| /* | 
 |  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include <math.h> | 
 | #include <limits.h> | 
 | #include <stdio.h> | 
 |  | 
 | #include "./vpx_scale_rtcd.h" | 
 | #include "block.h" | 
 | #include "onyx_int.h" | 
 | #include "vp8/common/variance.h" | 
 | #include "encodeintra.h" | 
 | #include "vp8/common/setupintrarecon.h" | 
 | #include "vp8/common/systemdependent.h" | 
 | #include "mcomp.h" | 
 | #include "firstpass.h" | 
 | #include "vpx_scale/vpx_scale.h" | 
 | #include "encodemb.h" | 
 | #include "vp8/common/extend.h" | 
 | #include "vpx_mem/vpx_mem.h" | 
 | #include "vp8/common/swapyv12buffer.h" | 
 | #include "rdopt.h" | 
 | #include "vp8/common/quant_common.h" | 
 | #include "encodemv.h" | 
 | #include "encodeframe.h" | 
 |  | 
 | /* #define OUTPUT_FPF 1 */ | 
 |  | 
 | extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); | 
 | extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv); | 
 | extern void vp8_alloc_compressor_data(VP8_COMP *cpi); | 
 |  | 
 | #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] | 
 | extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; | 
 |  | 
 | extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; | 
 |  | 
 | #define IIFACTOR   1.5 | 
 | #define IIKFACTOR1 1.40 | 
 | #define IIKFACTOR2 1.5 | 
 | #define RMAX       14.0 | 
 | #define GF_RMAX    48.0 | 
 |  | 
 | #define KF_MB_INTRA_MIN 300 | 
 | #define GF_MB_INTRA_MIN 200 | 
 |  | 
 | #define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001) | 
 |  | 
 | #define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 | 
 | #define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 | 
 |  | 
 | #define NEW_BOOST 1 | 
 |  | 
 | static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3}; | 
 | static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3}; | 
 |  | 
 |  | 
 | static const int cq_level[QINDEX_RANGE] = | 
 | { | 
 |     0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9, | 
 |     9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20, | 
 |     20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31, | 
 |     32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43, | 
 |     44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56, | 
 |     57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70, | 
 |     71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85, | 
 |     86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 | 
 | }; | 
 |  | 
 | static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); | 
 |  | 
 | /* Resets the first pass file to the given position using a relative seek | 
 |  * from the current position | 
 |  */ | 
 | static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) | 
 | { | 
 |     cpi->twopass.stats_in = Position; | 
 | } | 
 |  | 
 | static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) | 
 | { | 
 |     if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) | 
 |         return EOF; | 
 |  | 
 |     *next_frame = *cpi->twopass.stats_in; | 
 |     return 1; | 
 | } | 
 |  | 
 | /* Read frame stats at an offset from the current position */ | 
 | static int read_frame_stats( VP8_COMP *cpi, | 
 |                              FIRSTPASS_STATS *frame_stats, | 
 |                              int offset ) | 
 | { | 
 |     FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in; | 
 |  | 
 |     /* Check legality of offset */ | 
 |     if ( offset >= 0 ) | 
 |     { | 
 |         if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end ) | 
 |              return EOF; | 
 |     } | 
 |     else if ( offset < 0 ) | 
 |     { | 
 |         if ( &fps_ptr[offset] < cpi->twopass.stats_in_start ) | 
 |              return EOF; | 
 |     } | 
 |  | 
 |     *frame_stats = fps_ptr[offset]; | 
 |     return 1; | 
 | } | 
 |  | 
 | static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) | 
 | { | 
 |     if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) | 
 |         return EOF; | 
 |  | 
 |     *fps = *cpi->twopass.stats_in; | 
 |     cpi->twopass.stats_in = | 
 |          (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); | 
 |     return 1; | 
 | } | 
 |  | 
 | static void output_stats(const VP8_COMP            *cpi, | 
 |                          struct vpx_codec_pkt_list *pktlist, | 
 |                          FIRSTPASS_STATS            *stats) | 
 | { | 
 |     struct vpx_codec_cx_pkt pkt; | 
 |     pkt.kind = VPX_CODEC_STATS_PKT; | 
 |     pkt.data.twopass_stats.buf = stats; | 
 |     pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); | 
 |     vpx_codec_pkt_list_add(pktlist, &pkt); | 
 |  | 
 | /* TEMP debug code */ | 
 | #if OUTPUT_FPF | 
 |  | 
 |     { | 
 |         FILE *fpfile; | 
 |         fpfile = fopen("firstpass.stt", "a"); | 
 |  | 
 |         fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" | 
 |                 " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" | 
 |                 " %12.0f %12.0f %12.4f\n", | 
 |                 stats->frame, | 
 |                 stats->intra_error, | 
 |                 stats->coded_error, | 
 |                 stats->ssim_weighted_pred_err, | 
 |                 stats->pcnt_inter, | 
 |                 stats->pcnt_motion, | 
 |                 stats->pcnt_second_ref, | 
 |                 stats->pcnt_neutral, | 
 |                 stats->MVr, | 
 |                 stats->mvr_abs, | 
 |                 stats->MVc, | 
 |                 stats->mvc_abs, | 
 |                 stats->MVrv, | 
 |                 stats->MVcv, | 
 |                 stats->mv_in_out_count, | 
 |                 stats->new_mv_count, | 
 |                 stats->count, | 
 |                 stats->duration); | 
 |         fclose(fpfile); | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | static void zero_stats(FIRSTPASS_STATS *section) | 
 | { | 
 |     section->frame      = 0.0; | 
 |     section->intra_error = 0.0; | 
 |     section->coded_error = 0.0; | 
 |     section->ssim_weighted_pred_err = 0.0; | 
 |     section->pcnt_inter  = 0.0; | 
 |     section->pcnt_motion  = 0.0; | 
 |     section->pcnt_second_ref = 0.0; | 
 |     section->pcnt_neutral = 0.0; | 
 |     section->MVr        = 0.0; | 
 |     section->mvr_abs     = 0.0; | 
 |     section->MVc        = 0.0; | 
 |     section->mvc_abs     = 0.0; | 
 |     section->MVrv       = 0.0; | 
 |     section->MVcv       = 0.0; | 
 |     section->mv_in_out_count  = 0.0; | 
 |     section->new_mv_count = 0.0; | 
 |     section->count      = 0.0; | 
 |     section->duration   = 1.0; | 
 | } | 
 |  | 
 | static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) | 
 | { | 
 |     section->frame += frame->frame; | 
 |     section->intra_error += frame->intra_error; | 
 |     section->coded_error += frame->coded_error; | 
 |     section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; | 
 |     section->pcnt_inter  += frame->pcnt_inter; | 
 |     section->pcnt_motion += frame->pcnt_motion; | 
 |     section->pcnt_second_ref += frame->pcnt_second_ref; | 
 |     section->pcnt_neutral += frame->pcnt_neutral; | 
 |     section->MVr        += frame->MVr; | 
 |     section->mvr_abs     += frame->mvr_abs; | 
 |     section->MVc        += frame->MVc; | 
 |     section->mvc_abs     += frame->mvc_abs; | 
 |     section->MVrv       += frame->MVrv; | 
 |     section->MVcv       += frame->MVcv; | 
 |     section->mv_in_out_count  += frame->mv_in_out_count; | 
 |     section->new_mv_count += frame->new_mv_count; | 
 |     section->count      += frame->count; | 
 |     section->duration   += frame->duration; | 
 | } | 
 |  | 
 | static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) | 
 | { | 
 |     section->frame -= frame->frame; | 
 |     section->intra_error -= frame->intra_error; | 
 |     section->coded_error -= frame->coded_error; | 
 |     section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; | 
 |     section->pcnt_inter  -= frame->pcnt_inter; | 
 |     section->pcnt_motion -= frame->pcnt_motion; | 
 |     section->pcnt_second_ref -= frame->pcnt_second_ref; | 
 |     section->pcnt_neutral -= frame->pcnt_neutral; | 
 |     section->MVr        -= frame->MVr; | 
 |     section->mvr_abs     -= frame->mvr_abs; | 
 |     section->MVc        -= frame->MVc; | 
 |     section->mvc_abs     -= frame->mvc_abs; | 
 |     section->MVrv       -= frame->MVrv; | 
 |     section->MVcv       -= frame->MVcv; | 
 |     section->mv_in_out_count  -= frame->mv_in_out_count; | 
 |     section->new_mv_count -= frame->new_mv_count; | 
 |     section->count      -= frame->count; | 
 |     section->duration   -= frame->duration; | 
 | } | 
 |  | 
 | static void avg_stats(FIRSTPASS_STATS *section) | 
 | { | 
 |     if (section->count < 1.0) | 
 |         return; | 
 |  | 
 |     section->intra_error /= section->count; | 
 |     section->coded_error /= section->count; | 
 |     section->ssim_weighted_pred_err /= section->count; | 
 |     section->pcnt_inter  /= section->count; | 
 |     section->pcnt_second_ref /= section->count; | 
 |     section->pcnt_neutral /= section->count; | 
 |     section->pcnt_motion /= section->count; | 
 |     section->MVr        /= section->count; | 
 |     section->mvr_abs     /= section->count; | 
 |     section->MVc        /= section->count; | 
 |     section->mvc_abs     /= section->count; | 
 |     section->MVrv       /= section->count; | 
 |     section->MVcv       /= section->count; | 
 |     section->mv_in_out_count   /= section->count; | 
 |     section->duration   /= section->count; | 
 | } | 
 |  | 
 | /* Calculate a modified Error used in distributing bits between easier | 
 |  * and harder frames | 
 |  */ | 
 | static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) | 
 | { | 
 |     double av_err = ( cpi->twopass.total_stats.ssim_weighted_pred_err / | 
 |                       cpi->twopass.total_stats.count ); | 
 |     double this_err = this_frame->ssim_weighted_pred_err; | 
 |     double modified_err; | 
 |  | 
 |     if (this_err > av_err) | 
 |         modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); | 
 |     else | 
 |         modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); | 
 |  | 
 |     return modified_err; | 
 | } | 
 |  | 
 | static const double weight_table[256] = { | 
 | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, | 
 | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, | 
 | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, | 
 | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, | 
 | 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, | 
 | 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, | 
 | 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, | 
 | 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, | 
 | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 | 
 | }; | 
 |  | 
 | static double simple_weight(YV12_BUFFER_CONFIG *source) | 
 | { | 
 |     int i, j; | 
 |  | 
 |     unsigned char *src = source->y_buffer; | 
 |     double sum_weights = 0.0; | 
 |  | 
 |     /* Loop throught the Y plane raw examining levels and creating a weight | 
 |      * for the image | 
 |      */ | 
 |     i = source->y_height; | 
 |     do | 
 |     { | 
 |         j = source->y_width; | 
 |         do | 
 |         { | 
 |             sum_weights += weight_table[ *src]; | 
 |             src++; | 
 |         }while(--j); | 
 |         src -= source->y_width; | 
 |         src += source->y_stride; | 
 |     }while(--i); | 
 |  | 
 |     sum_weights /= (source->y_height * source->y_width); | 
 |  | 
 |     return sum_weights; | 
 | } | 
 |  | 
 |  | 
 | /* This function returns the current per frame maximum bitrate target */ | 
 | static int frame_max_bits(VP8_COMP *cpi) | 
 | { | 
 |     /* Max allocation for a single frame based on the max section guidelines | 
 |      * passed in and how many bits are left | 
 |      */ | 
 |     int max_bits; | 
 |  | 
 |     /* For CBR we need to also consider buffer fullness. | 
 |      * If we are running below the optimal level then we need to gradually | 
 |      * tighten up on max_bits. | 
 |      */ | 
 |     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |     { | 
 |         double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); | 
 |  | 
 |         /* For CBR base this on the target average bits per frame plus the | 
 |          * maximum sedction rate passed in by the user | 
 |          */ | 
 |         max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); | 
