|  | /* | 
|  | *  Copyright (c) 2012 The WebM project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "third_party/googletest/src/include/gtest/gtest.h" | 
|  | #include "test/acm_random.h" | 
|  | #include "test/clear_system_state.h" | 
|  | #include "test/register_state_check.h" | 
|  | #include "test/util.h" | 
|  |  | 
|  | #include "./vp9_rtcd.h" | 
|  | #include "vp9/common/vp9_entropy.h" | 
|  | #include "vpx/vpx_integer.h" | 
|  |  | 
|  | extern "C" { | 
|  | void vp9_idct16x16_256_add_c(const int16_t *input, uint8_t *output, int pitch); | 
|  | } | 
|  |  | 
|  | using libvpx_test::ACMRandom; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | #ifdef _MSC_VER | 
|  | static int round(double x) { | 
|  | if (x < 0) | 
|  | return static_cast<int>(ceil(x - 0.5)); | 
|  | else | 
|  | return static_cast<int>(floor(x + 0.5)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | const int kNumCoeffs = 256; | 
|  | const double PI = 3.1415926535898; | 
|  | void reference2_16x16_idct_2d(double *input, double *output) { | 
|  | double x; | 
|  | for (int l = 0; l < 16; ++l) { | 
|  | for (int k = 0; k < 16; ++k) { | 
|  | double s = 0; | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | for (int j = 0; j < 16; ++j) { | 
|  | x = cos(PI * j * (l + 0.5) / 16.0) * | 
|  | cos(PI * i * (k + 0.5) / 16.0) * | 
|  | input[i * 16 + j] / 256; | 
|  | if (i != 0) | 
|  | x *= sqrt(2.0); | 
|  | if (j != 0) | 
|  | x *= sqrt(2.0); | 
|  | s += x; | 
|  | } | 
|  | } | 
|  | output[k*16+l] = s; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | const double C1 = 0.995184726672197; | 
|  | const double C2 = 0.98078528040323; | 
|  | const double C3 = 0.956940335732209; | 
|  | const double C4 = 0.923879532511287; | 
|  | const double C5 = 0.881921264348355; | 
|  | const double C6 = 0.831469612302545; | 
|  | const double C7 = 0.773010453362737; | 
|  | const double C8 = 0.707106781186548; | 
|  | const double C9 = 0.634393284163646; | 
|  | const double C10 = 0.555570233019602; | 
|  | const double C11 = 0.471396736825998; | 
|  | const double C12 = 0.38268343236509; | 
|  | const double C13 = 0.290284677254462; | 
|  | const double C14 = 0.195090322016128; | 
|  | const double C15 = 0.098017140329561; | 
|  |  | 
|  | void butterfly_16x16_dct_1d(double input[16], double output[16]) { | 
|  | double step[16]; | 
|  | double intermediate[16]; | 
|  | double temp1, temp2; | 
|  |  | 
|  | // step 1 | 
|  | step[ 0] = input[0] + input[15]; | 
|  | step[ 1] = input[1] + input[14]; | 
|  | step[ 2] = input[2] + input[13]; | 
|  | step[ 3] = input[3] + input[12]; | 
|  | step[ 4] = input[4] + input[11]; | 
|  | step[ 5] = input[5] + input[10]; | 
|  | step[ 6] = input[6] + input[ 9]; | 
|  | step[ 7] = input[7] + input[ 8]; | 
|  | step[ 8] = input[7] - input[ 8]; | 
|  | step[ 9] = input[6] - input[ 9]; | 
|  | step[10] = input[5] - input[10]; | 
|  | step[11] = input[4] - input[11]; | 
|  | step[12] = input[3] - input[12]; | 
|  | step[13] = input[2] - input[13]; | 
|  | step[14] = input[1] - input[14]; | 
|  | step[15] = input[0] - input[15]; | 
|  |  | 
|  | // step 2 | 
|  | output[0] = step[0] + step[7]; | 
|  | output[1] = step[1] + step[6]; | 
|  | output[2] = step[2] + step[5]; | 
|  | output[3] = step[3] + step[4]; | 
|  | output[4] = step[3] - step[4]; | 
|  | output[5] = step[2] - step[5]; | 
|  | output[6] = step[1] - step[6]; | 
