si256();                                    \ | 
|  | for (int i = 0; i < (bh / uh); i++) {                                     \ | 
|  | __m256i vsum16;                                                         \ | 
|  | variance##bw##_avx2(src, src_stride, ref, ref_stride, uh, &vsse,        \ | 
|  | &vsum16);                                           \ | 
|  | vsum = _mm256_add_epi32(vsum, sum_to_32bit_avx2(vsum16));               \ | 
|  | src += uh * src_stride;                                                 \ | 
|  | ref += uh * ref_stride;                                                 \ | 
|  | }                                                                         \ | 
|  | const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum);                     \ | 
|  | const int sum = variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse);  \ | 
|  | return *sse - (unsigned int)(((int64_t)sum * sum) >> bits);               \ | 
|  | } | 
|  |  | 
|  | AOM_VAR_LOOP_AVX2(64, 64, 12, 32)    // 64x32 * ( 64/32) | 
|  | AOM_VAR_LOOP_AVX2(64, 128, 13, 32)   // 64x32 * (128/32) | 
|  | AOM_VAR_LOOP_AVX2(128, 64, 13, 16)   // 128x16 * ( 64/16) | 
|  | AOM_VAR_LOOP_AVX2(128, 128, 14, 16)  // 128x16 * (128/16) | 
|  |  | 
|  | unsigned int aom_mse16x16_avx2(const uint8_t *src, int src_stride, | 
|  | const uint8_t *ref, int ref_stride, | 
|  | unsigned int *sse) { | 
|  | aom_variance16x16_avx2(src, src_stride, ref, ref_stride, sse); | 
|  | return *sse; | 
|  | } | 
|  |  | 
|  | static INLINE __m256i mm256_loadu2(const uint8_t *p0, const uint8_t *p1) { | 
|  | const __m256i d = | 
|  | _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1)); | 
|  | return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1); | 
|  | } | 
|  |  | 
|  | static INLINE __m256i mm256_loadu2_16(const uint16_t *p0, const uint16_t *p1) { | 
|  | const __m256i d = | 
|  | _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1)); | 
|  | return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1); | 
|  | } | 
|  |  | 
|  | static INLINE void comp_mask_pred_line_avx2(const __m256i s0, const __m256i s1, | 
|  | const __m256i a, | 
|  | uint8_t *comp_pred) { | 
|  | const __m256i alpha_max = _mm256_set1_epi8(AOM_BLEND_A64_MAX_ALPHA); | 
|  | const int16_t round_bits = 15 - AOM_BLEND_A64_ROUND_BITS; | 
|  | const __m256i round_offset = _mm256_set1_epi16(1 << (round_bits)); | 
|  |  | 
|  | const __m256i ma = _mm256_sub_epi8(alpha_max, a); | 
|  |  | 
|  | const __m256i ssAL = _mm256_unpacklo_epi8(s0, s1); | 
|  | const __m256i aaAL = _mm256_unpacklo_epi8(a, ma); | 
|  | const __m256i ssAH = _mm256_unpackhi_epi8(s0, s1); | 
|  | const __m256i aaAH = _mm256_unpackhi_epi8(a, ma); | 
|  |  | 
|  | const __m256i blendAL = _mm256_maddubs_epi16(ssAL, aaAL); | 
|  | const __m256i blendAH = _mm256_maddubs_epi16(ssAH, aaAH); | 
|  | const __m256i roundAL = _mm256_mulhrs_epi16(blendAL, round_offset); | 
|  | const __m256i roundAH = _mm256_mulhrs_epi16(blendAH, round_offset); | 
|  |  | 
|  | const __m256i roundA = _mm256_packus_epi16(roundAL, roundAH); | 
|  | _mm256_storeu_si256((__m256i *)(comp_pred), roundA); | 
|  | } | 
|  |  | 
|  | void aom_comp_mask_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width, | 
|  | int height, const uint8_t *ref, int ref_stride, | 
|  | const uint8_t *mask, int mask_stride, | 
|  | int invert_mask) { | 
|  | int i = 0; | 
|  | const uint8_t *src0 = invert_mask ? pred : ref; | 
|  | const uint8_t *src1 = invert_mask ? ref : pred; | 
|  | const int stride0 = invert_mask ? width : ref_stride; | 
|  | const int stride1 = invert_mask ? ref_stride : width; | 
|  | if (width == 8) { | 
|  | comp_mask_pred_8_ssse3(comp_pred, height, src0, stride0, src1, stride1, | 
|  | mask, mask_stride); | 
|  | } else if (width == 16) { | 
|  | do { | 
|  | const __m256i sA0 = mm256_loadu2(src0 + stride0, src0); | 