 |  | 
 |         /* If our buffer is below the optimum level */ | 
 |         if (buffer_fullness_ratio < 1.0) | 
 |         { | 
 |             /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */ | 
 |             int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2; | 
 |  | 
 |             max_bits = (int)(max_bits * buffer_fullness_ratio); | 
 |  | 
 |             /* Lowest value we will set ... which should allow the buffer to | 
 |              * refill. | 
 |              */ | 
 |             if (max_bits < min_max_bits) | 
 |                 max_bits = min_max_bits; | 
 |         } | 
 |     } | 
 |     /* VBR */ | 
 |     else | 
 |     { | 
 |         /* For VBR base this on the bits and frames left plus the | 
 |          * two_pass_vbrmax_section rate passed in by the user | 
 |          */ | 
 |         max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); | 
 |     } | 
 |  | 
 |     /* Trap case where we are out of bits */ | 
 |     if (max_bits < 0) | 
 |         max_bits = 0; | 
 |  | 
 |     return max_bits; | 
 | } | 
 |  | 
 | void vp8_init_first_pass(VP8_COMP *cpi) | 
 | { | 
 |     zero_stats(&cpi->twopass.total_stats); | 
 | } | 
 |  | 
 | void vp8_end_first_pass(VP8_COMP *cpi) | 
 | { | 
 |     output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); | 
 | } | 
 |  | 
 | static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, | 
 |                               YV12_BUFFER_CONFIG * raw_buffer, | 
 |                               int * raw_motion_err, | 
 |                               YV12_BUFFER_CONFIG * recon_buffer, | 
 |                               int * best_motion_err, int recon_yoffset) | 
 | { | 
 |     MACROBLOCKD * const xd = & x->e_mbd; | 
 |     BLOCK *b = &x->block[0]; | 
 |     BLOCKD *d = &x->e_mbd.block[0]; | 
 |  | 
 |     unsigned char *src_ptr = (*(b->base_src) + b->src); | 
 |     int src_stride = b->src_stride; | 
 |     unsigned char *raw_ptr; | 
 |     int raw_stride = raw_buffer->y_stride; | 
 |     unsigned char *ref_ptr; | 
 |     int ref_stride = x->e_mbd.pre.y_stride; | 
 |  | 
 |     /* Set up pointers for this macro block raw buffer */ | 
 |     raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset | 
 |                                 + d->offset); | 
 |     vp8_mse16x16 ( src_ptr, src_stride, raw_ptr, raw_stride, | 
 |                    (unsigned int *)(raw_motion_err)); | 
 |  | 
 |     /* Set up pointers for this macro block recon buffer */ | 
 |     xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; | 
 |     ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset ); | 
 |     vp8_mse16x16 ( src_ptr, src_stride, ref_ptr, ref_stride, | 
 |                    (unsigned int *)(best_motion_err)); | 
 | } | 
 |  | 
 | static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, | 
 |                                      int_mv *ref_mv, MV *best_mv, | 
 |                                      YV12_BUFFER_CONFIG *recon_buffer, | 
 |                                      int *best_motion_err, int recon_yoffset ) | 
 | { | 
 |     MACROBLOCKD *const xd = & x->e_mbd; | 
 |     BLOCK *b = &x->block[0]; | 
 |     BLOCKD *d = &x->e_mbd.block[0]; | 
 |     int num00; | 
 |  | 
 |     int_mv tmp_mv; | 
 |     int_mv ref_mv_full; | 
 |  | 
 |     int tmp_err; | 
 |     int step_param = 3; /* Dont search over full range for first pass */ | 
 |     int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; | 
 |     int n; | 
 |     vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; | 
 |     int new_mv_mode_penalty = 256; | 
 |  | 
 |     /* override the default variance function to use MSE */ | 
 |     v_fn_ptr.vf    = vp8_mse16x16; | 
 |  | 
 |     /* Set up pointers for this macro block recon buffer */ | 
 |     xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; | 
 |  | 
 |     /* Initial step/diamond search centred on best mv */ | 
 |     tmp_mv.as_int = 0; | 
 |     ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3; | 
 |     ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3; | 
 |     tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, | 
 |                                       x->sadperbit16, &num00, &v_fn_ptr, | 
 |                                       x->mvcost, ref_mv); | 
 |     if ( tmp_err < INT_MAX-new_mv_mode_penalty ) | 
 |         tmp_err += new_mv_mode_penalty; | 
 |  | 
 |     if (tmp_err < *best_motion_err) | 
 |     { | 
 |         *best_motion_err = tmp_err; | 
 |         best_mv->row = tmp_mv.as_mv.row; | 
 |         best_mv->col = tmp_mv.as_mv.col; | 
 |     } | 
 |  | 
 |     /* Further step/diamond searches as necessary */ | 
 |     n = num00; | 
 |     num00 = 0; | 
 |  | 
 |     while (n < further_steps) | 
 |     { | 
 |         n++; | 
 |  | 
 |         if (num00) | 
 |             num00--; | 
 |         else | 
 |         { | 
 |             tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, | 
 |                                               step_param + n, x->sadperbit16, | 
 |                                               &num00, &v_fn_ptr, x->mvcost, | 
 |                                               ref_mv); | 
 |             if ( tmp_err < INT_MAX-new_mv_mode_penalty ) | 
 |                 tmp_err += new_mv_mode_penalty; | 
 |  | 
 |             if (tmp_err < *best_motion_err) | 
 |             { | 
 |                 *best_motion_err = tmp_err; | 
 |                 best_mv->row = tmp_mv.as_mv.row; | 
 |                 best_mv->col = tmp_mv.as_mv.col; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void vp8_first_pass(VP8_COMP *cpi) | 
 | { | 
 |     int mb_row, mb_col; | 
 |     MACROBLOCK *const x = & cpi->mb; | 
 |     VP8_COMMON *const cm = & cpi->common; | 
 |     MACROBLOCKD *const xd = & x->e_mbd; | 
 |  | 
 |     int recon_yoffset, recon_uvoffset; | 
 |     YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; | 
 |     YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; | 
 |     YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; | 
 |     int recon_y_stride = lst_yv12->y_stride; | 
 |     int recon_uv_stride = lst_yv12->uv_stride; | 
 |     int64_t intra_error = 0; | 
 |     int64_t coded_error = 0; | 
 |  | 
 |     int sum_mvr = 0, sum_mvc = 0; | 
 |     int sum_mvr_abs = 0, sum_mvc_abs = 0; | 
 |     int sum_mvrs = 0, sum_mvcs = 0; | 
 |     int mvcount = 0; | 
 |     int intercount = 0; | 
 |     int second_ref_count = 0; | 
 |     int intrapenalty = 256; | 
 |     int neutral_count = 0; | 
 |     int new_mv_count = 0; | 
 |     int sum_in_vectors = 0; | 
 |     uint32_t lastmv_as_int = 0; | 
 |  | 
 |     int_mv zero_ref_mv; | 
 |  | 
 |     zero_ref_mv.as_int = 0; | 
 |  | 
 |     vp8_clear_system_state(); | 
 |  | 
 |     x->src = * cpi->Source; | 
 |     xd->pre = *lst_yv12; | 
 |     xd->dst = *new_yv12; | 
 |  | 
 |     x->partition_info = x->pi; | 
 |  | 
 |     xd->mode_info_context = cm->mi; | 
 |  | 
 |     if(!cm->use_bilinear_mc_filter) | 
 |     { | 
 |          xd->subpixel_predict        = vp8_sixtap_predict4x4; | 
 |          xd->subpixel_predict8x4     = vp8_sixtap_predict8x4; | 
 |          xd->subpixel_predict8x8     = vp8_sixtap_predict8x8; | 
 |          xd->subpixel_predict16x16   = vp8_sixtap_predict16x16; | 
 |      } | 
 |      else | 
 |      { | 
 |          xd->subpixel_predict        = vp8_bilinear_predict4x4; | 
 |          xd->subpixel_predict8x4     = vp8_bilinear_predict8x4; | 
 |          xd->subpixel_predict8x8     = vp8_bilinear_predict8x8; | 
 |          xd->subpixel_predict16x16   = vp8_bilinear_predict16x16; | 
 |      } | 
 |  | 
 |     vp8_build_block_offsets(x); | 
 |  | 
 |     /* set up frame new frame for intra coded blocks */ | 
 |     vp8_setup_intra_recon(new_yv12); | 
 |     vp8cx_frame_init_quantizer(cpi); | 
 |  | 
 |     /* Initialise the MV cost table to the defaults */ | 
 |     { | 
 |         int flag[2] = {1, 1}; | 
 |         vp8_initialize_rd_consts(cpi, x, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); | 
 |         vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); | 
 |         vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); | 
 |     } | 
 |  | 
 |     /* for each macroblock row in image */ | 
 |     for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) | 
 |     { | 
 |         int_mv best_ref_mv; | 
 |  | 
 |         best_ref_mv.as_int = 0; | 
 |  | 
 |         /* reset above block coeffs */ | 
 |         xd->up_available = (mb_row != 0); | 
 |         recon_yoffset = (mb_row * recon_y_stride * 16); | 
 |         recon_uvoffset = (mb_row * recon_uv_stride * 8); | 
 |  | 
 |         /* Set up limit values for motion vectors to prevent them extending | 
 |          * outside the UMV borders | 
 |          */ | 
 |         x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); | 
 |         x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); | 
 |  | 
 |  | 
 |         /* for each macroblock col in image */ | 
 |         for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) | 
 |         { | 
 |             int this_error; | 
 |             int gf_motion_error = INT_MAX; | 
 |             int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); | 
 |  | 
 |             xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; | 
 |             xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; | 
 |             xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; | 
 |             xd->left_available = (mb_col != 0); | 
 |  | 
 |             /* Copy current mb to a buffer */ | 
 |             vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); | 
 |  | 
 |             /* do intra 16x16 prediction */ | 
 |             this_error = vp8_encode_intra(cpi, x, use_dc_pred); | 
 |  | 
 |             /* "intrapenalty" below deals with situations where the intra | 
 |              * and inter error scores are very low (eg a plain black frame) | 
 |              * We do not have special cases in first pass for 0,0 and | 
 |              * nearest etc so all inter modes carry an overhead cost | 
 |              * estimate fot the mv. When the error score is very low this | 
 |              * causes us to pick all or lots of INTRA modes and throw lots | 
 |              * of key frames. This penalty adds a cost matching that of a | 
 |              * 0,0 mv to the intra case. | 
 |              */ | 
 |             this_error += intrapenalty; | 
 |  | 
 |             /* Cumulative intra error total */ | 
 |             intra_error += (int64_t)this_error; | 
 |  | 
 |             /* Set up limit values for motion vectors to prevent them | 
 |              * extending outside the UMV borders | 
 |              */ | 
 |             x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); | 
 |             x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); | 
 |  | 
 |             /* Other than for the first frame do a motion search */ | 
 |             if (cm->current_video_frame > 0) | 
 |             { | 
 |                 BLOCKD *d = &x->e_mbd.block[0]; | 
 |                 MV tmp_mv = {0, 0}; | 
 |                 int tmp_err; | 
 |                 int motion_error = INT_MAX; | 
 |                 int raw_motion_error = INT_MAX; | 
 |  | 
 |                 /* Simple 0,0 motion with no mv overhead */ | 
 |                 zz_motion_search( cpi, x, cpi->last_frame_unscaled_source, | 
 |                                   &raw_motion_error, lst_yv12, &motion_error, | 
 |                                   recon_yoffset ); | 
 |                 d->bmi.mv.as_mv.row = 0; | 
 |                 d->bmi.mv.as_mv.col = 0; | 
 |  | 
 |                 if (raw_motion_error < cpi->oxcf.encode_breakout) | 
 |                     goto skip_motion_search; | 
 |  | 
 |                 /* Test last reference frame using the previous best mv as the | 
 |                  * starting point (best reference) for the search | 
 |                  */ | 
 |                 first_pass_motion_search(cpi, x, &best_ref_mv, | 
 |                                         &d->bmi.mv.as_mv, lst_yv12, | 
 |                                         &motion_error, recon_yoffset); | 
 |  | 
 |                 /* If the current best reference mv is not centred on 0,0 | 
 |                  * then do a 0,0 based search as well | 
 |                  */ | 
 |                 if (best_ref_mv.as_int) | 
 |                 { | 
 |                    tmp_err = INT_MAX; | 
