|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <memory.h> | 
|  | #include <math.h> | 
|  | #include <time.h> | 
|  | #include <stdio.h> | 
|  | #include <stdbool.h> | 
|  | #include <string.h> | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "aom_dsp/flow_estimation/ransac.h" | 
|  | #include "aom_dsp/mathutils.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  |  | 
|  | // TODO(rachelbarker): Remove dependence on code in av1/encoder/ | 
|  | #include "av1/encoder/random.h" | 
|  |  | 
|  | #define MAX_MINPTS 4 | 
|  | #define MINPTS_MULTIPLIER 5 | 
|  |  | 
|  | #define INLIER_THRESHOLD 1.25 | 
|  | #define INLIER_THRESHOLD_SQUARED (INLIER_THRESHOLD * INLIER_THRESHOLD) | 
|  |  | 
|  | // Number of initial models to generate | 
|  | #define NUM_TRIALS 20 | 
|  |  | 
|  | // Number of times to refine the best model found | 
|  | #define NUM_REFINES 5 | 
|  |  | 
|  | // Flag to enable functions for finding TRANSLATION type models. | 
|  | // | 
|  | // These modes are not considered currently due to a spec bug (see comments | 
|  | // in gm_get_motion_vector() in av1/common/mv.h). Thus we don't need to compile | 
|  | // the corresponding search functions, but it is nice to keep the source around | 
|  | // but disabled, for completeness. | 
|  | #define ALLOW_TRANSLATION_MODELS 0 | 
|  |  | 
|  | typedef struct { | 
|  | int num_inliers; | 
|  | double sse;  // Sum of squared errors of inliers | 
|  | int *inlier_indices; | 
|  | } RANSAC_MOTION; | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // ransac | 
|  | typedef bool (*FindTransformationFunc)(const Correspondence *points, | 
|  | const int *indices, int num_indices, | 
|  | double *params); | 
|  | typedef void (*ScoreModelFunc)(const double *mat, const Correspondence *points, | 
|  | int num_points, RANSAC_MOTION *model); | 
|  |  | 
|  | // vtable-like structure which stores all of the information needed by RANSAC | 
|  | // for a particular model type | 
|  | typedef struct { | 
|  | FindTransformationFunc find_transformation; | 
|  | ScoreModelFunc score_model; | 
|  |  | 
|  | // The minimum number of points which can be passed to find_transformation | 
|  | // to generate a model. | 
|  | // | 
|  | // This should be set as small as possible. This is due to an observation | 
|  | // from section 4 of "Optimal Ransac" by A. Hast, J. Nysjö and | 
|  | // A. Marchetti (https://dspace5.zcu.cz/bitstream/11025/6869/1/Hast.pdf): | 
|  | // using the minimum possible number of points in the initial model maximizes | 
|  | // the chance that all of the selected points are inliers. | 
|  | // | 
|  | // That paper proposes a method which can deal with models which are | 
|  | // contaminated by outliers, which helps in cases where the inlier fraction | 
|  | // is low. However, for our purposes, global motion only gives significant | 
|  | // gains when the inlier fraction is high. | 
|  | // | 
|  | // So we do not use the method from this paper, but we do find that | 
|  | // minimizing the number of points used for initial model fitting helps | 
|  | // make the best use of the limited number of models we consider. | 
|  | int minpts; | 
|  | } RansacModelInfo; | 
|  |  | 
|  | #if ALLOW_TRANSLATION_MODELS | 
|  | static void score_translation(const double *mat, const Correspondence *points, | 
|  | int num_points, RANSAC_MOTION *model) { | 
|  | model->num_inliers = 0; | 
|  | model->sse = 0.0; | 
|  |  | 
|  | for (int i = 0; i < num_points; ++i) { | 
|  | const double x1 = points[i].x; | 
|  | const double y1 = points[i].y; | 
|  | const double x2 = points[i].rx; | 
|  | const double y2 = points[i].ry; | 
|  |  | 
|  | const double proj_x = x1 + mat[0]; | 
|  | const double proj_y = y1 + mat[1]; | 
|  |  | 
|  | const double dx = proj_x - x2; | 
|  | const double dy = proj_y - y2; | 