|  | output[7] = step[0] - step[7]; | 
|  |  | 
|  | temp1 = step[ 8] * C7; | 
|  | temp2 = step[15] * C9; | 
|  | output[ 8] = temp1 + temp2; | 
|  |  | 
|  | temp1 = step[ 9] * C11; | 
|  | temp2 = step[14] * C5; | 
|  | output[ 9] = temp1 - temp2; | 
|  |  | 
|  | temp1 = step[10] * C3; | 
|  | temp2 = step[13] * C13; | 
|  | output[10] = temp1 + temp2; | 
|  |  | 
|  | temp1 = step[11] * C15; | 
|  | temp2 = step[12] * C1; | 
|  | output[11] = temp1 - temp2; | 
|  |  | 
|  | temp1 = step[11] * C1; | 
|  | temp2 = step[12] * C15; | 
|  | output[12] = temp2 + temp1; | 
|  |  | 
|  | temp1 = step[10] * C13; | 
|  | temp2 = step[13] * C3; | 
|  | output[13] = temp2 - temp1; | 
|  |  | 
|  | temp1 = step[ 9] * C5; | 
|  | temp2 = step[14] * C11; | 
|  | output[14] = temp2 + temp1; | 
|  |  | 
|  | temp1 = step[ 8] * C9; | 
|  | temp2 = step[15] * C7; | 
|  | output[15] = temp2 - temp1; | 
|  |  | 
|  | // step 3 | 
|  | step[ 0] = output[0] + output[3]; | 
|  | step[ 1] = output[1] + output[2]; | 
|  | step[ 2] = output[1] - output[2]; | 
|  | step[ 3] = output[0] - output[3]; | 
|  |  | 
|  | temp1 = output[4] * C14; | 
|  | temp2 = output[7] * C2; | 
|  | step[ 4] = temp1 + temp2; | 
|  |  | 
|  | temp1 = output[5] * C10; | 
|  | temp2 = output[6] * C6; | 
|  | step[ 5] = temp1 + temp2; | 
|  |  | 
|  | temp1 = output[5] * C6; | 
|  | temp2 = output[6] * C10; | 
|  | step[ 6] = temp2 - temp1; | 
|  |  | 
|  | temp1 = output[4] * C2; | 
|  | temp2 = output[7] * C14; | 
|  | step[ 7] = temp2 - temp1; | 
|  |  | 
|  | step[ 8] = output[ 8] + output[11]; | 
|  | step[ 9] = output[ 9] + output[10]; | 
|  | step[10] = output[ 9] - output[10]; | 
|  | step[11] = output[ 8] - output[11]; | 
|  |  | 
|  | step[12] = output[12] + output[15]; | 
|  | step[13] = output[13] + output[14]; | 
|  | step[14] = output[13] - output[14]; | 
|  | step[15] = output[12] - output[15]; | 
|  |  | 
|  | // step 4 | 
|  | output[ 0] = (step[ 0] + step[ 1]); | 
|  | output[ 8] = (step[ 0] - step[ 1]); | 
|  |  | 
|  | temp1 = step[2] * C12; | 
|  | temp2 = step[3] * C4; | 
|  | temp1 = temp1 + temp2; | 
|  | output[ 4] = 2*(temp1 * C8); | 
|  |  | 
|  | temp1 = step[2] * C4; | 
|  | temp2 = step[3] * C12; | 
|  | temp1 = temp2 - temp1; | 
|  | output[12] = 2 * (temp1 * C8); | 
|  |  | 
|  | output[ 2] = 2 * ((step[4] + step[ 5]) * C8); | 
|  | output[14] = 2 * ((step[7] - step[ 6]) * C8); | 
|  |  | 
|  | temp1 = step[4] - step[5]; | 
|  | temp2 = step[6] + step[7]; | 
|  | output[ 6] = (temp1 + temp2); | 
|  | output[10] = (temp1 - temp2); | 
|  |  | 
|  | intermediate[8] = step[8] + step[14]; | 
|  | intermediate[9] = step[9] + step[15]; | 
|  |  | 
|  | temp1 = intermediate[8] * C12; | 
|  | temp2 = intermediate[9] * C4; | 
|  | temp1 = temp1 - temp2; | 
|  | output[3] = 2 * (temp1 * C8); | 
|  |  | 
|  | temp1 = intermediate[8] * C4; | 
|  | temp2 = intermediate[9] * C12; | 
|  | temp1 = temp2 + temp1; | 
|  | output[13] = 2 * (temp1 * C8); | 
|  |  | 
|  | output[ 9] = 2 * ((step[10] + step[11]) * C8); | 
|  |  | 
|  | intermediate[11] = step[10] - step[11]; | 
|  | intermediate[12] = step[12] + step[13]; | 
|  | intermediate[13] = step[12] - step[13]; | 
|  | intermediate[14] = step[ 8] - step[14]; | 
|  | intermediate[15] = step[ 9] - step[15]; | 
|  |  | 
|  | output[15] = (intermediate[11] + intermediate[12]); | 
|  | output[ 1] = -(intermediate[11] - intermediate[12]); | 