 |                    first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, | 
 |                                      lst_yv12, &tmp_err, recon_yoffset); | 
 |  | 
 |                    if ( tmp_err < motion_error ) | 
 |                    { | 
 |                         motion_error = tmp_err; | 
 |                         d->bmi.mv.as_mv.row = tmp_mv.row; | 
 |                         d->bmi.mv.as_mv.col = tmp_mv.col; | 
 |                    } | 
 |                 } | 
 |  | 
 |                 /* Experimental search in a second reference frame ((0,0) | 
 |                  * based only) | 
 |                  */ | 
 |                 if (cm->current_video_frame > 1) | 
 |                 { | 
 |                     first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset); | 
 |  | 
 |                     if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) | 
 |                     { | 
 |                         second_ref_count++; | 
 |                     } | 
 |  | 
 |                     /* Reset to last frame as reference buffer */ | 
 |                     xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; | 
 |                     xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; | 
 |                     xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; | 
 |                 } | 
 |  | 
 | skip_motion_search: | 
 |                 /* Intra assumed best */ | 
 |                 best_ref_mv.as_int = 0; | 
 |  | 
 |                 if (motion_error <= this_error) | 
 |                 { | 
 |                     /* Keep a count of cases where the inter and intra were | 
 |                      * very close and very low. This helps with scene cut | 
 |                      * detection for example in cropped clips with black bars | 
 |                      * at the sides or top and bottom. | 
 |                      */ | 
 |                     if( (((this_error-intrapenalty) * 9) <= | 
 |                          (motion_error*10)) && | 
 |                         (this_error < (2*intrapenalty)) ) | 
 |                     { | 
 |                         neutral_count++; | 
 |                     } | 
 |  | 
 |                     d->bmi.mv.as_mv.row <<= 3; | 
 |                     d->bmi.mv.as_mv.col <<= 3; | 
 |                     this_error = motion_error; | 
 |                     vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); | 
 |                     vp8_encode_inter16x16y(x); | 
 |                     sum_mvr += d->bmi.mv.as_mv.row; | 
 |                     sum_mvr_abs += abs(d->bmi.mv.as_mv.row); | 
 |                     sum_mvc += d->bmi.mv.as_mv.col; | 
 |                     sum_mvc_abs += abs(d->bmi.mv.as_mv.col); | 
 |                     sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; | 
 |                     sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; | 
 |                     intercount++; | 
 |  | 
 |                     best_ref_mv.as_int = d->bmi.mv.as_int; | 
 |  | 
 |                     /* Was the vector non-zero */ | 
 |                     if (d->bmi.mv.as_int) | 
 |                     { | 
 |                         mvcount++; | 
 |  | 
 |                         /* Was it different from the last non zero vector */ | 
 |                         if ( d->bmi.mv.as_int != lastmv_as_int ) | 
 |                             new_mv_count++; | 
 |                         lastmv_as_int = d->bmi.mv.as_int; | 
 |  | 
 |                         /* Does the Row vector point inwards or outwards */ | 
 |                         if (mb_row < cm->mb_rows / 2) | 
 |                         { | 
 |                             if (d->bmi.mv.as_mv.row > 0) | 
 |                                 sum_in_vectors--; | 
 |                             else if (d->bmi.mv.as_mv.row < 0) | 
 |                                 sum_in_vectors++; | 
 |                         } | 
 |                         else if (mb_row > cm->mb_rows / 2) | 
 |                         { | 
 |                             if (d->bmi.mv.as_mv.row > 0) | 
 |                                 sum_in_vectors++; | 
 |                             else if (d->bmi.mv.as_mv.row < 0) | 
 |                                 sum_in_vectors--; | 
 |                         } | 
 |  | 
 |                         /* Does the Row vector point inwards or outwards */ | 
 |                         if (mb_col < cm->mb_cols / 2) | 
 |                         { | 
 |                             if (d->bmi.mv.as_mv.col > 0) | 
 |                                 sum_in_vectors--; | 
 |                             else if (d->bmi.mv.as_mv.col < 0) | 
 |                                 sum_in_vectors++; | 
 |                         } | 
 |                         else if (mb_col > cm->mb_cols / 2) | 
 |                         { | 
 |                             if (d->bmi.mv.as_mv.col > 0) | 
 |                                 sum_in_vectors++; | 
 |                             else if (d->bmi.mv.as_mv.col < 0) | 
 |                                 sum_in_vectors--; | 
 |                         } | 
 |                     } | 
 |                 } | 
 |             } | 
 |  | 
 |             coded_error += (int64_t)this_error; | 
 |  | 
 |             /* adjust to the next column of macroblocks */ | 
 |             x->src.y_buffer += 16; | 
 |             x->src.u_buffer += 8; | 
 |             x->src.v_buffer += 8; | 
 |  | 
 |             recon_yoffset += 16; | 
 |             recon_uvoffset += 8; | 
 |         } | 
 |  | 
 |         /* adjust to the next row of mbs */ | 
 |         x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; | 
 |         x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; | 
 |         x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; | 
 |  | 
 |         /* extend the recon for intra prediction */ | 
 |         vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); | 
 |         vp8_clear_system_state(); | 
 |     } | 
 |  | 
 |     vp8_clear_system_state(); | 
 |     { | 
 |         double weight = 0.0; | 
 |  | 
 |         FIRSTPASS_STATS fps; | 
 |  | 
 |         fps.frame      = cm->current_video_frame ; | 
 |         fps.intra_error = (double)(intra_error >> 8); | 
 |         fps.coded_error = (double)(coded_error >> 8); | 
 |         weight = simple_weight(cpi->Source); | 
 |  | 
 |  | 
 |         if (weight < 0.1) | 
 |             weight = 0.1; | 
 |  | 
 |         fps.ssim_weighted_pred_err = fps.coded_error * weight; | 
 |  | 
 |         fps.pcnt_inter  = 0.0; | 
 |         fps.pcnt_motion = 0.0; | 
 |         fps.MVr        = 0.0; | 
 |         fps.mvr_abs     = 0.0; | 
 |         fps.MVc        = 0.0; | 
 |         fps.mvc_abs     = 0.0; | 
 |         fps.MVrv       = 0.0; | 
 |         fps.MVcv       = 0.0; | 
 |         fps.mv_in_out_count  = 0.0; | 
 |         fps.new_mv_count = 0.0; | 
 |         fps.count      = 1.0; | 
 |  | 
 |         fps.pcnt_inter   = 1.0 * (double)intercount / cm->MBs; | 
 |         fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; | 
 |         fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; | 
 |  | 
 |         if (mvcount > 0) | 
 |         { | 
 |             fps.MVr = (double)sum_mvr / (double)mvcount; | 
 |             fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; | 
 |             fps.MVc = (double)sum_mvc / (double)mvcount; | 
 |             fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; | 
 |             fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; | 
 |             fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; | 
 |             fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); | 
 |             fps.new_mv_count = new_mv_count; | 
 |  | 
 |             fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; | 
 |         } | 
 |  | 
 |         /* TODO:  handle the case when duration is set to 0, or something less | 
 |          * than the full time between subsequent cpi->source_time_stamps | 
 |          */ | 
 |         fps.duration = (double)(cpi->source->ts_end | 
 |                        - cpi->source->ts_start); | 
 |  | 
 |         /* don't want to do output stats with a stack variable! */ | 
 |         memcpy(&cpi->twopass.this_frame_stats, | 
 |                &fps, | 
 |                sizeof(FIRSTPASS_STATS)); | 
 |         output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); | 
 |         accumulate_stats(&cpi->twopass.total_stats, &fps); | 
 |     } | 
 |  | 
 |     /* Copy the previous Last Frame into the GF buffer if specific | 
 |      * conditions for doing so are met | 
 |      */ | 
 |     if ((cm->current_video_frame > 0) && | 
 |         (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && | 
 |         ((cpi->twopass.this_frame_stats.intra_error / | 
 |           DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > | 
 |          2.0)) | 
 |     { | 
 |         vp8_yv12_copy_frame(lst_yv12, gld_yv12); | 
 |     } | 
 |  | 
 |     /* swap frame pointers so last frame refers to the frame we just | 
 |      * compressed | 
 |      */ | 
 |     vp8_swap_yv12_buffer(lst_yv12, new_yv12); | 
 |     vp8_yv12_extend_frame_borders(lst_yv12); | 
 |  | 
 |     /* Special case for the first frame. Copy into the GF buffer as a | 
 |      * second reference. | 
 |      */ | 
 |     if (cm->current_video_frame == 0) | 
 |     { | 
 |         vp8_yv12_copy_frame(lst_yv12, gld_yv12); | 
 |     } | 
 |  | 
 |  | 
 |     /* use this to see what the first pass reconstruction looks like */ | 
 |     if (0) | 
 |     { | 
 |         char filename[512]; | 
 |         FILE *recon_file; | 
 |         sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); | 
 |  | 
 |         if (cm->current_video_frame == 0) | 
 |             recon_file = fopen(filename, "wb"); | 
 |         else | 
 |             recon_file = fopen(filename, "ab"); | 
 |  | 
 |         (void) fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, | 
 |                       recon_file); | 
 |         fclose(recon_file); | 
 |     } | 
 |  | 
 |     cm->current_video_frame++; | 
 |  | 
 | } | 
 | extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; | 
 |  | 
 | /* Estimate a cost per mb attributable to overheads such as the coding of | 
 |  * modes and motion vectors. | 
 |  * Currently simplistic in its assumptions for testing. | 
 |  */ | 
 |  | 
 | static double bitcost( double prob ) | 
 | { | 
 |     return -(log( prob ) / log( 2.0 )); | 
 | } | 
 | static int64_t estimate_modemvcost(VP8_COMP *cpi, | 
 |                                      FIRSTPASS_STATS * fpstats) | 
 | { | 
 |     int mv_cost; | 
 |     int mode_cost; | 
 |  | 
 |     double av_pct_inter = fpstats->pcnt_inter / fpstats->count; | 
 |     double av_pct_motion = fpstats->pcnt_motion / fpstats->count; | 
 |     double av_intra = (1.0 - av_pct_inter); | 
 |  | 
 |     double zz_cost; | 
 |     double motion_cost; | 
 |     double intra_cost; | 
 |  | 
 |     zz_cost = bitcost(av_pct_inter - av_pct_motion); | 
 |     motion_cost = bitcost(av_pct_motion); | 
 |     intra_cost = bitcost(av_intra); | 
 |  | 
 |     /* Estimate of extra bits per mv overhead for mbs | 
 |      * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb | 
 |      */ | 
 |     mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; | 
 |  | 
 |     /* Crude estimate of overhead cost from modes | 
 |      * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb | 
 |      */ | 
 |     mode_cost = | 
 |         (int)( ( ((av_pct_inter - av_pct_motion) * zz_cost) + | 
 |                  (av_pct_motion * motion_cost) + | 
 |                  (av_intra * intra_cost) ) * cpi->common.MBs ) << 9; | 
 |  | 
 |     return mv_cost + mode_cost; | 
 | } | 
 |  | 
 | static double calc_correction_factor( double err_per_mb, | 
 |                                       double err_devisor, | 
 |                                       double pt_low, | 
 |                                       double pt_high, | 
 |                                       int Q ) | 
 | { | 
 |     double power_term; | 
 |     double error_term = err_per_mb / err_devisor; | 
 |     double correction_factor; | 
 |  | 
 |     /* Adjustment based on Q to power term. */ | 
 |     power_term = pt_low + (Q * 0.01); | 
 |     power_term = (power_term > pt_high) ? pt_high : power_term; | 
 |  | 
 |     /* Adjustments to error term */ | 