|  | const double sse = dx * dx + dy * dy; | 
|  |  | 
|  | if (sse < INLIER_THRESHOLD_SQUARED) { | 
|  | model->inlier_indices[model->num_inliers++] = i; | 
|  | model->sse += sse; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // ALLOW_TRANSLATION_MODELS | 
|  |  | 
|  | static void score_affine(const double *mat, const Correspondence *points, | 
|  | int num_points, RANSAC_MOTION *model) { | 
|  | model->num_inliers = 0; | 
|  | model->sse = 0.0; | 
|  |  | 
|  | for (int i = 0; i < num_points; ++i) { | 
|  | const double x1 = points[i].x; | 
|  | const double y1 = points[i].y; | 
|  | const double x2 = points[i].rx; | 
|  | const double y2 = points[i].ry; | 
|  |  | 
|  | const double proj_x = mat[2] * x1 + mat[3] * y1 + mat[0]; | 
|  | const double proj_y = mat[4] * x1 + mat[5] * y1 + mat[1]; | 
|  |  | 
|  | const double dx = proj_x - x2; | 
|  | const double dy = proj_y - y2; | 
|  | const double sse = dx * dx + dy * dy; | 
|  |  | 
|  | if (sse < INLIER_THRESHOLD_SQUARED) { | 
|  | model->inlier_indices[model->num_inliers++] = i; | 
|  | model->sse += sse; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if ALLOW_TRANSLATION_MODELS | 
|  | static bool find_translation(const Correspondence *points, const int *indices, | 
|  | int num_indices, double *params) { | 
|  | double sumx = 0; | 
|  | double sumy = 0; | 
|  |  | 
|  | for (int i = 0; i < num_indices; ++i) { | 
|  | int index = indices[i]; | 
|  | const double sx = points[index].x; | 
|  | const double sy = points[index].y; | 
|  | const double dx = points[index].rx; | 
|  | const double dy = points[index].ry; | 
|  |  | 
|  | sumx += dx - sx; | 
|  | sumy += dy - sy; | 
|  | } | 
|  |  | 
|  | params[0] = sumx / np; | 
|  | params[1] = sumy / np; | 
|  | params[2] = 1; | 
|  | params[3] = 0; | 
|  | params[4] = 0; | 
|  | params[5] = 1; | 
|  | return true; | 
|  | } | 
|  | #endif  // ALLOW_TRANSLATION_MODELS | 
|  |  | 
|  | static bool find_rotzoom(const Correspondence *points, const int *indices, | 
|  | int num_indices, double *params) { | 
|  | const int n = 4;    // Size of least-squares problem | 
|  | double mat[4 * 4];  // Accumulator for A'A | 
|  | double y[4];        // Accumulator for A'b | 
|  | double a[4];        // Single row of A | 
|  | double b;           // Single element of b | 
|  |  | 
|  | least_squares_init(mat, y, n); | 
|  | for (int i = 0; i < num_indices; ++i) { | 
|  | int index = indices[i]; | 
|  | const double sx = points[index].x; | 
|  | const double sy = points[index].y; | 
|  | const double dx = points[index].rx; | 
|  | const double dy = points[index].ry; | 
|  |  | 
|  | a[0] = 1; | 
|  | a[1] = 0; | 
|  | a[2] = sx; | 
|  | a[3] = sy; | 
|  | b = dx; | 
|  | least_squares_accumulate(mat, y, a, b, n); | 
|  |  | 
|  | a[0] = 0; | 
|  | a[1] = 1; | 
|  | a[2] = sy; | 
|  | a[3] = -sx; | 
|  | b = dy; | 
|  | least_squares_accumulate(mat, y, a, b, n); | 
|  | } | 
|  |  | 
|  | // Fill in params[0] .. params[3] with output model | 
|  | if (!least_squares_solve(mat, y, params, n)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Fill in remaining parameters | 
|  | params[4] = -params[3]; | 
|  | params[5] = params[2]; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool find_affine(const Correspondence *points, const int *indices, | 
|  | int num_indices, double *params) { | 
|  | // Note: The least squares problem for affine models is 6-dimensional, | 
|  | // but it splits into two independent 3-dimensional subproblems. | 
|  | // Solving these two subproblems separately and recombining at the end | 
|  | // results in less total computation than solving the 6-dimensional | 
|  | // problem directly. | 
|  | // | 
|  | // The two subproblems correspond to all the parameters which contribute | 