|  | const __m256i sA1 = mm256_loadu2(src1 + stride1, src1); | 
|  | const __m256i aA = mm256_loadu2(mask + mask_stride, mask); | 
|  | src0 += (stride0 << 1); | 
|  | src1 += (stride1 << 1); | 
|  | mask += (mask_stride << 1); | 
|  | const __m256i sB0 = mm256_loadu2(src0 + stride0, src0); | 
|  | const __m256i sB1 = mm256_loadu2(src1 + stride1, src1); | 
|  | const __m256i aB = mm256_loadu2(mask + mask_stride, mask); | 
|  | src0 += (stride0 << 1); | 
|  | src1 += (stride1 << 1); | 
|  | mask += (mask_stride << 1); | 
|  | // comp_pred's stride == width == 16 | 
|  | comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred); | 
|  | comp_mask_pred_line_avx2(sB0, sB1, aB, comp_pred + 32); | 
|  | comp_pred += (16 << 2); | 
|  | i += 4; | 
|  | } while (i < height); | 
|  | } else { | 
|  | do { | 
|  | for (int x = 0; x < width; x += 32) { | 
|  | const __m256i sA0 = _mm256_lddqu_si256((const __m256i *)(src0 + x)); | 
|  | const __m256i sA1 = _mm256_lddqu_si256((const __m256i *)(src1 + x)); | 
|  | const __m256i aA = _mm256_lddqu_si256((const __m256i *)(mask + x)); | 
|  |  | 
|  | comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred); | 
|  | comp_pred += 32; | 
|  | } | 
|  | src0 += stride0; | 
|  | src1 += stride1; | 
|  | mask += mask_stride; | 
|  | i++; | 
|  | } while (i < height); | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE __m256i highbd_comp_mask_pred_line_avx2(const __m256i s0, | 
|  | const __m256i s1, | 
|  | const __m256i a) { | 
|  | const __m256i alpha_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS)); | 
|  | const __m256i round_const = | 
|  | _mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1); | 
|  | const __m256i a_inv = _mm256_sub_epi16(alpha_max, a); | 
|  |  | 
|  | const __m256i s_lo = _mm256_unpacklo_epi16(s0, s1); | 
|  | const __m256i a_lo = _mm256_unpacklo_epi16(a, a_inv); | 
|  | const __m256i pred_lo = _mm256_madd_epi16(s_lo, a_lo); | 
|  | const __m256i pred_l = _mm256_srai_epi32( | 
|  | _mm256_add_epi32(pred_lo, round_const), AOM_BLEND_A64_ROUND_BITS); | 
|  |  | 
|  | const __m256i s_hi = _mm256_unpackhi_epi16(s0, s1); | 
|  | const __m256i a_hi = _mm256_unpackhi_epi16(a, a_inv); | 
|  | const __m256i pred_hi = _mm256_madd_epi16(s_hi, a_hi); | 
|  | const __m256i pred_h = _mm256_srai_epi32( | 
|  | _mm256_add_epi32(pred_hi, round_const), AOM_BLEND_A64_ROUND_BITS); | 
|  |  | 
|  | const __m256i comp = _mm256_packs_epi32(pred_l, pred_h); | 
|  |  | 
|  | return comp; | 
|  | } | 
|  |  | 
|  | void aom_highbd_comp_mask_pred_avx2(uint8_t *comp_pred8, const uint8_t *pred8, | 
|  | int width, int height, const uint8_t *ref8, | 
|  | int ref_stride, const uint8_t *mask, | 
|  | int mask_stride, int invert_mask) { | 
|  | int i = 0; | 
|  | uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); | 
|  | uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); | 
|  | uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); | 
|  | const uint16_t *src0 = invert_mask ? pred : ref; | 
|  | const uint16_t *src1 = invert_mask ? ref : pred; | 
|  | const int stride0 = invert_mask ? width : ref_stride; | 
|  | const int stride1 = invert_mask ? ref_stride : width; | 
|  | const __m256i zero = _mm256_setzero_si256(); | 
|  |  | 
|  | if (width == 8) { | 
|  | do { | 
|  | const __m256i s0 = mm256_loadu2_16(src0 + stride0, src0); | 
|  | const __m256i s1 = mm256_loadu2_16(src1 + stride1, src1); | 
|  |  | 
|  | const __m128i m_l = _mm_loadl_epi64((const __m128i *)mask); | 
|  | const __m128i m_h = _mm_loadl_epi64((const __m128i *)(mask + 8)); | 
|  |  | 
|  | __m256i m = _mm256_castsi128_si256(m_l); | 
|  | m = _mm256_insertf128_si256(m, m_h, 1); | 
|  | const __m256i m_16 = _mm256_unpacklo_epi8(m, zero); | 
|  |  | 
|  | const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16); | 
|  |  | 