 |     /* TBD */ | 
 |  | 
 |     /* Calculate correction factor */ | 
 |     correction_factor = pow(error_term, power_term); | 
 |  | 
 |     /* Clip range */ | 
 |     correction_factor = | 
 |         (correction_factor < 0.05) | 
 |             ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; | 
 |  | 
 |     return correction_factor; | 
 | } | 
 |  | 
 | static int estimate_max_q(VP8_COMP *cpi, | 
 |                           FIRSTPASS_STATS * fpstats, | 
 |                           int section_target_bandwitdh, | 
 |                           int overhead_bits ) | 
 | { | 
 |     int Q; | 
 |     int num_mbs = cpi->common.MBs; | 
 |     int target_norm_bits_per_mb; | 
 |  | 
 |     double section_err = (fpstats->coded_error / fpstats->count); | 
 |     double err_per_mb = section_err / num_mbs; | 
 |     double err_correction_factor; | 
 |     double speed_correction = 1.0; | 
 |     int overhead_bits_per_mb; | 
 |  | 
 |     if (section_target_bandwitdh <= 0) | 
 |         return cpi->twopass.maxq_max_limit;       /* Highest value allowed */ | 
 |  | 
 |     target_norm_bits_per_mb = | 
 |         (section_target_bandwitdh < (1 << 20)) | 
 |             ? (512 * section_target_bandwitdh) / num_mbs | 
 |             : 512 * (section_target_bandwitdh / num_mbs); | 
 |  | 
 |     /* Calculate a corrective factor based on a rolling ratio of bits spent | 
 |      * vs target bits | 
 |      */ | 
 |     if ((cpi->rolling_target_bits > 0) && | 
 |         (cpi->active_worst_quality < cpi->worst_quality)) | 
 |     { | 
 |         double rolling_ratio; | 
 |  | 
 |         rolling_ratio = (double)cpi->rolling_actual_bits / | 
 |                         (double)cpi->rolling_target_bits; | 
 |  | 
 |         if (rolling_ratio < 0.95) | 
 |             cpi->twopass.est_max_qcorrection_factor -= 0.005; | 
 |         else if (rolling_ratio > 1.05) | 
 |             cpi->twopass.est_max_qcorrection_factor += 0.005; | 
 |  | 
 |         cpi->twopass.est_max_qcorrection_factor = | 
 |             (cpi->twopass.est_max_qcorrection_factor < 0.1) | 
 |                 ? 0.1 | 
 |                 : (cpi->twopass.est_max_qcorrection_factor > 10.0) | 
 |                     ? 10.0 : cpi->twopass.est_max_qcorrection_factor; | 
 |     } | 
 |  | 
 |     /* Corrections for higher compression speed settings | 
 |      * (reduced compression expected) | 
 |      */ | 
 |     if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) | 
 |     { | 
 |         if (cpi->oxcf.cpu_used <= 5) | 
 |             speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); | 
 |         else | 
 |             speed_correction = 1.25; | 
 |     } | 
 |  | 
 |     /* Estimate of overhead bits per mb */ | 
 |     /* Correction to overhead bits for min allowed Q. */ | 
 |     overhead_bits_per_mb = overhead_bits / num_mbs; | 
 |     overhead_bits_per_mb = (int)(overhead_bits_per_mb * | 
 |                             pow( 0.98, (double)cpi->twopass.maxq_min_limit )); | 
 |  | 
 |     /* Try and pick a max Q that will be high enough to encode the | 
 |      * content at the given rate. | 
 |      */ | 
 |     for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) | 
 |     { | 
 |         int bits_per_mb_at_this_q; | 
 |  | 
 |         /* Error per MB based correction factor */ | 
 |         err_correction_factor = | 
 |             calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); | 
 |  | 
 |         bits_per_mb_at_this_q = | 
 |             vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; | 
 |  | 
 |         bits_per_mb_at_this_q = (int)(.5 + err_correction_factor | 
 |             * speed_correction * cpi->twopass.est_max_qcorrection_factor | 
 |             * cpi->twopass.section_max_qfactor | 
 |             * (double)bits_per_mb_at_this_q); | 
 |  | 
 |         /* Mode and motion overhead */ | 
 |         /* As Q rises in real encode loop rd code will force overhead down | 
 |          * We make a crude adjustment for this here as *.98 per Q step. | 
 |          */ | 
 |         overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); | 
 |  | 
 |         if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) | 
 |             break; | 
 |     } | 
 |  | 
 |     /* Restriction on active max q for constrained quality mode. */ | 
 |     if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && | 
 |          (Q < cpi->cq_target_quality) ) | 
 |     { | 
 |         Q = cpi->cq_target_quality; | 
 |     } | 
 |  | 
 |     /* Adjust maxq_min_limit and maxq_max_limit limits based on | 
 |      * average q observed in clip for non kf/gf.arf frames | 
 |      * Give average a chance to settle though. | 
 |      */ | 
 |     if ( (cpi->ni_frames > | 
 |                   ((int)cpi->twopass.total_stats.count >> 8)) && | 
 |          (cpi->ni_frames > 150) ) | 
 |     { | 
 |         cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) | 
 |                                   ? (cpi->ni_av_qi + 32) : cpi->worst_quality; | 
 |         cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) | 
 |                                   ? (cpi->ni_av_qi - 32) : cpi->best_quality; | 
 |     } | 
 |  | 
 |     return Q; | 
 | } | 
 |  | 
 | /* For cq mode estimate a cq level that matches the observed | 
 |  * complexity and data rate. | 
 |  */ | 
 | static int estimate_cq( VP8_COMP *cpi, | 
 |                         FIRSTPASS_STATS * fpstats, | 
 |                         int section_target_bandwitdh, | 
 |                         int overhead_bits ) | 
 | { | 
 |     int Q; | 
 |     int num_mbs = cpi->common.MBs; | 
 |     int target_norm_bits_per_mb; | 
 |  | 
 |     double section_err = (fpstats->coded_error / fpstats->count); | 
 |     double err_per_mb = section_err / num_mbs; | 
 |     double err_correction_factor; | 
 |     double speed_correction = 1.0; | 
 |     double clip_iiratio; | 
 |     double clip_iifactor; | 
 |     int overhead_bits_per_mb; | 
 |  | 
 |     if (0) | 
 |     { | 
 |         FILE *f = fopen("epmp.stt", "a"); | 
 |         fprintf(f, "%10.2f\n", err_per_mb ); | 
 |         fclose(f); | 
 |     } | 
 |  | 
 |     target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) | 
 |                               ? (512 * section_target_bandwitdh) / num_mbs | 
 |                               : 512 * (section_target_bandwitdh / num_mbs); | 
 |  | 
 |     /* Estimate of overhead bits per mb */ | 
 |     overhead_bits_per_mb = overhead_bits / num_mbs; | 
 |  | 
 |     /* Corrections for higher compression speed settings | 
 |      * (reduced compression expected) | 
 |      */ | 
 |     if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) | 
 |     { | 
 |         if (cpi->oxcf.cpu_used <= 5) | 
 |             speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); | 
 |         else | 
 |             speed_correction = 1.25; | 
 |     } | 
 |  | 
 |     /* II ratio correction factor for clip as a whole */ | 
 |     clip_iiratio = cpi->twopass.total_stats.intra_error / | 
 |                    DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); | 
 |     clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); | 
 |     if (clip_iifactor < 0.80) | 
 |         clip_iifactor = 0.80; | 
 |  | 
 |     /* Try and pick a Q that can encode the content at the given rate. */ | 
 |     for (Q = 0; Q < MAXQ; Q++) | 
 |     { | 
 |         int bits_per_mb_at_this_q; | 
 |  | 
 |         /* Error per MB based correction factor */ | 
 |         err_correction_factor = | 
 |             calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); | 
 |  | 
 |         bits_per_mb_at_this_q = | 
 |             vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; | 
 |  | 
 |         bits_per_mb_at_this_q = | 
 |             (int)( .5 + err_correction_factor * | 
 |                         speed_correction * | 
 |                         clip_iifactor * | 
 |                         (double)bits_per_mb_at_this_q); | 
 |  | 
 |         /* Mode and motion overhead */ | 
 |         /* As Q rises in real encode loop rd code will force overhead down | 
 |          * We make a crude adjustment for this here as *.98 per Q step. | 
 |          */ | 
 |         overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); | 
 |  | 
 |         if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) | 
 |             break; | 
 |     } | 
 |  | 
 |     /* Clip value to range "best allowed to (worst allowed - 1)" */ | 
 |     Q = cq_level[Q]; | 
 |     if ( Q >= cpi->worst_quality ) | 
 |         Q = cpi->worst_quality - 1; | 
 |     if ( Q < cpi->best_quality ) | 
 |         Q = cpi->best_quality; | 
 |  | 
 |     return Q; | 
 | } | 
 |  | 
 | static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh) | 
 | { | 
 |     int Q; | 
 |     int num_mbs = cpi->common.MBs; | 
 |     int target_norm_bits_per_mb; | 
 |  | 
 |     double err_per_mb = section_err / num_mbs; | 
 |     double err_correction_factor; | 
 |     double speed_correction = 1.0; | 
 |  | 
 |     target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); | 
 |  | 
 |     /* Corrections for higher compression speed settings | 
 |      * (reduced compression expected) | 
 |      */ | 
 |     if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) | 
 |     { | 
 |         if (cpi->oxcf.cpu_used <= 5) | 
 |             speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); | 
 |         else | 
 |             speed_correction = 1.25; | 
 |     } | 
 |  | 
 |     /* Try and pick a Q that can encode the content at the given rate. */ | 
 |     for (Q = 0; Q < MAXQ; Q++) | 
 |     { | 
 |         int bits_per_mb_at_this_q; | 
 |  | 
 |         /* Error per MB based correction factor */ | 
 |         err_correction_factor = | 
 |             calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); | 
 |  | 
 |         bits_per_mb_at_this_q = | 
 |             (int)( .5 + ( err_correction_factor * | 
 |                           speed_correction * | 
 |                           cpi->twopass.est_max_qcorrection_factor * | 
 |                           (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0 ) ); | 
 |  | 
 |         if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) | 
 |             break; | 
 |     } | 
 |  | 
 |     return Q; | 
 | } | 
 |  | 
 | /* Estimate a worst case Q for a KF group */ | 
 | static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, double group_iiratio) | 
 | { | 
 |     int Q; | 
 |     int num_mbs = cpi->common.MBs; | 
 |     int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; | 
 |     int bits_per_mb_at_this_q; | 
 |  | 
 |     double err_per_mb = section_err / num_mbs; | 
 |     double err_correction_factor; | 
 |     double speed_correction = 1.0; | 
 |     double current_spend_ratio = 1.0; | 
 |  | 
 |     double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; | 
 |     double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; | 
 |  | 
 |     double iiratio_correction_factor = 1.0; | 
 |  | 
 |     double combined_correction_factor; | 
 |  | 
 |     /* Trap special case where the target is <= 0 */ | 
 |     if (target_norm_bits_per_mb <= 0) | 
 |         return MAXQ * 2; | 
 |  | 
 |     /* Calculate a corrective factor based on a rolling ratio of bits spent | 
 |      *  vs target bits | 
 |      * This is clamped to the range 0.1 to 10.0 | 
 |      */ | 
 |     if (cpi->long_rolling_target_bits <= 0) | 
 |         current_spend_ratio = 10.0; | 
 |     else | 
 |     { | 
 |         current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits; | 
 |         current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; | 
 |     } | 
 |  | 
 |     /* Calculate a correction factor based on the quality of prediction in | 
 |      * the sequence as indicated by intra_inter error score ratio (IIRatio) | 
 |      * The idea here is to favour subsampling in the hardest sections vs | 
 |      * the easyest. | 
 |      */ | 
 |     iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); | 
 |  | 
 |     if (iiratio_correction_factor < 0.5) | 
 |         iiratio_correction_factor = 0.5; | 
 |  | 
 |     /* Corrections for higher compression speed settings | 
 |      * (reduced compression expected) | 
 |      */ | 
 |     if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) | 
 |     { | 
 |         if (cpi->oxcf.cpu_used <= 5) | 
 |             speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); | 