|  | // to the x output of the model, and all the parameters which contribute | 
|  | // to the y output, respectively. | 
|  |  | 
|  | const int n = 3;       // Size of each least-squares problem | 
|  | double mat[2][3 * 3];  // Accumulator for A'A | 
|  | double y[2][3];        // Accumulator for A'b | 
|  | double x[2][3];        // Output vector | 
|  | double a[2][3];        // Single row of A | 
|  | double b[2];           // Single element of b | 
|  |  | 
|  | least_squares_init(mat[0], y[0], n); | 
|  | least_squares_init(mat[1], y[1], n); | 
|  | for (int i = 0; i < num_indices; ++i) { | 
|  | int index = indices[i]; | 
|  | const double sx = points[index].x; | 
|  | const double sy = points[index].y; | 
|  | const double dx = points[index].rx; | 
|  | const double dy = points[index].ry; | 
|  |  | 
|  | a[0][0] = 1; | 
|  | a[0][1] = sx; | 
|  | a[0][2] = sy; | 
|  | b[0] = dx; | 
|  | least_squares_accumulate(mat[0], y[0], a[0], b[0], n); | 
|  |  | 
|  | a[1][0] = 1; | 
|  | a[1][1] = sx; | 
|  | a[1][2] = sy; | 
|  | b[1] = dy; | 
|  | least_squares_accumulate(mat[1], y[1], a[1], b[1], n); | 
|  | } | 
|  |  | 
|  | if (!least_squares_solve(mat[0], y[0], x[0], n)) { | 
|  | return false; | 
|  | } | 
|  | if (!least_squares_solve(mat[1], y[1], x[1], n)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Rearrange least squares result to form output model | 
|  | params[0] = x[0][0]; | 
|  | params[1] = x[1][0]; | 
|  | params[2] = x[0][1]; | 
|  | params[3] = x[0][2]; | 
|  | params[4] = x[1][1]; | 
|  | params[5] = x[1][2]; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise. | 
|  | static int compare_motions(const void *arg_a, const void *arg_b) { | 
|  | const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a; | 
|  | const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b; | 
|  |  | 
|  | if (motion_a->num_inliers > motion_b->num_inliers) return -1; | 
|  | if (motion_a->num_inliers < motion_b->num_inliers) return 1; | 
|  | if (motion_a->sse < motion_b->sse) return -1; | 
|  | if (motion_a->sse > motion_b->sse) return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_better_motion(const RANSAC_MOTION *motion_a, | 
|  | const RANSAC_MOTION *motion_b) { | 
|  | return compare_motions(motion_a, motion_b) < 0; | 
|  | } | 
|  |  | 
|  | // Returns true on success, false on error | 
|  | static bool ransac_internal(const Correspondence *matched_points, int npoints, | 
|  | MotionModel *motion_models, int num_desired_motions, | 
|  | const RansacModelInfo *model_info, | 
|  | bool *mem_alloc_failed) { | 
|  | assert(npoints >= 0); | 
|  | int i = 0; | 
|  | int minpts = model_info->minpts; | 
|  | bool ret_val = true; | 
|  |  | 
|  | unsigned int seed = (unsigned int)npoints; | 
|  |  | 
|  | int indices[MAX_MINPTS] = { 0 }; | 
|  |  | 
|  | // Store information for the num_desired_motions best transformations found | 
|  | // and the worst motion among them, as well as the motion currently under | 
|  | // consideration. | 
|  | RANSAC_MOTION *motions, *worst_kept_motion = NULL; | 
|  | RANSAC_MOTION current_motion; | 
|  |  | 
|  | // Store the parameters and the indices of the inlier points for the motion | 
|  | // currently under consideration. | 
|  | double params_this_motion[MAX_PARAMDIM]; | 
|  |  | 
|  | // Initialize output models, as a fallback in case we can't find a model | 
|  | for (i = 0; i < num_desired_motions; i++) { | 
|  | memcpy(motion_models[i].params, kIdentityParams, | 
|  | MAX_PARAMDIM * sizeof(*(motion_models[i].params))); | 
|  | motion_models[i].num_inliers = 0; | 
|  | } | 
|  |  | 
|  | if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int min_inliers = AOMMAX((int)(MIN_INLIER_PROB * npoints), minpts); | 
|  |  | 
|  | motions = | 
|  | (RANSAC_MOTION *)aom_calloc(num_desired_motions, sizeof(RANSAC_MOTION)); | 