|  |  | 
|  | output[ 7] = 2 * (intermediate[13] * C8); | 
|  |  | 
|  | temp1 = intermediate[14] * C12; | 
|  | temp2 = intermediate[15] * C4; | 
|  | temp1 = temp1 - temp2; | 
|  | output[11] = -2 * (temp1 * C8); | 
|  |  | 
|  | temp1 = intermediate[14] * C4; | 
|  | temp2 = intermediate[15] * C12; | 
|  | temp1 = temp2 + temp1; | 
|  | output[ 5] = 2 * (temp1 * C8); | 
|  | } | 
|  |  | 
|  | void reference_16x16_dct_2d(int16_t input[256], double output[256]) { | 
|  | // First transform columns | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | double temp_in[16], temp_out[16]; | 
|  | for (int j = 0; j < 16; ++j) | 
|  | temp_in[j] = input[j * 16 + i]; | 
|  | butterfly_16x16_dct_1d(temp_in, temp_out); | 
|  | for (int j = 0; j < 16; ++j) | 
|  | output[j * 16 + i] = temp_out[j]; | 
|  | } | 
|  | // Then transform rows | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | double temp_in[16], temp_out[16]; | 
|  | for (int j = 0; j < 16; ++j) | 
|  | temp_in[j] = output[j + i * 16]; | 
|  | butterfly_16x16_dct_1d(temp_in, temp_out); | 
|  | // Scale by some magic number | 
|  | for (int j = 0; j < 16; ++j) | 
|  | output[j + i * 16] = temp_out[j]/2; | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef void (*fdct_t)(const int16_t *in, int16_t *out, int stride); | 
|  | typedef void (*idct_t)(const int16_t *in, uint8_t *out, int stride); | 
|  | typedef void (*fht_t) (const int16_t *in, int16_t *out, int stride, | 
|  | int tx_type); | 
|  | typedef void (*iht_t) (const int16_t *in, uint8_t *out, int stride, | 
|  | int tx_type); | 
|  |  | 
|  | typedef std::tr1::tuple<fdct_t, idct_t, int> dct_16x16_param_t; | 
|  | typedef std::tr1::tuple<fht_t, iht_t, int> ht_16x16_param_t; | 
|  |  | 
|  | void fdct16x16_ref(const int16_t *in, int16_t *out, int stride, int tx_type) { | 
|  | vp9_fdct16x16_c(in, out, stride); | 
|  | } | 
|  |  | 
|  | void fht16x16_ref(const int16_t *in, int16_t *out, int stride, int tx_type) { | 
|  | vp9_fht16x16_c(in, out, stride, tx_type); | 
|  | } | 
|  |  | 
|  | class Trans16x16TestBase { | 
|  | public: | 
|  | virtual ~Trans16x16TestBase() {} | 
|  |  | 
|  | protected: | 
|  | virtual void RunFwdTxfm(int16_t *in, int16_t *out, int stride) = 0; | 
|  |  | 
|  | virtual void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) = 0; | 
|  |  | 
|  | void RunAccuracyCheck() { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | uint32_t max_error = 0; | 
|  | int64_t total_error = 0; | 
|  | const int count_test_block = 10000; | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); | 
|  |  | 
|  | // Initialize a test block with input range [-255, 255]. | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | src[j] = rnd.Rand8(); | 
|  | dst[j] = rnd.Rand8(); | 
|  | test_input_block[j] = src[j] - dst[j]; | 
|  | } | 
|  |  | 
|  | REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block, | 
|  | test_temp_block, pitch_)); | 
|  | REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); | 
|  |  | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | const uint32_t diff = dst[j] - src[j]; | 
|  | const uint32_t error = diff * diff; | 
|  | if (max_error < error) | 
|  | max_error = error; | 
|  | total_error += error; | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPECT_GE(1u, max_error) | 
|  | << "Error: 16x16 FHT/IHT has an individual round trip error > 1"; | 