 |         else | 
 |             speed_correction = 1.25; | 
 |     } | 
 |  | 
 |     /* Combine the various factors calculated above */ | 
 |     combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio; | 
 |  | 
 |     /* Try and pick a Q that should be high enough to encode the content at | 
 |      * the given rate. | 
 |      */ | 
 |     for (Q = 0; Q < MAXQ; Q++) | 
 |     { | 
 |         /* Error per MB based correction factor */ | 
 |         err_correction_factor = | 
 |             calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); | 
 |  | 
 |         bits_per_mb_at_this_q = | 
 |             (int)(.5 + ( err_correction_factor * | 
 |                          combined_correction_factor * | 
 |                          (double)vp8_bits_per_mb[INTER_FRAME][Q]) ); | 
 |  | 
 |         if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) | 
 |             break; | 
 |     } | 
 |  | 
 |     /* If we could not hit the target even at Max Q then estimate what Q | 
 |      * would have been required | 
 |      */ | 
 |     while ((bits_per_mb_at_this_q > target_norm_bits_per_mb)  && (Q < (MAXQ * 2))) | 
 |     { | 
 |  | 
 |         bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); | 
 |         Q++; | 
 |     } | 
 |  | 
 |     if (0) | 
 |     { | 
 |         FILE *f = fopen("estkf_q.stt", "a"); | 
 |         fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q, | 
 |                 target_norm_bits_per_mb, err_per_mb, err_correction_factor, | 
 |                 current_spend_ratio, group_iiratio, iiratio_correction_factor, | 
 |                 (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q); | 
 |         fclose(f); | 
 |     } | 
 |  | 
 |     return Q; | 
 | } | 
 |  | 
 | extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate); | 
 |  | 
 | void vp8_init_second_pass(VP8_COMP *cpi) | 
 | { | 
 |     FIRSTPASS_STATS this_frame; | 
 |     FIRSTPASS_STATS *start_pos; | 
 |  | 
 |     double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); | 
 |  | 
 |     zero_stats(&cpi->twopass.total_stats); | 
 |     zero_stats(&cpi->twopass.total_left_stats); | 
 |  | 
 |     if (!cpi->twopass.stats_in_end) | 
 |         return; | 
 |  | 
 |     cpi->twopass.total_stats = *cpi->twopass.stats_in_end; | 
 |     cpi->twopass.total_left_stats = cpi->twopass.total_stats; | 
 |  | 
 |     /* each frame can have a different duration, as the frame rate in the | 
 |      * source isn't guaranteed to be constant.   The frame rate prior to | 
 |      * the first frame encoded in the second pass is a guess.  However the | 
 |      * sum duration is not. Its calculated based on the actual durations of | 
 |      * all frames from the first pass. | 
 |      */ | 
 |     vp8_new_frame_rate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration); | 
 |  | 
 |     cpi->output_frame_rate = cpi->frame_rate; | 
 |     cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0) ; | 
 |     cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0); | 
 |  | 
 |     /* Calculate a minimum intra value to be used in determining the IIratio | 
 |      * scores used in the second pass. We have this minimum to make sure | 
 |      * that clips that are static but "low complexity" in the intra domain | 
 |      * are still boosted appropriately for KF/GF/ARF | 
 |      */ | 
 |     cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; | 
 |     cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; | 
 |  | 
 |     /* Scan the first pass file and calculate an average Intra / Inter error | 
 |      * score ratio for the sequence | 
 |      */ | 
 |     { | 
 |         double sum_iiratio = 0.0; | 
 |         double IIRatio; | 
 |  | 
 |         start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ | 
 |  | 
 |         while (input_stats(cpi, &this_frame) != EOF) | 
 |         { | 
 |             IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); | 
 |             IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; | 
 |             sum_iiratio += IIRatio; | 
 |         } | 
 |  | 
 |         cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); | 
 |  | 
 |         /* Reset file position */ | 
 |         reset_fpf_position(cpi, start_pos); | 
 |     } | 
 |  | 
 |     /* Scan the first pass file and calculate a modified total error based | 
 |      * upon the bias/power function used to allocate bits | 
 |      */ | 
 |     { | 
 |         start_pos = cpi->twopass.stats_in;  /* Note starting "file" position */ | 
 |  | 
 |         cpi->twopass.modified_error_total = 0.0; | 
 |         cpi->twopass.modified_error_used = 0.0; | 
 |  | 
 |         while (input_stats(cpi, &this_frame) != EOF) | 
 |         { | 
 |             cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); | 
 |         } | 
 |         cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; | 
 |  | 
 |         reset_fpf_position(cpi, start_pos);  /* Reset file position */ | 
 |  | 
 |     } | 
 | } | 
 |  | 
 | void vp8_end_second_pass(VP8_COMP *cpi) | 
 | { | 
 | } | 
 |  | 
 | /* This function gives and estimate of how badly we believe the prediction | 
 |  * quality is decaying from frame to frame. | 
 |  */ | 
 | static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) | 
 | { | 
 |     double prediction_decay_rate; | 
 |     double motion_decay; | 
 |     double motion_pct = next_frame->pcnt_motion; | 
 |  | 
 |     /* Initial basis is the % mbs inter coded */ | 
 |     prediction_decay_rate = next_frame->pcnt_inter; | 
 |  | 
 |     /* High % motion -> somewhat higher decay rate */ | 
 |     motion_decay = (1.0 - (motion_pct / 20.0)); | 
 |     if (motion_decay < prediction_decay_rate) | 
 |         prediction_decay_rate = motion_decay; | 
 |  | 
 |     /* Adjustment to decay rate based on speed of motion */ | 
 |     { | 
 |         double this_mv_rabs; | 
 |         double this_mv_cabs; | 
 |         double distance_factor; | 
 |  | 
 |         this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); | 
 |         this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); | 
 |  | 
 |         distance_factor = sqrt((this_mv_rabs * this_mv_rabs) + | 
 |                                (this_mv_cabs * this_mv_cabs)) / 250.0; | 
 |         distance_factor = ((distance_factor > 1.0) | 
 |                                 ? 0.0 : (1.0 - distance_factor)); | 
 |         if (distance_factor < prediction_decay_rate) | 
 |             prediction_decay_rate = distance_factor; | 
 |     } | 
 |  | 
 |     return prediction_decay_rate; | 
 | } | 
 |  | 
 | /* Function to test for a condition where a complex transition is followed | 
 |  * by a static section. For example in slide shows where there is a fade | 
 |  * between slides. This is to help with more optimal kf and gf positioning. | 
 |  */ | 
 | static int detect_transition_to_still( | 
 |     VP8_COMP *cpi, | 
 |     int frame_interval, | 
 |     int still_interval, | 
 |     double loop_decay_rate, | 
 |     double decay_accumulator ) | 
 | { | 
 |     int trans_to_still = 0; | 
 |  | 
 |     /* Break clause to detect very still sections after motion | 
 |      * For example a static image after a fade or other transition | 
 |      * instead of a clean scene cut. | 
 |      */ | 
 |     if ( (frame_interval > MIN_GF_INTERVAL) && | 
 |          (loop_decay_rate >= 0.999) && | 
 |          (decay_accumulator < 0.9) ) | 
 |     { | 
 |         int j; | 
 |         FIRSTPASS_STATS * position = cpi->twopass.stats_in; | 
 |         FIRSTPASS_STATS tmp_next_frame; | 
 |         double decay_rate; | 
 |  | 
 |         /* Look ahead a few frames to see if static condition persists... */ | 
 |         for ( j = 0; j < still_interval; j++ ) | 
 |         { | 
 |             if (EOF == input_stats(cpi, &tmp_next_frame)) | 
 |                 break; | 
 |  | 
 |             decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame); | 
 |             if ( decay_rate < 0.999 ) | 
 |                 break; | 
 |         } | 
 |         /* Reset file position */ | 
 |         reset_fpf_position(cpi, position); | 
 |  | 
 |         /* Only if it does do we signal a transition to still */ | 
 |         if ( j == still_interval ) | 
 |             trans_to_still = 1; | 
 |     } | 
 |  | 
 |     return trans_to_still; | 
 | } | 
 |  | 
 | /* This function detects a flash through the high relative pcnt_second_ref | 
 |  * score in the frame following a flash frame. The offset passed in should | 
 |  * reflect this | 
 |  */ | 
 | static int detect_flash( VP8_COMP *cpi, int offset ) | 
 | { | 
 |     FIRSTPASS_STATS next_frame; | 
 |  | 
 |     int flash_detected = 0; | 
 |  | 
 |     /* Read the frame data. */ | 
 |     /* The return is 0 (no flash detected) if not a valid frame */ | 
 |     if ( read_frame_stats(cpi, &next_frame, offset) != EOF ) | 
 |     { | 
 |         /* What we are looking for here is a situation where there is a | 
 |          * brief break in prediction (such as a flash) but subsequent frames | 
 |          * are reasonably well predicted by an earlier (pre flash) frame. | 
 |          * The recovery after a flash is indicated by a high pcnt_second_ref | 
 |          * comapred to pcnt_inter. | 
 |          */ | 
 |         if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) && | 
 |              (next_frame.pcnt_second_ref >= 0.5 ) ) | 
 |         { | 
 |             flash_detected = 1; | 
 |  | 
 |             /*if (1) | 
 |             { | 
 |                 FILE *f = fopen("flash.stt", "a"); | 
 |                 fprintf(f, "%8.0f %6.2f %6.2f\n", | 
 |                     next_frame.frame, | 
 |                     next_frame.pcnt_inter, | 
 |                     next_frame.pcnt_second_ref); | 
 |                 fclose(f); | 
 |             }*/ | 
 |         } | 
 |     } | 
 |  | 
 |     return flash_detected; | 
 | } | 
 |  | 
 | /* Update the motion related elements to the GF arf boost calculation */ | 
 | static void accumulate_frame_motion_stats( | 
 |     VP8_COMP *cpi, | 
 |     FIRSTPASS_STATS * this_frame, | 
 |     double * this_frame_mv_in_out, | 
 |     double * mv_in_out_accumulator, | 
 |     double * abs_mv_in_out_accumulator, | 
 |     double * mv_ratio_accumulator ) | 
 | { | 
 |     double this_frame_mvr_ratio; | 
 |     double this_frame_mvc_ratio; | 
 |     double motion_pct; | 
 |  | 
 |     /* Accumulate motion stats. */ | 
 |     motion_pct = this_frame->pcnt_motion; | 
 |  | 
 |     /* Accumulate Motion In/Out of frame stats */ | 
 |     *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; | 
 |     *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; | 
 |     *abs_mv_in_out_accumulator += | 
 |         fabs(this_frame->mv_in_out_count * motion_pct); | 
 |  | 
 |     /* Accumulate a measure of how uniform (or conversely how random) | 
 |      * the motion field is. (A ratio of absmv / mv) | 
 |      */ | 
 |     if (motion_pct > 0.05) | 
 |     { | 
 |         this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / | 
 |                                DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); | 
 |  | 
 |         this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / | 
 |                                DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); | 
 |  | 
 |          *mv_ratio_accumulator += | 
 |             (this_frame_mvr_ratio < this_frame->mvr_abs) | 
 |                 ? (this_frame_mvr_ratio * motion_pct) | 
 |                 : this_frame->mvr_abs * motion_pct; | 
 |  | 
 |         *mv_ratio_accumulator += | 
 |             (this_frame_mvc_ratio < this_frame->mvc_abs) | 
 |                 ? (this_frame_mvc_ratio * motion_pct) | 
 |                 : this_frame->mvc_abs * motion_pct; | 
 |  | 
 |     } | 
 | } | 
 |  | 
 | /* Calculate a baseline boost number for the current frame. */ | 
 | static double calc_frame_boost( | 
 |     VP8_COMP *cpi, | 
 |     FIRSTPASS_STATS * this_frame, | 
 |     double this_frame_mv_in_out ) | 
 | { | 
 |     double frame_boost; | 
 |  | 
 |     /* Underlying boost factor is based on inter intra error ratio */ | 
 |     if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) | 
 |         frame_boost = (IIFACTOR * this_frame->intra_error / | 
 |                       DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); | 
 |     else | 
 |         frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / | 