|  | _mm_storeu_si128((__m128i *)(comp_pred), _mm256_castsi256_si128(comp)); | 
|  |  | 
|  | _mm_storeu_si128((__m128i *)(comp_pred + width), | 
|  | _mm256_extractf128_si256(comp, 1)); | 
|  |  | 
|  | src0 += (stride0 << 1); | 
|  | src1 += (stride1 << 1); | 
|  | mask += (mask_stride << 1); | 
|  | comp_pred += (width << 1); | 
|  | i += 2; | 
|  | } while (i < height); | 
|  | } else if (width == 16) { | 
|  | do { | 
|  | const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0)); | 
|  | const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1)); | 
|  | const __m256i m_16 = | 
|  | _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)mask)); | 
|  |  | 
|  | const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16); | 
|  |  | 
|  | _mm256_storeu_si256((__m256i *)comp_pred, comp); | 
|  |  | 
|  | src0 += stride0; | 
|  | src1 += stride1; | 
|  | mask += mask_stride; | 
|  | comp_pred += width; | 
|  | i += 1; | 
|  | } while (i < height); | 
|  | } else { | 
|  | do { | 
|  | for (int x = 0; x < width; x += 32) { | 
|  | const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0 + x)); | 
|  | const __m256i s2 = _mm256_loadu_si256((const __m256i *)(src0 + x + 16)); | 
|  | const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1 + x)); | 
|  | const __m256i s3 = _mm256_loadu_si256((const __m256i *)(src1 + x + 16)); | 
|  |  | 
|  | const __m256i m01_16 = | 
|  | _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)(mask + x))); | 
|  | const __m256i m23_16 = _mm256_cvtepu8_epi16( | 
|  | _mm_loadu_si128((const __m128i *)(mask + x + 16))); | 
|  |  | 
|  | const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m01_16); | 
|  | const __m256i comp1 = highbd_comp_mask_pred_line_avx2(s2, s3, m23_16); | 
|  |  | 
|  | _mm256_storeu_si256((__m256i *)comp_pred, comp); | 
|  | _mm256_storeu_si256((__m256i *)(comp_pred + 16), comp1); | 
|  |  | 
|  | comp_pred += 32; | 
|  | } | 
|  | src0 += stride0; | 
|  | src1 += stride1; | 
|  | mask += mask_stride; | 
|  | i += 1; | 
|  | } while (i < height); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t aom_mse_4xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src, | 
|  | int sstride, int h) { | 
|  | uint64_t sum = 0; | 
|  | __m128i dst0_4x8, dst1_4x8, dst2_4x8, dst3_4x8, dst_16x8; | 
|  | __m128i src0_4x16, src1_4x16, src2_4x16, src3_4x16; | 
|  | __m256i src0_8x16, src1_8x16, dst_16x16, src_16x16; | 
|  | __m256i res0_4x64, res1_4x64; | 
|  | __m256i sub_result; | 
|  | const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128()); | 
|  | __m256i square_result = _mm256_broadcastsi128_si256(_mm_setzero_si128()); | 
|  | for (int i = 0; i < h; i += 4) { | 
|  | dst0_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 0) * dstride])); | 
|  | dst1_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 1) * dstride])); | 
|  | dst2_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 2) * dstride])); | 
|  | dst3_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 3) * dstride])); | 
|  | dst_16x8 = _mm_unpacklo_epi64(_mm_unpacklo_epi32(dst0_4x8, dst1_4x8), | 
|  | _mm_unpacklo_epi32(dst2_4x8, dst3_4x8)); | 
|  | dst_16x16 = _mm256_cvtepu8_epi16(dst_16x8); | 
|  |  | 
|  | src0_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 0) * sstride])); | 
|  | src1_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 1) * sstride])); | 
|  | src2_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 2) * sstride])); | 
|  | src3_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 3) * sstride])); | 
|  | src0_8x16 = | 
|  | _mm256_castsi128_si256(_mm_unpacklo_epi64(src0_4x16, src1_4x16)); | 
|  | src1_8x16 = | 
|  | _mm256_castsi128_si256(_mm_unpacklo_epi64(src2_4x16, src3_4x16)); | 
|  | src_16x16 = _mm256_permute2x128_si256(src0_8x16, src1_8x16, 0x20); | 
|  |  | 
|  | // r15 r14 r13------------r1 r0  - 16 bit | 