|  |  | 
|  | EXPECT_GE(count_test_block , total_error) | 
|  | << "Error: 16x16 FHT/IHT has average round trip error > 1 per block"; | 
|  | } | 
|  |  | 
|  | void RunCoeffCheck() { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 1000; | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs); | 
|  |  | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | // Initialize a test block with input range [-255, 255]. | 
|  | for (int j = 0; j < kNumCoeffs; ++j) | 
|  | input_block[j] = rnd.Rand8() - rnd.Rand8(); | 
|  |  | 
|  | fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_); | 
|  | REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_)); | 
|  |  | 
|  | // The minimum quant value is 4. | 
|  | for (int j = 0; j < kNumCoeffs; ++j) | 
|  | EXPECT_EQ(output_block[j], output_ref_block[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RunMemCheck() { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 1000; | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs); | 
|  |  | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | // Initialize a test block with input range [-255, 255]. | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | input_block[j] = rnd.Rand8() - rnd.Rand8(); | 
|  | input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; | 
|  | } | 
|  | if (i == 0) | 
|  | for (int j = 0; j < kNumCoeffs; ++j) | 
|  | input_extreme_block[j] = 255; | 
|  | if (i == 1) | 
|  | for (int j = 0; j < kNumCoeffs; ++j) | 
|  | input_extreme_block[j] = -255; | 
|  |  | 
|  | fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); | 
|  | REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block, | 
|  | output_block, pitch_)); | 
|  |  | 
|  | // The minimum quant value is 4. | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | EXPECT_EQ(output_block[j], output_ref_block[j]); | 
|  | EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j])) | 
|  | << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void RunInvAccuracyCheck() { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 1000; | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); | 
|  | DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); | 
|  |  | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | double out_r[kNumCoeffs]; | 
|  |  | 
|  | // Initialize a test block with input range [-255, 255]. | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | src[j] = rnd.Rand8(); | 
|  | dst[j] = rnd.Rand8(); | 
|  | in[j] = src[j] - dst[j]; | 
|  | } | 
|  |  | 
|  | reference_16x16_dct_2d(in, out_r); | 
|  | for (int j = 0; j < kNumCoeffs; ++j) | 
|  | coeff[j] = round(out_r[j]); | 
|  |  | 
|  | REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16)); | 
|  |  | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | const uint32_t diff = dst[j] - src[j]; | 
|  | const uint32_t error = diff * diff; | 
|  | EXPECT_GE(1u, error) | 
|  | << "Error: 16x16 IDCT has error " << error | 
|  | << " at index " << j; | 
|  | } | 
|  | } | 
|  | } | 
|  | int pitch_; | 
|  | int tx_type_; | 
|  | fht_t fwd_txfm_ref; | 
|  | }; | 
|  |  | 
|  | class Trans16x16DCT | 
|  | : public Trans16x16TestBase, | 
|  | public ::testing::TestWithParam<dct_16x16_param_t> { | 
|  | public: | 
|  | virtual ~Trans16x16DCT() {} | 
|  |  | 
|  | virtual void SetUp() { | 
|  | fwd_txfm_ = GET_PARAM(0); | 
|  | inv_txfm_ = GET_PARAM(1); | 
|  | tx_type_  = GET_PARAM(2); | 