 |                       DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); | 
 |  | 
 |     /* Increase boost for frames where new data coming into frame | 
 |      * (eg zoom out). Slightly reduce boost if there is a net balance | 
 |      * of motion out of the frame (zoom in). | 
 |      * The range for this_frame_mv_in_out is -1.0 to +1.0 | 
 |      */ | 
 |     if (this_frame_mv_in_out > 0.0) | 
 |         frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); | 
 |     /* In extreme case boost is halved */ | 
 |     else | 
 |         frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); | 
 |  | 
 |     /* Clip to maximum */ | 
 |     if (frame_boost > GF_RMAX) | 
 |         frame_boost = GF_RMAX; | 
 |  | 
 |     return frame_boost; | 
 | } | 
 |  | 
 | #if NEW_BOOST | 
 | static int calc_arf_boost( | 
 |     VP8_COMP *cpi, | 
 |     int offset, | 
 |     int f_frames, | 
 |     int b_frames, | 
 |     int *f_boost, | 
 |     int *b_boost ) | 
 | { | 
 |     FIRSTPASS_STATS this_frame; | 
 |  | 
 |     int i; | 
 |     double boost_score = 0.0; | 
 |     double mv_ratio_accumulator = 0.0; | 
 |     double decay_accumulator = 1.0; | 
 |     double this_frame_mv_in_out = 0.0; | 
 |     double mv_in_out_accumulator = 0.0; | 
 |     double abs_mv_in_out_accumulator = 0.0; | 
 |     double r; | 
 |     int flash_detected = 0; | 
 |  | 
 |     /* Search forward from the proposed arf/next gf position */ | 
 |     for ( i = 0; i < f_frames; i++ ) | 
 |     { | 
 |         if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) | 
 |             break; | 
 |  | 
 |         /* Update the motion related elements to the boost calculation */ | 
 |         accumulate_frame_motion_stats( cpi, &this_frame, | 
 |             &this_frame_mv_in_out, &mv_in_out_accumulator, | 
 |             &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); | 
 |  | 
 |         /* Calculate the baseline boost number for this frame */ | 
 |         r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); | 
 |  | 
 |         /* We want to discount the the flash frame itself and the recovery | 
 |          * frame that follows as both will have poor scores. | 
 |          */ | 
 |         flash_detected = detect_flash(cpi, (i+offset)) || | 
 |                          detect_flash(cpi, (i+offset+1)); | 
 |  | 
 |         /* Cumulative effect of prediction quality decay */ | 
 |         if ( !flash_detected ) | 
 |         { | 
 |             decay_accumulator = | 
 |                 decay_accumulator * | 
 |                 get_prediction_decay_rate(cpi, &this_frame); | 
 |             decay_accumulator = | 
 |                 decay_accumulator < 0.1 ? 0.1 : decay_accumulator; | 
 |         } | 
 |         boost_score += (decay_accumulator * r); | 
 |  | 
 |         /* Break out conditions. */ | 
 |         if  ( (!flash_detected) && | 
 |               ((mv_ratio_accumulator > 100.0) || | 
 |                (abs_mv_in_out_accumulator > 3.0) || | 
 |                (mv_in_out_accumulator < -2.0) ) ) | 
 |         { | 
 |             break; | 
 |         } | 
 |     } | 
 |  | 
 |     *f_boost = (int)(boost_score * 100.0) >> 4; | 
 |  | 
 |     /* Reset for backward looking loop */ | 
 |     boost_score = 0.0; | 
 |     mv_ratio_accumulator = 0.0; | 
 |     decay_accumulator = 1.0; | 
 |     this_frame_mv_in_out = 0.0; | 
 |     mv_in_out_accumulator = 0.0; | 
 |     abs_mv_in_out_accumulator = 0.0; | 
 |  | 
 |     /* Search forward from the proposed arf/next gf position */ | 
 |     for ( i = -1; i >= -b_frames; i-- ) | 
 |     { | 
 |         if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) | 
 |             break; | 
 |  | 
 |         /* Update the motion related elements to the boost calculation */ | 
 |         accumulate_frame_motion_stats( cpi, &this_frame, | 
 |             &this_frame_mv_in_out, &mv_in_out_accumulator, | 
 |             &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); | 
 |  | 
 |         /* Calculate the baseline boost number for this frame */ | 
 |         r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); | 
 |  | 
 |         /* We want to discount the the flash frame itself and the recovery | 
 |          * frame that follows as both will have poor scores. | 
 |          */ | 
 |         flash_detected = detect_flash(cpi, (i+offset)) || | 
 |                          detect_flash(cpi, (i+offset+1)); | 
 |  | 
 |         /* Cumulative effect of prediction quality decay */ | 
 |         if ( !flash_detected ) | 
 |         { | 
 |             decay_accumulator = | 
 |                 decay_accumulator * | 
 |                 get_prediction_decay_rate(cpi, &this_frame); | 
 |             decay_accumulator = | 
 |                 decay_accumulator < 0.1 ? 0.1 : decay_accumulator; | 
 |         } | 
 |  | 
 |         boost_score += (decay_accumulator * r); | 
 |  | 
 |         /* Break out conditions. */ | 
 |         if  ( (!flash_detected) && | 
 |               ((mv_ratio_accumulator > 100.0) || | 
 |                (abs_mv_in_out_accumulator > 3.0) || | 
 |                (mv_in_out_accumulator < -2.0) ) ) | 
 |         { | 
 |             break; | 
 |         } | 
 |     } | 
 |     *b_boost = (int)(boost_score * 100.0) >> 4; | 
 |  | 
 |     return (*f_boost + *b_boost); | 
 | } | 
 | #endif | 
 |  | 
 | /* Analyse and define a gf/arf group . */ | 
 | static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) | 
 | { | 
 |     FIRSTPASS_STATS next_frame; | 
 |     FIRSTPASS_STATS *start_pos; | 
 |     int i; | 
 |     double r; | 
 |     double boost_score = 0.0; | 
 |     double old_boost_score = 0.0; | 
 |     double gf_group_err = 0.0; | 
 |     double gf_first_frame_err = 0.0; | 
 |     double mod_frame_err = 0.0; | 
 |  | 
 |     double mv_ratio_accumulator = 0.0; | 
 |     double decay_accumulator = 1.0; | 
 |  | 
 |     double loop_decay_rate = 1.00;          /* Starting decay rate */ | 
 |  | 
 |     double this_frame_mv_in_out = 0.0; | 
 |     double mv_in_out_accumulator = 0.0; | 
 |     double abs_mv_in_out_accumulator = 0.0; | 
 |     double mod_err_per_mb_accumulator = 0.0; | 
 |  | 
 |     int max_bits = frame_max_bits(cpi);     /* Max for a single frame */ | 
 |  | 
 |     unsigned int allow_alt_ref = | 
 |                     cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; | 
 |  | 
 |     int alt_boost = 0; | 
 |     int f_boost = 0; | 
 |     int b_boost = 0; | 
 |     int flash_detected; | 
 |  | 
 |     cpi->twopass.gf_group_bits = 0; | 
 |     cpi->twopass.gf_decay_rate = 0; | 
 |  | 
 |     vp8_clear_system_state(); | 
 |  | 
 |     start_pos = cpi->twopass.stats_in; | 
 |  | 
 |     vpx_memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */ | 
 |  | 
 |     /* Load stats for the current frame. */ | 
 |     mod_frame_err = calculate_modified_err(cpi, this_frame); | 
 |  | 
 |     /* Note the error of the frame at the start of the group (this will be | 
 |      * the GF frame error if we code a normal gf | 
 |      */ | 
 |     gf_first_frame_err = mod_frame_err; | 
 |  | 
 |     /* Special treatment if the current frame is a key frame (which is also | 
 |      * a gf). If it is then its error score (and hence bit allocation) need | 
 |      * to be subtracted out from the calculation for the GF group | 
 |      */ | 
 |     if (cpi->common.frame_type == KEY_FRAME) | 
 |         gf_group_err -= gf_first_frame_err; | 
 |  | 
 |     /* Scan forward to try and work out how many frames the next gf group | 
 |      * should contain and what level of boost is appropriate for the GF | 
 |      * or ARF that will be coded with the group | 
 |      */ | 
 |     i = 0; | 
 |  | 
 |     while (((i < cpi->twopass.static_scene_max_gf_interval) || | 
 |             ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && | 
 |            (i < cpi->twopass.frames_to_key)) | 
 |     { | 
 |         i++; | 
 |  | 
 |         /* Accumulate error score of frames in this gf group */ | 
 |         mod_frame_err = calculate_modified_err(cpi, this_frame); | 
 |  | 
 |         gf_group_err += mod_frame_err; | 
 |  | 
 |         mod_err_per_mb_accumulator += | 
 |             mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); | 
 |  | 
 |         if (EOF == input_stats(cpi, &next_frame)) | 
 |             break; | 
 |  | 
 |         /* Test for the case where there is a brief flash but the prediction | 
 |          * quality back to an earlier frame is then restored. | 
 |          */ | 
 |         flash_detected = detect_flash(cpi, 0); | 
 |  | 
 |         /* Update the motion related elements to the boost calculation */ | 
 |         accumulate_frame_motion_stats( cpi, &next_frame, | 
 |             &this_frame_mv_in_out, &mv_in_out_accumulator, | 
 |             &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); | 
 |  | 
 |         /* Calculate a baseline boost number for this frame */ | 
 |         r = calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ); | 
 |  | 
 |         /* Cumulative effect of prediction quality decay */ | 
 |         if ( !flash_detected ) | 
 |         { | 
 |             loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); | 
 |             decay_accumulator = decay_accumulator * loop_decay_rate; | 
 |             decay_accumulator = | 
 |                 decay_accumulator < 0.1 ? 0.1 : decay_accumulator; | 
 |         } | 
 |         boost_score += (decay_accumulator * r); | 
 |  | 
 |         /* Break clause to detect very still sections after motion | 
 |          * For example a staic image after a fade or other transition. | 
 |          */ | 
 |         if ( detect_transition_to_still( cpi, i, 5, | 
 |                                          loop_decay_rate, | 
 |                                          decay_accumulator ) ) | 
 |         { | 
 |             allow_alt_ref = 0; | 
 |             boost_score = old_boost_score; | 
 |             break; | 
 |         } | 
 |  | 
 |         /* Break out conditions. */ | 
 |         if  ( | 
 |             /* Break at cpi->max_gf_interval unless almost totally static */ | 
 |             (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || | 
 |             ( | 
 |                 /* Dont break out with a very short interval */ | 
 |                 (i > MIN_GF_INTERVAL) && | 
 |                 /* Dont break out very close to a key frame */ | 
 |                 ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && | 
 |                 ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && | 
 |                 (!flash_detected) && | 
 |                 ((mv_ratio_accumulator > 100.0) || | 
 |                  (abs_mv_in_out_accumulator > 3.0) || | 
 |                  (mv_in_out_accumulator < -2.0) || | 
 |                  ((boost_score - old_boost_score) < 2.0)) | 
 |             ) ) | 
 |         { | 
 |             boost_score = old_boost_score; | 
 |             break; | 
 |         } | 
 |  | 
 |         vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame)); | 
 |  | 
 |         old_boost_score = boost_score; | 
 |     } | 
 |  | 
 |     cpi->twopass.gf_decay_rate = | 
 |         (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; | 
 |  | 
 |     /* When using CBR apply additional buffer related upper limits */ | 
 |     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |     { | 
 |         double max_boost; | 
 |  | 
 |         /* For cbr apply buffer related limits */ | 
 |         if (cpi->drop_frames_allowed) | 
 |         { | 
 |             int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark * | 
 |                                   (cpi->oxcf.optimal_buffer_level / 100); | 
 |  | 
 |             if (cpi->buffer_level > df_buffer_level) | 
 |                 max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); | 
 |             else | 
 |                 max_boost = 0.0; | 
 |         } | 
 |         else if (cpi->buffer_level > 0) | 
 |         { | 
 |             max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); | 
 |         } | 
 |         else | 
 |         { | 
 |             max_boost = 0.0; | 
 |         } | 
 |  | 
 |         if (boost_score > max_boost) | 
 |             boost_score = max_boost; | 
 |     } | 
 |  | 
 |     /* Dont allow conventional gf too near the next kf */ | 
 |     if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) | 
 |     { | 
 |         while (i < cpi->twopass.frames_to_key) | 