|  | sub_result = _mm256_abs_epi16(_mm256_sub_epi16(src_16x16, dst_16x16)); | 
|  |  | 
|  | // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit | 
|  | src_16x16 = _mm256_madd_epi16(sub_result, sub_result); | 
|  |  | 
|  | // accumulation of result | 
|  | square_result = _mm256_add_epi32(square_result, src_16x16); | 
|  | } | 
|  |  | 
|  | // s5 s4 s1 s0  - 64bit | 
|  | res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros); | 
|  | // s7 s6 s3 s2 - 64bit | 
|  | res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros); | 
|  | // r3 r2 r1 r0 - 64bit | 
|  | res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64); | 
|  | // r1+r3 r2+r0 - 64bit | 
|  | const __m128i sum_1x64 = | 
|  | _mm_add_epi64(_mm256_castsi256_si128(res0_4x64), | 
|  | _mm256_extracti128_si256(res0_4x64, 1)); | 
|  | xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8))); | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | // Compute mse of four consecutive 4x4 blocks. | 
|  | // In src buffer, each 4x4 block in a 32x32 filter block is stored sequentially. | 
|  | // Hence src_blk_stride is same as block width. Whereas dst buffer is a frame | 
|  | // buffer, thus dstride is a frame level stride. | 
|  | uint64_t aom_mse_4xh_quad_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src, | 
|  | int src_blk_stride, int h) { | 
|  | uint64_t sum = 0; | 
|  | __m128i dst0_16x8, dst1_16x8, dst2_16x8, dst3_16x8; | 
|  | __m256i dst0_16x16, dst1_16x16, dst2_16x16, dst3_16x16; | 
|  | __m256i res0_4x64, res1_4x64; | 
|  | __m256i sub_result_0, sub_result_1, sub_result_2, sub_result_3; | 
|  | const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128()); | 
|  | __m256i square_result = zeros; | 
|  | uint16_t *src_temp = src; | 
|  |  | 
|  | for (int i = 0; i < h; i += 4) { | 
|  | dst0_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 0) * dstride])); | 
|  | dst1_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 1) * dstride])); | 
|  | dst2_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 2) * dstride])); | 
|  | dst3_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 3) * dstride])); | 
|  |  | 
|  | // row0 of 1st,2nd, 3rd and 4th 4x4 blocks- d00 d10 d20 d30 | 
|  | dst0_16x16 = _mm256_cvtepu8_epi16(dst0_16x8); | 
|  | // row1 of 1st,2nd, 3rd and 4th 4x4 blocks - d01 d11 d21 d31 | 
|  | dst1_16x16 = _mm256_cvtepu8_epi16(dst1_16x8); | 
|  | // row2 of 1st,2nd, 3rd and 4th 4x4 blocks - d02 d12 d22 d32 | 
|  | dst2_16x16 = _mm256_cvtepu8_epi16(dst2_16x8); | 
|  | // row3 of 1st,2nd, 3rd and 4th 4x4 blocks - d03 d13 d23 d33 | 
|  | dst3_16x16 = _mm256_cvtepu8_epi16(dst3_16x8); | 
|  |  | 
|  | // All rows of 1st 4x4 block - r00 r01 r02 r03 | 
|  | __m256i src0_16x16 = _mm256_loadu_si256((__m256i const *)(&src_temp[0])); | 
|  | // All rows of 2nd 4x4 block - r10 r11 r12 r13 | 
|  | __m256i src1_16x16 = | 
|  | _mm256_loadu_si256((__m256i const *)(&src_temp[src_blk_stride])); | 
|  | // All rows of 3rd 4x4 block - r20 r21 r22 r23 | 
|  | __m256i src2_16x16 = | 
|  | _mm256_loadu_si256((__m256i const *)(&src_temp[2 * src_blk_stride])); | 
|  | // All rows of 4th 4x4 block - r30 r31 r32 r33 | 
|  | __m256i src3_16x16 = | 
|  | _mm256_loadu_si256((__m256i const *)(&src_temp[3 * src_blk_stride])); | 
|  |  | 
|  | // r00 r10 r02 r12 | 
|  | __m256i tmp0_16x16 = _mm256_unpacklo_epi64(src0_16x16, src1_16x16); | 
|  | // r01 r11 r03 r13 | 
|  | __m256i tmp1_16x16 = _mm256_unpackhi_epi64(src0_16x16, src1_16x16); | 
|  | // r20 r30 r22 r32 | 
|  | __m256i tmp2_16x16 = _mm256_unpacklo_epi64(src2_16x16, src3_16x16); | 
|  | // r21 r31 r23 r33 | 
|  | __m256i tmp3_16x16 = _mm256_unpackhi_epi64(src2_16x16, src3_16x16); | 
|  |  | 
|  | // r00 r10 r20 r30 | 
|  | src0_16x16 = _mm256_permute2f128_si256(tmp0_16x16, tmp2_16x16, 0x20); | 
|  | // r01 r11 r21 r31 | 
|  | src1_16x16 = _mm256_permute2f128_si256(tmp1_16x16, tmp3_16x16, 0x20); | 