|  | pitch_    = 16; | 
|  | fwd_txfm_ref = fdct16x16_ref; | 
|  | } | 
|  | virtual void TearDown() { libvpx_test::ClearSystemState(); } | 
|  |  | 
|  | protected: | 
|  | void RunFwdTxfm(int16_t *in, int16_t *out, int stride) { | 
|  | fwd_txfm_(in, out, stride); | 
|  | } | 
|  | void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) { | 
|  | inv_txfm_(out, dst, stride); | 
|  | } | 
|  |  | 
|  | fdct_t fwd_txfm_; | 
|  | idct_t inv_txfm_; | 
|  | }; | 
|  |  | 
|  | TEST_P(Trans16x16DCT, AccuracyCheck) { | 
|  | RunAccuracyCheck(); | 
|  | } | 
|  |  | 
|  | TEST_P(Trans16x16DCT, CoeffCheck) { | 
|  | RunCoeffCheck(); | 
|  | } | 
|  |  | 
|  | TEST_P(Trans16x16DCT, MemCheck) { | 
|  | RunMemCheck(); | 
|  | } | 
|  |  | 
|  | TEST_P(Trans16x16DCT, InvAccuracyCheck) { | 
|  | RunInvAccuracyCheck(); | 
|  | } | 
|  |  | 
|  | class Trans16x16HT | 
|  | : public Trans16x16TestBase, | 
|  | public ::testing::TestWithParam<ht_16x16_param_t> { | 
|  | public: | 
|  | virtual ~Trans16x16HT() {} | 
|  |  | 
|  | virtual void SetUp() { | 
|  | fwd_txfm_ = GET_PARAM(0); | 
|  | inv_txfm_ = GET_PARAM(1); | 
|  | tx_type_  = GET_PARAM(2); | 
|  | pitch_    = 16; | 
|  | fwd_txfm_ref = fht16x16_ref; | 
|  | } | 
|  | virtual void TearDown() { libvpx_test::ClearSystemState(); } | 
|  |  | 
|  | protected: | 
|  | void RunFwdTxfm(int16_t *in, int16_t *out, int stride) { | 
|  | fwd_txfm_(in, out, stride, tx_type_); | 
|  | } | 
|  | void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) { | 
|  | inv_txfm_(out, dst, stride, tx_type_); | 
|  | } | 
|  |  | 
|  | fht_t fwd_txfm_; | 
|  | iht_t inv_txfm_; | 
|  | }; | 
|  |  | 
|  | TEST_P(Trans16x16HT, AccuracyCheck) { | 
|  | RunAccuracyCheck(); | 
|  | } | 
|  |  | 
|  | TEST_P(Trans16x16HT, CoeffCheck) { | 
|  | RunCoeffCheck(); | 
|  | } | 
|  |  | 
|  | TEST_P(Trans16x16HT, MemCheck) { | 
|  | RunMemCheck(); | 
|  | } | 
|  |  | 
|  | using std::tr1::make_tuple; | 
|  |  | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | C, Trans16x16DCT, | 
|  | ::testing::Values( | 
|  | make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, 0))); | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | C, Trans16x16HT, | 
|  | ::testing::Values( | 
|  | make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0), | 
|  | make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1), | 
|  | make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2), | 
|  | make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3))); | 
|  |  | 
|  | #if HAVE_NEON | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | NEON, Trans16x16DCT, | 
|  | ::testing::Values( | 
|  | make_tuple(&vp9_fdct16x16_c, | 
|  | &vp9_idct16x16_256_add_neon, 0))); | 
|  | #endif | 
|  |  | 
|  | #if HAVE_SSE2 | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | SSE2, Trans16x16DCT, | 
|  | ::testing::Values( | 
|  | make_tuple(&vp9_fdct16x16_sse2, | 
|  | &vp9_idct16x16_256_add_sse2, 0))); | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | SSE2, Trans16x16HT, | 
|  | ::testing::Values( | 
|  | make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 0), | 
|  | make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 1), | 
|  | make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 2), | 
|  | make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 3))); | 
|  | #endif | 
|  | }  // namespace |