 |         { | 
 |             i++; | 
 |  | 
 |             if (EOF == input_stats(cpi, this_frame)) | 
 |                 break; | 
 |  | 
 |             if (i < cpi->twopass.frames_to_key) | 
 |             { | 
 |                 mod_frame_err = calculate_modified_err(cpi, this_frame); | 
 |                 gf_group_err += mod_frame_err; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; | 
 |  | 
 | #if NEW_BOOST | 
 |     /* Alterrnative boost calculation for alt ref */ | 
 |     alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost ); | 
 | #endif | 
 |  | 
 |     /* Should we use the alternate refernce frame */ | 
 |     if (allow_alt_ref && | 
 |         (i >= MIN_GF_INTERVAL) && | 
 |         /* dont use ARF very near next kf */ | 
 |         (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && | 
 | #if NEW_BOOST | 
 |         ((next_frame.pcnt_inter > 0.75) || | 
 |          (next_frame.pcnt_second_ref > 0.5)) && | 
 |         ((mv_in_out_accumulator / (double)i > -0.2) || | 
 |          (mv_in_out_accumulator > -2.0)) && | 
 |         (b_boost > 100) && | 
 |         (f_boost > 100) ) | 
 | #else | 
 |         (next_frame.pcnt_inter > 0.75) && | 
 |         ((mv_in_out_accumulator / (double)i > -0.2) || | 
 |          (mv_in_out_accumulator > -2.0)) && | 
 |         (cpi->gfu_boost > 100) && | 
 |         (cpi->twopass.gf_decay_rate <= | 
 |             (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) ) | 
 | #endif | 
 |     { | 
 |         int Boost; | 
 |         int allocation_chunks; | 
 |         int Q = (cpi->oxcf.fixed_q < 0) | 
 |                 ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; | 
 |         int tmp_q; | 
 |         int arf_frame_bits = 0; | 
 |         int group_bits; | 
 |  | 
 | #if NEW_BOOST | 
 |         cpi->gfu_boost = alt_boost; | 
 | #endif | 
 |  | 
 |         /* Estimate the bits to be allocated to the group as a whole */ | 
 |         if ((cpi->twopass.kf_group_bits > 0) && | 
 |             (cpi->twopass.kf_group_error_left > 0)) | 
 |         { | 
 |             group_bits = (int)((double)cpi->twopass.kf_group_bits * | 
 |                 (gf_group_err / (double)cpi->twopass.kf_group_error_left)); | 
 |         } | 
 |         else | 
 |             group_bits = 0; | 
 |  | 
 |         /* Boost for arf frame */ | 
 | #if NEW_BOOST | 
 |         Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; | 
 | #else | 
 |         Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); | 
 | #endif | 
 |         Boost += (i * 50); | 
 |  | 
 |         /* Set max and minimum boost and hence minimum allocation */ | 
 |         if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) | 
 |             Boost = ((cpi->baseline_gf_interval + 1) * 200); | 
 |         else if (Boost < 125) | 
 |             Boost = 125; | 
 |  | 
 |         allocation_chunks = (i * 100) + Boost; | 
 |  | 
 |         /* Normalize Altboost and allocations chunck down to prevent overflow */ | 
 |         while (Boost > 1000) | 
 |         { | 
 |             Boost /= 2; | 
 |             allocation_chunks /= 2; | 
 |         } | 
 |  | 
 |         /* Calculate the number of bits to be spent on the arf based on the | 
 |          * boost number | 
 |          */ | 
 |         arf_frame_bits = (int)((double)Boost * (group_bits / | 
 |                                (double)allocation_chunks)); | 
 |  | 
 |         /* Estimate if there are enough bits available to make worthwhile use | 
 |          * of an arf. | 
 |          */ | 
 |         tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); | 
 |  | 
 |         /* Only use an arf if it is likely we will be able to code | 
 |          * it at a lower Q than the surrounding frames. | 
 |          */ | 
 |         if (tmp_q < cpi->worst_quality) | 
 |         { | 
 |             int half_gf_int; | 
 |             int frames_after_arf; | 
 |             int frames_bwd = cpi->oxcf.arnr_max_frames - 1; | 
 |             int frames_fwd = cpi->oxcf.arnr_max_frames - 1; | 
 |  | 
 |             cpi->source_alt_ref_pending = 1; | 
 |  | 
 |             /* | 
 |              * For alt ref frames the error score for the end frame of the | 
 |              * group (the alt ref frame) should not contribute to the group | 
 |              * total and hence the number of bit allocated to the group. | 
 |              * Rather it forms part of the next group (it is the GF at the | 
 |              * start of the next group) | 
 |              * gf_group_err -= mod_frame_err; | 
 |              * | 
 |              * For alt ref frames alt ref frame is technically part of the | 
 |              * GF frame for the next group but we always base the error | 
 |              * calculation and bit allocation on the current group of frames. | 
 |              * | 
 |              * Set the interval till the next gf or arf. | 
 |              * For ARFs this is the number of frames to be coded before the | 
 |              * future frame that is coded as an ARF. | 
 |              * The future frame itself is part of the next group | 
 |              */ | 
 |             cpi->baseline_gf_interval = i; | 
 |  | 
 |             /* | 
 |              * Define the arnr filter width for this group of frames: | 
 |              * We only filter frames that lie within a distance of half | 
 |              * the GF interval from the ARF frame. We also have to trap | 
 |              * cases where the filter extends beyond the end of clip. | 
 |              * Note: this_frame->frame has been updated in the loop | 
 |              * so it now points at the ARF frame. | 
 |              */ | 
 |             half_gf_int = cpi->baseline_gf_interval >> 1; | 
 |             frames_after_arf = (int)(cpi->twopass.total_stats.count - | 
 |                                this_frame->frame - 1); | 
 |  | 
 |             switch (cpi->oxcf.arnr_type) | 
 |             { | 
 |             case 1: /* Backward filter */ | 
 |                 frames_fwd = 0; | 
 |                 if (frames_bwd > half_gf_int) | 
 |                     frames_bwd = half_gf_int; | 
 |                 break; | 
 |  | 
 |             case 2: /* Forward filter */ | 
 |                 if (frames_fwd > half_gf_int) | 
 |                     frames_fwd = half_gf_int; | 
 |                 if (frames_fwd > frames_after_arf) | 
 |                     frames_fwd = frames_after_arf; | 
 |                 frames_bwd = 0; | 
 |                 break; | 
 |  | 
 |             case 3: /* Centered filter */ | 
 |             default: | 
 |                 frames_fwd >>= 1; | 
 |                 if (frames_fwd > frames_after_arf) | 
 |                     frames_fwd = frames_after_arf; | 
 |                 if (frames_fwd > half_gf_int) | 
 |                     frames_fwd = half_gf_int; | 
 |  | 
 |                 frames_bwd = frames_fwd; | 
 |  | 
 |                 /* For even length filter there is one more frame backward | 
 |                  * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. | 
 |                  */ | 
 |                 if (frames_bwd < half_gf_int) | 
 |                     frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1; | 
 |                 break; | 
 |             } | 
 |  | 
 |             cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; | 
 |         } | 
 |         else | 
 |         { | 
 |             cpi->source_alt_ref_pending = 0; | 
 |             cpi->baseline_gf_interval = i; | 
 |         } | 
 |     } | 
 |     else | 
 |     { | 
 |         cpi->source_alt_ref_pending = 0; | 
 |         cpi->baseline_gf_interval = i; | 
 |     } | 
 |  | 
 |     /* | 
 |      * Now decide how many bits should be allocated to the GF group as  a | 
 |      * proportion of those remaining in the kf group. | 
 |      * The final key frame group in the clip is treated as a special case | 
 |      * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. | 
 |      * This is also important for short clips where there may only be one | 
 |      * key frame. | 
 |      */ | 
 |     if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count - | 
 |                                             cpi->common.current_video_frame)) | 
 |     { | 
 |         cpi->twopass.kf_group_bits = | 
 |             (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; | 
 |     } | 
 |  | 
 |     /* Calculate the bits to be allocated to the group as a whole */ | 
 |     if ((cpi->twopass.kf_group_bits > 0) && | 
 |         (cpi->twopass.kf_group_error_left > 0)) | 
 |     { | 
 |         cpi->twopass.gf_group_bits = | 
 |             (int64_t)(cpi->twopass.kf_group_bits * | 
 |                       (gf_group_err / cpi->twopass.kf_group_error_left)); | 
 |     } | 
 |     else | 
 |         cpi->twopass.gf_group_bits = 0; | 
 |  | 
 |     cpi->twopass.gf_group_bits = | 
 |         (cpi->twopass.gf_group_bits < 0) | 
 |             ? 0 | 
 |             : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) | 
 |                 ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; | 
 |  | 
 |     /* Clip cpi->twopass.gf_group_bits based on user supplied data rate | 
 |      * variability limit (cpi->oxcf.two_pass_vbrmax_section) | 
 |      */ | 
 |     if (cpi->twopass.gf_group_bits > | 
 |         (int64_t)max_bits * cpi->baseline_gf_interval) | 
 |         cpi->twopass.gf_group_bits = | 
 |             (int64_t)max_bits * cpi->baseline_gf_interval; | 
 |  | 
 |     /* Reset the file position */ | 
 |     reset_fpf_position(cpi, start_pos); | 
 |  | 
 |     /* Update the record of error used so far (only done once per gf group) */ | 
 |     cpi->twopass.modified_error_used += gf_group_err; | 
 |  | 
 |     /* Assign  bits to the arf or gf. */ | 
 |     for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { | 
 |         int Boost; | 
 |         int allocation_chunks; | 
 |         int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; | 
 |         int gf_bits; | 
 |  | 
 |         /* For ARF frames */ | 
 |         if (cpi->source_alt_ref_pending && i == 0) | 
 |         { | 
 | #if NEW_BOOST | 
 |             Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; | 
 | #else | 
 |             Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); | 
 | #endif | 
 |             Boost += (cpi->baseline_gf_interval * 50); | 
 |  | 
 |             /* Set max and minimum boost and hence minimum allocation */ | 
 |             if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) | 
 |                 Boost = ((cpi->baseline_gf_interval + 1) * 200); | 
 |             else if (Boost < 125) | 
 |                 Boost = 125; | 
 |  | 
 |             allocation_chunks = | 
 |                 ((cpi->baseline_gf_interval + 1) * 100) + Boost; | 
 |         } | 
 |         /* Else for standard golden frames */ | 
 |         else | 
 |         { | 
 |             /* boost based on inter / intra ratio of subsequent frames */ | 
 |             Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; | 
 |  | 
 |             /* Set max and minimum boost and hence minimum allocation */ | 
 |             if (Boost > (cpi->baseline_gf_interval * 150)) | 
 |                 Boost = (cpi->baseline_gf_interval * 150); | 
 |             else if (Boost < 125) | 
 |                 Boost = 125; | 
 |  | 
 |             allocation_chunks = | 
 |                 (cpi->baseline_gf_interval * 100) + (Boost - 100); | 
 |         } | 
 |  | 
 |         /* Normalize Altboost and allocations chunck down to prevent overflow */ | 
 |         while (Boost > 1000) | 
 |         { | 
 |             Boost /= 2; | 
 |             allocation_chunks /= 2; | 
 |         } | 
 |  | 
 |         /* Calculate the number of bits to be spent on the gf or arf based on | 
 |          * the boost number | 
 |          */ | 
 |         gf_bits = (int)((double)Boost * | 
 |                         (cpi->twopass.gf_group_bits / | 
 |                          (double)allocation_chunks)); | 
 |  | 
 |         /* If the frame that is to be boosted is simpler than the average for | 
 |          * the gf/arf group then use an alternative calculation | 
 |          * based on the error score of the frame itself | 
 |          */ | 
 |         if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) | 
 |         { | 
 |             double  alt_gf_grp_bits; | 
 |             int     alt_gf_bits; | 
 |  | 