|  | // r02 r12 r22 r32 | 
|  | src2_16x16 = _mm256_permute2f128_si256(tmp0_16x16, tmp2_16x16, 0x31); | 
|  | // r03 r13 r23 r33 | 
|  | src3_16x16 = _mm256_permute2f128_si256(tmp1_16x16, tmp3_16x16, 0x31); | 
|  |  | 
|  | // r15 r14 r13------------r1 r0  - 16 bit | 
|  | sub_result_0 = _mm256_abs_epi16(_mm256_sub_epi16(src0_16x16, dst0_16x16)); | 
|  | sub_result_1 = _mm256_abs_epi16(_mm256_sub_epi16(src1_16x16, dst1_16x16)); | 
|  | sub_result_2 = _mm256_abs_epi16(_mm256_sub_epi16(src2_16x16, dst2_16x16)); | 
|  | sub_result_3 = _mm256_abs_epi16(_mm256_sub_epi16(src3_16x16, dst3_16x16)); | 
|  |  | 
|  | // s7 s6 s5 s4 s3 s2 s1 s0    - 32bit | 
|  | src0_16x16 = _mm256_madd_epi16(sub_result_0, sub_result_0); | 
|  | src1_16x16 = _mm256_madd_epi16(sub_result_1, sub_result_1); | 
|  | src2_16x16 = _mm256_madd_epi16(sub_result_2, sub_result_2); | 
|  | src3_16x16 = _mm256_madd_epi16(sub_result_3, sub_result_3); | 
|  |  | 
|  | // accumulation of result | 
|  | src0_16x16 = _mm256_add_epi32(src0_16x16, src1_16x16); | 
|  | src2_16x16 = _mm256_add_epi32(src2_16x16, src3_16x16); | 
|  | const __m256i square_result_0 = _mm256_add_epi32(src0_16x16, src2_16x16); | 
|  | square_result = _mm256_add_epi32(square_result, square_result_0); | 
|  | src_temp += 16; | 
|  | } | 
|  |  | 
|  | // s5 s4 s1 s0  - 64bit | 
|  | res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros); | 
|  | // s7  s6  s3  s2 - 64bit | 
|  | res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros); | 
|  | // r3 r2 r1 r0 - 64bit | 
|  | res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64); | 
|  | // r1+r3 r2+r0 - 64bit | 
|  | const __m128i sum_1x64 = | 
|  | _mm_add_epi64(_mm256_castsi256_si128(res0_4x64), | 
|  | _mm256_extracti128_si256(res0_4x64, 1)); | 
|  | xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8))); | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | uint64_t aom_mse_8xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src, | 
|  | int sstride, int h) { | 
|  | uint64_t sum = 0; | 
|  | __m128i dst0_8x8, dst1_8x8, dst3_16x8; | 
|  | __m256i src0_8x16, src1_8x16, src_16x16, dst_16x16; | 
|  | __m256i res0_4x64, res1_4x64; | 
|  | __m256i sub_result; | 
|  | const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128()); | 
|  | __m256i square_result = _mm256_broadcastsi128_si256(_mm_setzero_si128()); | 
|  |  | 
|  | for (int i = 0; i < h; i += 2) { | 
|  | dst0_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 0) * dstride])); | 
|  | dst1_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 1) * dstride])); | 
|  | dst3_16x8 = _mm_unpacklo_epi64(dst0_8x8, dst1_8x8); | 
|  | dst_16x16 = _mm256_cvtepu8_epi16(dst3_16x8); | 
|  |  | 
|  | src0_8x16 = | 
|  | _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)&src[i * sstride])); | 
|  | src1_8x16 = _mm256_castsi128_si256( | 
|  | _mm_loadu_si128((__m128i *)&src[(i + 1) * sstride])); | 
|  | src_16x16 = _mm256_permute2x128_si256(src0_8x16, src1_8x16, 0x20); | 
|  |  | 
|  | // r15 r14 r13 - - - r1 r0 - 16 bit | 
|  | sub_result = _mm256_abs_epi16(_mm256_sub_epi16(src_16x16, dst_16x16)); | 
|  |  | 
|  | // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit | 
|  | src_16x16 = _mm256_madd_epi16(sub_result, sub_result); | 
|  |  | 
|  | // accumulation of result | 
|  | square_result = _mm256_add_epi32(square_result, src_16x16); | 
|  | } | 
|  |  | 
|  | // s5 s4 s1 s0  - 64bit | 
|  | res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros); | 
|  | // s7 s6 s3 s2 - 64bit | 
|  | res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros); | 
|  | // r3 r2 r1 r0 - 64bit | 
|  | res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64); | 
|  | // r1+r3 r2+r0 - 64bit | 
|  | const __m128i sum_1x64 = | 
|  | _mm_add_epi64(_mm256_castsi256_si128(res0_4x64), | 
|  | _mm256_extracti128_si256(res0_4x64, 1)); | 