|  |  | 
|  | // Allocate one large buffer which will be carved up to store the inlier | 
|  | // indices for the current motion plus the num_desired_motions many | 
|  | // output models | 
|  | // This allows us to keep the allocation/deallocation logic simple, without | 
|  | // having to (for example) check that `motions` is non-null before allocating | 
|  | // the inlier arrays | 
|  | int *inlier_buffer = (int *)aom_malloc(sizeof(*inlier_buffer) * npoints * | 
|  | (num_desired_motions + 1)); | 
|  |  | 
|  | if (!(motions && inlier_buffer)) { | 
|  | ret_val = false; | 
|  | *mem_alloc_failed = true; | 
|  | goto finish_ransac; | 
|  | } | 
|  |  | 
|  | // Once all our allocations are known-good, we can fill in our structures | 
|  | worst_kept_motion = motions; | 
|  |  | 
|  | for (i = 0; i < num_desired_motions; ++i) { | 
|  | motions[i].inlier_indices = inlier_buffer + i * npoints; | 
|  | } | 
|  | memset(¤t_motion, 0, sizeof(current_motion)); | 
|  | current_motion.inlier_indices = inlier_buffer + num_desired_motions * npoints; | 
|  |  | 
|  | for (int trial_count = 0; trial_count < NUM_TRIALS; trial_count++) { | 
|  | lcg_pick(npoints, minpts, indices, &seed); | 
|  |  | 
|  | if (!model_info->find_transformation(matched_points, indices, minpts, | 
|  | params_this_motion)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | model_info->score_model(params_this_motion, matched_points, npoints, | 
|  | ¤t_motion); | 
|  |  | 
|  | if (current_motion.num_inliers < min_inliers) { | 
|  | // Reject models with too few inliers | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (is_better_motion(¤t_motion, worst_kept_motion)) { | 
|  | // This motion is better than the worst currently kept motion. Remember | 
|  | // the inlier points and sse. The parameters for each kept motion | 
|  | // will be recomputed later using only the inliers. | 
|  | worst_kept_motion->num_inliers = current_motion.num_inliers; | 
|  | worst_kept_motion->sse = current_motion.sse; | 
|  |  | 
|  | // Rather than copying the (potentially many) inlier indices from | 
|  | // current_motion.inlier_indices to worst_kept_motion->inlier_indices, | 
|  | // we can swap the underlying pointers. | 
|  | // | 
|  | // This is okay because the next time current_motion.inlier_indices | 
|  | // is used will be in the next trial, where we ignore its previous | 
|  | // contents anyway. And both arrays will be deallocated together at the | 
|  | // end of this function, so there are no lifetime issues. | 
|  | int *tmp = worst_kept_motion->inlier_indices; | 
|  | worst_kept_motion->inlier_indices = current_motion.inlier_indices; | 
|  | current_motion.inlier_indices = tmp; | 
|  |  | 
|  | // Determine the new worst kept motion and its num_inliers and sse. | 
|  | for (i = 0; i < num_desired_motions; ++i) { | 
|  | if (is_better_motion(worst_kept_motion, &motions[i])) { | 
|  | worst_kept_motion = &motions[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sort the motions, best first. | 
|  | qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions); | 
|  |  | 
|  | // Refine each of the best N models using iterative estimation. | 
|  | // | 
|  | // The idea here is loosely based on the iterative method from | 
|  | // "Locally Optimized RANSAC" by O. Chum, J. Matas and Josef Kittler: | 
|  | // https://cmp.felk.cvut.cz/ftp/articles/matas/chum-dagm03.pdf | 
|  | // | 
|  | // However, we implement a simpler version than their proposal, and simply | 
|  | // refit the model repeatedly until the number of inliers stops increasing, | 
|  | // with a cap on the number of iterations to defend against edge cases which | 
|  | // only improve very slowly. | 
|  | for (i = 0; i < num_desired_motions; ++i) { | 
|  | if (motions[i].num_inliers <= 0) { | 