|  | xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8))); | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | // Compute mse of two consecutive 8x8 blocks. | 
|  | // In src buffer, each 8x8 block in a 64x64 filter block is stored sequentially. | 
|  | // Hence src_blk_stride is same as block width. Whereas dst buffer is a frame | 
|  | // buffer, thus dstride is a frame level stride. | 
|  | uint64_t aom_mse_8xh_dual_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src, | 
|  | int src_blk_stride, int h) { | 
|  | uint64_t sum = 0; | 
|  | __m128i dst0_16x8, dst1_16x8; | 
|  | __m256i dst0_16x16, dst1_16x16; | 
|  | __m256i res0_4x64, res1_4x64; | 
|  | __m256i sub_result_0, sub_result_1; | 
|  | const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128()); | 
|  | __m256i square_result = zeros; | 
|  | uint16_t *src_temp = src; | 
|  |  | 
|  | for (int i = 0; i < h; i += 2) { | 
|  | dst0_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 0) * dstride])); | 
|  | dst1_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 1) * dstride])); | 
|  |  | 
|  | // row0 of 1st and 2nd 8x8 block - d00 d10 | 
|  | dst0_16x16 = _mm256_cvtepu8_epi16(dst0_16x8); | 
|  | // row1 of 1st and 2nd 8x8 block - d01 d11 | 
|  | dst1_16x16 = _mm256_cvtepu8_epi16(dst1_16x8); | 
|  |  | 
|  | // 2 rows of 1st 8x8 block - r00 r01 | 
|  | __m256i src0_16x16 = _mm256_loadu_si256((__m256i const *)(&src_temp[0])); | 
|  | // 2 rows of 2nd 8x8 block - r10 r11 | 
|  | __m256i src1_16x16 = | 
|  | _mm256_loadu_si256((__m256i const *)(&src_temp[src_blk_stride])); | 
|  | // r00 r10 - 128bit | 
|  | __m256i tmp0_16x16 = | 
|  | _mm256_permute2f128_si256(src0_16x16, src1_16x16, 0x20); | 
|  | // r01 r11 - 128bit | 
|  | __m256i tmp1_16x16 = | 
|  | _mm256_permute2f128_si256(src0_16x16, src1_16x16, 0x31); | 
|  |  | 
|  | // r15 r14 r13------------r1 r0 - 16 bit | 
|  | sub_result_0 = _mm256_abs_epi16(_mm256_sub_epi16(tmp0_16x16, dst0_16x16)); | 
|  | sub_result_1 = _mm256_abs_epi16(_mm256_sub_epi16(tmp1_16x16, dst1_16x16)); | 
|  |  | 
|  | // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit each | 
|  | src0_16x16 = _mm256_madd_epi16(sub_result_0, sub_result_0); | 
|  | src1_16x16 = _mm256_madd_epi16(sub_result_1, sub_result_1); | 
|  |  | 
|  | // accumulation of result | 
|  | src0_16x16 = _mm256_add_epi32(src0_16x16, src1_16x16); | 
|  | square_result = _mm256_add_epi32(square_result, src0_16x16); | 
|  | src_temp += 16; | 
|  | } | 
|  |  | 
|  | // s5 s4 s1 s0  - 64bit | 
|  | res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros); | 
|  | // s7 s6 s3 s2 - 64bit | 
|  | res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros); | 
|  | // r3 r2 r1 r0 - 64bit | 
|  | res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64); | 
|  | // r1+r3 r2+r0 - 64bit | 
|  | const __m128i sum_1x64 = | 
|  | _mm_add_epi64(_mm256_castsi256_si128(res0_4x64), | 
|  | _mm256_extracti128_si256(res0_4x64, 1)); | 
|  | xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8))); | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | uint64_t aom_mse_wxh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src, | 
|  | int sstride, int w, int h) { | 
|  | assert((w == 8 || w == 4) && (h == 8 || h == 4) && | 
|  | "w=8/4 and h=8/4 must be satisfied"); | 
|  | switch (w) { | 
|  | case 4: return aom_mse_4xh_16bit_avx2(dst, dstride, src, sstride, h); | 
|  | case 8: return aom_mse_8xh_16bit_avx2(dst, dstride, src, sstride, h); | 
|  | default: assert(0 && "unsupported width"); return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Computes mse of two 8x8 or four 4x4 consecutive blocks. Luma plane uses 8x8 | 
|  | // block and Chroma uses 4x4 block. In src buffer, each block in a filter block | 
|  | // is stored sequentially. Hence src_blk_stride is same as block width. Whereas | 
|  | // dst buffer is a frame buffer, thus dstride is a frame level stride. | 
|  | uint64_t aom_mse_16xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src, | 
|  | int w, int h) { | 
|  | assert((w == 8 || w == 4) && (h == 8 || h == 4) && | 
|  | "w=8/4 and h=8/4 must be satisfied"); | 
|  | switch (w) { | 
|  | case 4: return aom_mse_4xh_quad_16bit_avx2(dst, dstride, src, w * h, h); | 
|  | case 8: return aom_mse_8xh_dual_16bit_avx2(dst, dstride, src, w * h, h); | 
|  | default: assert(0 && "unsupported width"); return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void calc_sum_sse_wd32_avx2(const uint8_t *src, | 
|  | const uint8_t *ref, | 
|  | __m256i set_one_minusone, | 
|  | __m256i sse_8x16[2], | 
|  | __m256i sum_8x16[2]) { | 
|  | const __m256i s00_256 = _mm256_loadu_si256((__m256i const *)(src)); | 
|  | const __m256i r00_256 = _mm256_loadu_si256((__m256i const *)(ref)); | 
|  |  | 
|  | const __m256i u_low_256 = _mm256_unpacklo_epi8(s00_256, r00_256); | 
|  | const __m256i u_high_256 = _mm256_unpackhi_epi8(s00_256, r00_256); | 
|  |  | 
|  | const __m256i diff0 = _mm256_maddubs_epi16(u_low_256, set_one_minusone); | 
|  | const __m256i diff1 = _mm256_maddubs_epi16(u_high_256, set_one_minusone); | 
|  |  | 
|  | sse_8x16[0] = _mm256_add_epi32(sse_8x16[0], _mm256_madd_epi16(diff0, diff0)); | 
|  | sse_8x16[1] = _mm256_add_epi32(sse_8x16[1], _mm256_madd_epi16(diff1, diff1)); | 
|  | sum_8x16[0] = _mm256_add_epi16(sum_8x16[0], diff0); | 
|  | sum_8x16[1] = _mm256_add_epi16(sum_8x16[1], diff1); | 
|  | } | 
|  |  | 
|  | static INLINE __m256i calc_sum_sse_order(__m256i *sse_hx16, __m256i *sum_hx16, | 
|  | unsigned int *tot_sse, int *tot_sum) { | 
|  | // s00 s01 s10 s11 s20 s21 s30 s31 | 
|  | const __m256i sse_results = _mm256_hadd_epi32(sse_hx16[0], sse_hx16[1]); | 
|  | // d00 d01 d02 d03 | d10 d11 d12 d13 | d20 d21 d22 d23 | d30 d31 d32 d33 | 
|  | const __m256i sum_result_r0 = _mm256_hadd_epi16(sum_hx16[0], sum_hx16[1]); | 
|  | // d00 d01 d10 d11 | d00 d02 d10 d11 | d20 d21 d30 d31 | d20 d21 d30 d31 | 
|  | const __m256i sum_result_1 = _mm256_hadd_epi16(sum_result_r0, sum_result_r0); | 
|  | // d00 d01 d10 d11 d20 d21 d30 d31 | X | 
|  | const __m256i sum_result_3 = _mm256_permute4x64_epi64(sum_result_1, 0x08); | 
|  | // d00 d01 d10 d11 d20 d21 d30 d31 | 
|  | const __m256i sum_results = | 
|  | _mm256_cvtepi16_epi32(_mm256_castsi256_si128(sum_result_3)); | 
|  |  | 
|  | // Add sum & sse registers appropriately to get total sum & sse separately. | 
|  | // s0 s1 d0 d1 s2 s3 d2 d3 | 
|  | const __m256i sum_sse_add = _mm256_hadd_epi32(sse_results, sum_results); | 
|  | // s0 s1 s2 s3 d0 d1 d2 d3 | 
|  | const __m256i sum_sse_order_add = _mm256_permute4x64_epi64(sum_sse_add, 0xd8); | 
|  | // s0+s1 s2+s3 s0+s1 s2+s3 d0+d1 d2+d3 d0+d1 d2+d3 | 
|  | const __m256i sum_sse_order_add_1 = | 
|  | _mm256_hadd_epi32(sum_sse_order_add, sum_sse_order_add); | 
|  | // s0 x x x | d0 x x x | 
|  | const __m256i sum_sse_order_add_final = | 
|  | _mm256_hadd_epi32(sum_sse_order_add_1, sum_sse_order_add_1); | 
|  | // s0 | 
|  | const uint32_t first_value = | 
|  | (uint32_t)_mm256_extract_epi32(sum_sse_order_add_final, 0); | 
|  | *tot_sse += first_value; | 
|  | // d0 | 
|  | const int second_value = _mm256_extract_epi32(sum_sse_order_add_final, 4); | 
|  | *tot_sum += second_value; | 
|  | return sum_sse_order_add; | 
|  | } | 
|  |  | 
|  | static INLINE void get_var_sse_sum_8x8_quad_avx2( | 
|  | const uint8_t *src, int src_stride, const uint8_t *ref, | 
|  | const int ref_stride, const int h, uint32_t *sse8x8, int *sum8x8, | 
|  | unsigned int *tot_sse, int *tot_sum, uint32_t *var8x8) { | 
|  | assert(h <= 128);  // May overflow for larger height. | 
|  | __m256i sse_8x16[2], sum_8x16[2]; | 
|  | sum_8x16[0] = _mm256_setzero_si256(); | 
|  | sse_8x16[0] = _mm256_setzero_si256(); | 