|  | // Output model has already been initialized to the identity model, | 
|  | // so just skip setup | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bool bad_model = false; | 
|  | for (int refine_count = 0; refine_count < NUM_REFINES; refine_count++) { | 
|  | int num_inliers = motions[i].num_inliers; | 
|  | assert(num_inliers >= min_inliers); | 
|  |  | 
|  | if (!model_info->find_transformation(matched_points, | 
|  | motions[i].inlier_indices, | 
|  | num_inliers, params_this_motion)) { | 
|  | // In the unlikely event that this model fitting fails, we don't have a | 
|  | // good fallback. So leave this model set to the identity model | 
|  | bad_model = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Score the newly generated model | 
|  | model_info->score_model(params_this_motion, matched_points, npoints, | 
|  | ¤t_motion); | 
|  |  | 
|  | // At this point, there are three possibilities: | 
|  | // 1) If we found more inliers, keep refining. | 
|  | // 2) If we found the same number of inliers but a lower SSE, we want to | 
|  | //    keep the new model, but further refinement is unlikely to gain much. | 
|  | //    So commit to this new model | 
|  | // 3) It is possible, but very unlikely, that the new model will have | 
|  | //    fewer inliers. If it does happen, we probably just lost a few | 
|  | //    borderline inliers. So treat the same as case (2). | 
|  | if (current_motion.num_inliers > motions[i].num_inliers) { | 
|  | motions[i].num_inliers = current_motion.num_inliers; | 
|  | motions[i].sse = current_motion.sse; | 
|  | int *tmp = motions[i].inlier_indices; | 
|  | motions[i].inlier_indices = current_motion.inlier_indices; | 
|  | current_motion.inlier_indices = tmp; | 
|  | } else { | 
|  | // Refined model is no better, so stop | 
|  | // This shouldn't be significantly worse than the previous model, | 
|  | // so it's fine to use the parameters in params_this_motion. | 
|  | // This saves us from having to cache the previous iteration's params. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bad_model) continue; | 
|  |  | 
|  | // Fill in output struct | 
|  | memcpy(motion_models[i].params, params_this_motion, | 
|  | MAX_PARAMDIM * sizeof(*motion_models[i].params)); | 
|  | for (int j = 0; j < motions[i].num_inliers; j++) { | 
|  | int index = motions[i].inlier_indices[j]; | 
|  | const Correspondence *corr = &matched_points[index]; | 
|  | motion_models[i].inliers[2 * j + 0] = (int)rint(corr->x); | 
|  | motion_models[i].inliers[2 * j + 1] = (int)rint(corr->y); | 
|  | } | 
|  | motion_models[i].num_inliers = motions[i].num_inliers; | 
|  | } | 
|  |  | 
|  | finish_ransac: | 
|  | aom_free(inlier_buffer); | 
|  | aom_free(motions); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static const RansacModelInfo ransac_model_info[TRANS_TYPES] = { | 
|  | // IDENTITY | 
|  | { NULL, NULL, 0 }, | 
|  | // TRANSLATION | 
|  | #if ALLOW_TRANSLATION_MODELS | 
|  | { find_translation, score_translation, 1 }, | 
|  | #else | 
|  | { NULL, NULL, 0 }, | 
|  | #endif | 
|  | // ROTZOOM | 
|  | { find_rotzoom, score_affine, 2 }, | 
|  | // AFFINE | 
|  | { find_affine, score_affine, 3 }, | 
|  | }; | 
|  |  | 
|  | // Returns true on success, false on error | 
|  | bool ransac(const Correspondence *matched_points, int npoints, | 
|  | TransformationType type, MotionModel *motion_models, | 
|  | int num_desired_motions, bool *mem_alloc_failed) { | 
|  | #if ALLOW_TRANSLATION_MODELS | 
|  | assert(type > IDENTITY && type < TRANS_TYPES); | 
|  | #else | 
|  | assert(type > TRANSLATION && type < TRANS_TYPES); | 
|  | #endif  // ALLOW_TRANSLATION_MODELS | 
|  |  | 
|  | return ransac_internal(matched_points, npoints, motion_models, | 
|  | num_desired_motions, &ransac_model_info[type], | 
|  | mem_alloc_failed); | 
|  | } |