|  | sum_8x16[1] = sum_8x16[0]; | 
|  | sse_8x16[1] = sse_8x16[0]; | 
|  | const __m256i set_one_minusone = _mm256_set1_epi16((short)0xff01); | 
|  |  | 
|  | for (int i = 0; i < h; i++) { | 
|  | // Process 8x32 block of one row. | 
|  | calc_sum_sse_wd32_avx2(src, ref, set_one_minusone, sse_8x16, sum_8x16); | 
|  | src += src_stride; | 
|  | ref += ref_stride; | 
|  | } | 
|  |  | 
|  | const __m256i sum_sse_order_add = | 
|  | calc_sum_sse_order(sse_8x16, sum_8x16, tot_sse, tot_sum); | 
|  |  | 
|  | // s0 s1 s2 s3 | 
|  | _mm_storeu_si128((__m128i *)sse8x8, | 
|  | _mm256_castsi256_si128(sum_sse_order_add)); | 
|  | // d0 d1 d2 d3 | 
|  | const __m128i sum_temp8x8 = _mm256_extractf128_si256(sum_sse_order_add, 1); | 
|  | _mm_storeu_si128((__m128i *)sum8x8, sum_temp8x8); | 
|  |  | 
|  | // (d0xd0 >> 6)=f0 (d1xd1 >> 6)=f1 (d2xd2 >> 6)=f2 (d3xd3 >> 6)=f3 | 
|  | const __m128i mull_results = | 
|  | _mm_srli_epi32(_mm_mullo_epi32(sum_temp8x8, sum_temp8x8), 6); | 
|  | // s0-f0=v0 s1-f1=v1 s2-f2=v2 s3-f3=v3 | 
|  | const __m128i variance_8x8 = | 
|  | _mm_sub_epi32(_mm256_castsi256_si128(sum_sse_order_add), mull_results); | 
|  | // v0 v1 v2 v3 | 
|  | _mm_storeu_si128((__m128i *)var8x8, variance_8x8); | 
|  | } | 
|  |  | 
|  | static INLINE void get_var_sse_sum_16x16_dual_avx2( | 
|  | const uint8_t *src, int src_stride, const uint8_t *ref, | 
|  | const int ref_stride, const int h, uint32_t *sse16x16, | 
|  | unsigned int *tot_sse, int *tot_sum, uint32_t *var16x16) { | 
|  | assert(h <= 128);  // May overflow for larger height. | 
|  | __m256i sse_16x16[2], sum_16x16[2]; | 
|  | sum_16x16[0] = _mm256_setzero_si256(); | 
|  | sse_16x16[0] = _mm256_setzero_si256(); | 
|  | sum_16x16[1] = sum_16x16[0]; | 
|  | sse_16x16[1] = sse_16x16[0]; | 
|  | const __m256i set_one_minusone = _mm256_set1_epi16((short)0xff01); | 
|  |  | 
|  | for (int i = 0; i < h; i++) { | 
|  | // Process 16x32 block of one row. | 
|  | calc_sum_sse_wd32_avx2(src, ref, set_one_minusone, sse_16x16, sum_16x16); | 
|  | src += src_stride; | 
|  | ref += ref_stride; | 
|  | } | 
|  |  | 
|  | const __m256i sum_sse_order_add = | 
|  | calc_sum_sse_order(sse_16x16, sum_16x16, tot_sse, tot_sum); | 
|  |  | 
|  | const __m256i sum_sse_order_add_1 = | 
|  | _mm256_hadd_epi32(sum_sse_order_add, sum_sse_order_add); | 
|  |  | 
|  | // s0+s1 s2+s3 x x | 
|  | _mm_storel_epi64((__m128i *)sse16x16, | 
|  | _mm256_castsi256_si128(sum_sse_order_add_1)); | 
|  |  | 
|  | // d0+d1 d2+d3 x x | 
|  | const __m128i sum_temp16x16 = | 
|  | _mm256_extractf128_si256(sum_sse_order_add_1, 1); | 
|  |  | 
|  | // (d0xd0 >> 6)=f0 (d1xd1 >> 6)=f1 (d2xd2 >> 6)=f2 (d3xd3 >> 6)=f3 | 
|  | const __m128i mull_results = | 
|  | _mm_srli_epi32(_mm_mullo_epi32(sum_temp16x16, sum_temp16x16), 8); | 
|  |  | 
|  | // s0-f0=v0 s1-f1=v1 s2-f2=v2 s3-f3=v3 | 
|  | const __m128i variance_16x16 = | 
|  | _mm_sub_epi32(_mm256_castsi256_si128(sum_sse_order_add_1), mull_results); | 
|  |  | 
|  | // v0 v1 v2 v3 | 
|  | _mm_storel_epi64((__m128i *)var16x16, variance_16x16); | 
|  | } | 
|  |  | 
|  | void aom_get_var_sse_sum_8x8_quad_avx2(const uint8_t *src_ptr, | 
|  | int source_stride, | 
|  | const uint8_t *ref_ptr, int ref_stride, | 
|  | uint32_t *sse8x8, int *sum8x8, | 
|  | unsigned int *tot_sse, int *tot_sum, | 
|  | uint32_t *var8x8) { | 
|  | get_var_sse_sum_8x8_quad_avx2(src_ptr, source_stride, ref_ptr, ref_stride, 8, | 
|  | sse8x8, sum8x8, tot_sse, tot_sum, var8x8); | 
|  | } | 
|  |  | 
|  | void aom_get_var_sse_sum_16x16_dual_avx2(const uint8_t *src_ptr, | 
|  | int source_stride, | 
|  | const uint8_t *ref_ptr, int ref_stride, | 
|  | uint32_t *sse16x16, | 
|  | unsigned int *tot_sse, int *tot_sum, | 
|  | uint32_t *var16x16) { | 
|  | get_var_sse_sum_16x16_dual_avx2(src_ptr, source_stride, ref_ptr, ref_stride, | 
|  | 16, sse16x16, tot_sse, tot_sum, var16x16); | 
|  | } |