 |             alt_gf_grp_bits = | 
 |                 (double)cpi->twopass.kf_group_bits  * | 
 |                 (mod_frame_err * (double)cpi->baseline_gf_interval) / | 
 |                 DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); | 
 |  | 
 |             alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits / | 
 |                                                  (double)allocation_chunks)); | 
 |  | 
 |             if (gf_bits > alt_gf_bits) | 
 |             { | 
 |                 gf_bits = alt_gf_bits; | 
 |             } | 
 |         } | 
 |         /* Else if it is harder than other frames in the group make sure it at | 
 |          * least receives an allocation in keeping with its relative error | 
 |          * score, otherwise it may be worse off than an "un-boosted" frame | 
 |          */ | 
 |         else | 
 |         { | 
 |             int alt_gf_bits = | 
 |                 (int)((double)cpi->twopass.kf_group_bits * | 
 |                       mod_frame_err / | 
 |                       DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); | 
 |  | 
 |             if (alt_gf_bits > gf_bits) | 
 |             { | 
 |                 gf_bits = alt_gf_bits; | 
 |             } | 
 |         } | 
 |  | 
 |         /* Apply an additional limit for CBR */ | 
 |         if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |         { | 
 |             if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) | 
 |                 cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1); | 
 |         } | 
 |  | 
 |         /* Dont allow a negative value for gf_bits */ | 
 |         if (gf_bits < 0) | 
 |             gf_bits = 0; | 
 |  | 
 |         /* Add in minimum for a frame */ | 
 |         gf_bits += cpi->min_frame_bandwidth; | 
 |  | 
 |         if (i == 0) | 
 |         { | 
 |             cpi->twopass.gf_bits = gf_bits; | 
 |         } | 
 |         if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) | 
 |         { | 
 |             /* Per frame bit target for this frame */ | 
 |             cpi->per_frame_bandwidth = gf_bits; | 
 |         } | 
 |     } | 
 |  | 
 |     { | 
 |         /* Adjust KF group bits and error remainin */ | 
 |         cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; | 
 |         cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; | 
 |  | 
 |         if (cpi->twopass.kf_group_bits < 0) | 
 |             cpi->twopass.kf_group_bits = 0; | 
 |  | 
 |         /* Note the error score left in the remaining frames of the group. | 
 |          * For normal GFs we want to remove the error score for the first | 
 |          * frame of the group (except in Key frame case where this has | 
 |          * already happened) | 
 |          */ | 
 |         if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) | 
 |             cpi->twopass.gf_group_error_left = (int)(gf_group_err - | 
 |                                                      gf_first_frame_err); | 
 |         else | 
 |             cpi->twopass.gf_group_error_left = (int) gf_group_err; | 
 |  | 
 |         cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; | 
 |  | 
 |         if (cpi->twopass.gf_group_bits < 0) | 
 |             cpi->twopass.gf_group_bits = 0; | 
 |  | 
 |         /* This condition could fail if there are two kfs very close together | 
 |          * despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the | 
 |          * calculation of cpi->twopass.alt_extra_bits. | 
 |          */ | 
 |         if ( cpi->baseline_gf_interval >= 3 ) | 
 |         { | 
 | #if NEW_BOOST | 
 |             int boost = (cpi->source_alt_ref_pending) | 
 |                         ? b_boost : cpi->gfu_boost; | 
 | #else | 
 |             int boost = cpi->gfu_boost; | 
 | #endif | 
 |             if ( boost >= 150 ) | 
 |             { | 
 |                 int pct_extra; | 
 |  | 
 |                 pct_extra = (boost - 100) / 50; | 
 |                 pct_extra = (pct_extra > 20) ? 20 : pct_extra; | 
 |  | 
 |                 cpi->twopass.alt_extra_bits = | 
 |                     (cpi->twopass.gf_group_bits * pct_extra) / 100; | 
 |                 cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; | 
 |                 cpi->twopass.alt_extra_bits /= | 
 |                     ((cpi->baseline_gf_interval-1)>>1); | 
 |             } | 
 |             else | 
 |                 cpi->twopass.alt_extra_bits = 0; | 
 |         } | 
 |         else | 
 |             cpi->twopass.alt_extra_bits = 0; | 
 |     } | 
 |  | 
 |     /* Adjustments based on a measure of complexity of the section */ | 
 |     if (cpi->common.frame_type != KEY_FRAME) | 
 |     { | 
 |         FIRSTPASS_STATS sectionstats; | 
 |         double Ratio; | 
 |  | 
 |         zero_stats(§ionstats); | 
 |         reset_fpf_position(cpi, start_pos); | 
 |  | 
 |         for (i = 0 ; i < cpi->baseline_gf_interval ; i++) | 
 |         { | 
 |             input_stats(cpi, &next_frame); | 
 |             accumulate_stats(§ionstats, &next_frame); | 
 |         } | 
 |  | 
 |         avg_stats(§ionstats); | 
 |  | 
 |         cpi->twopass.section_intra_rating = (unsigned int) | 
 |             (sectionstats.intra_error / | 
 |             DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); | 
 |  | 
 |         Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); | 
 |         cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); | 
 |  | 
 |         if (cpi->twopass.section_max_qfactor < 0.80) | 
 |             cpi->twopass.section_max_qfactor = 0.80; | 
 |  | 
 |         reset_fpf_position(cpi, start_pos); | 
 |     } | 
 | } | 
 |  | 
 | /* Allocate bits to a normal frame that is neither a gf an arf or a key frame. */ | 
 | static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) | 
 | { | 
 |     int    target_frame_size; | 
 |  | 
 |     double modified_err; | 
 |     double err_fraction; | 
 |  | 
 |     int max_bits = frame_max_bits(cpi);  /* Max for a single frame */ | 
 |  | 
 |     /* Calculate modified prediction error used in bit allocation */ | 
 |     modified_err = calculate_modified_err(cpi, this_frame); | 
 |  | 
 |     /* What portion of the remaining GF group error is used by this frame */ | 
 |     if (cpi->twopass.gf_group_error_left > 0) | 
 |         err_fraction = modified_err / cpi->twopass.gf_group_error_left; | 
 |     else | 
 |         err_fraction = 0.0; | 
 |  | 
 |     /* How many of those bits available for allocation should we give it? */ | 
 |     target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); | 
 |  | 
 |     /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) | 
 |      * at the top end. | 
 |      */ | 
 |     if (target_frame_size < 0) | 
 |         target_frame_size = 0; | 
 |     else | 
 |     { | 
 |         if (target_frame_size > max_bits) | 
 |             target_frame_size = max_bits; | 
 |  | 
 |         if (target_frame_size > cpi->twopass.gf_group_bits) | 
 |             target_frame_size = cpi->twopass.gf_group_bits; | 
 |     } | 
 |  | 
 |     /* Adjust error and bits remaining */ | 
 |     cpi->twopass.gf_group_error_left -= (int)modified_err; | 
 |     cpi->twopass.gf_group_bits -= target_frame_size; | 
 |  | 
 |     if (cpi->twopass.gf_group_bits < 0) | 
 |         cpi->twopass.gf_group_bits = 0; | 
 |  | 
 |     /* Add in the minimum number of bits that is set aside for every frame. */ | 
 |     target_frame_size += cpi->min_frame_bandwidth; | 
 |  | 
 |     /* Every other frame gets a few extra bits */ | 
 |     if ( (cpi->common.frames_since_golden & 0x01) && | 
 |          (cpi->frames_till_gf_update_due > 0) ) | 
 |     { | 
 |         target_frame_size += cpi->twopass.alt_extra_bits; | 
 |     } | 
 |  | 
 |     /* Per frame bit target for this frame */ | 
 |     cpi->per_frame_bandwidth = target_frame_size; | 
 | } | 
 |  | 
 | void vp8_second_pass(VP8_COMP *cpi) | 
 | { | 
 |     int tmp_q; | 
 |     int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); | 
 |  | 
 |     FIRSTPASS_STATS this_frame = {0}; | 
 |     FIRSTPASS_STATS this_frame_copy; | 
 |  | 
 |     double this_frame_intra_error; | 
 |     double this_frame_coded_error; | 
 |  | 
 |     int overhead_bits; | 
 |  | 
 |     if (!cpi->twopass.stats_in) | 
 |     { | 
 |         return ; | 
 |     } | 
 |  | 
 |     vp8_clear_system_state(); | 
 |  | 
 |     if (EOF == input_stats(cpi, &this_frame)) | 
 |         return; | 
 |  | 
 |     this_frame_intra_error = this_frame.intra_error; | 
 |     this_frame_coded_error = this_frame.coded_error; | 
 |  | 
 |     /* keyframe and section processing ! */ | 
 |     if (cpi->twopass.frames_to_key == 0) | 
 |     { | 
 |         /* Define next KF group and assign bits to it */ | 
 |         vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); | 
 |         find_next_key_frame(cpi, &this_frame_copy); | 
 |  | 
 |         /* Special case: Error error_resilient_mode mode does not make much | 
 |          * sense for two pass but with its current meaning but this code is | 
 |          * designed to stop outlandish behaviour if someone does set it when | 
 |          * using two pass. It effectively disables GF groups. This is | 
 |          * temporary code till we decide what should really happen in this | 
 |          * case. | 
 |          */ | 
 |         if (cpi->oxcf.error_resilient_mode) | 
 |         { | 
 |             cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; | 
 |             cpi->twopass.gf_group_error_left = | 
 |                                   (int)cpi->twopass.kf_group_error_left; | 
 |             cpi->baseline_gf_interval = cpi->twopass.frames_to_key; | 
 |             cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; | 
 |             cpi->source_alt_ref_pending = 0; | 
 |         } | 
 |  | 
 |     } | 
 |  | 
 |     /* Is this a GF / ARF (Note that a KF is always also a GF) */ | 
 |     if (cpi->frames_till_gf_update_due == 0) | 
 |     { | 
 |         /* Define next gf group and assign bits to it */ | 
 |         vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); | 
 |         define_gf_group(cpi, &this_frame_copy); | 
 |  | 
 |         /* If we are going to code an altref frame at the end of the group | 
 |          * and the current frame is not a key frame.... If the previous | 
 |          * group used an arf this frame has already benefited from that arf | 
 |          * boost and it should not be given extra bits If the previous | 
 |          * group was NOT coded using arf we may want to apply some boost to | 
 |          * this GF as well | 
 |          */ | 
 |         if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) | 
 |         { | 
 |             /* Assign a standard frames worth of bits from those allocated | 
 |              * to the GF group | 
 |              */ | 
 |             int bak = cpi->per_frame_bandwidth; | 
 |             vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); | 
 |             assign_std_frame_bits(cpi, &this_frame_copy); | 
 |             cpi->per_frame_bandwidth = bak; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Otherwise this is an ordinary frame */ | 
 |     else | 
 |     { | 
 |         /* Special case: Error error_resilient_mode mode does not make much | 
 |          * sense for two pass but with its current meaning but this code is | 
 |          * designed to stop outlandish behaviour if someone does set it | 
 |          * when using two pass. It effectively disables GF groups. This is | 
 |          * temporary code till we decide what should really happen in this | 
 |          * case. | 
 |          */ | 
 |         if (cpi->oxcf.error_resilient_mode) | 
 |         { | 
 |             cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; | 
 |  | 
 |             if (cpi->common.frame_type != KEY_FRAME) | 
 |             { | 
 |                 /* Assign bits from those allocated to the GF group */ | 
 |                 vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); | 
 |                 assign_std_frame_bits(cpi, &this_frame_copy); | 
 |             } | 
 |         } | 
 |         else | 
 |         { | 
 |             /* Assign bits from those allocated to the GF group */ | 
 |             vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); | 
 |             assign_std_frame_bits(cpi, &this_frame_copy); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Keep a globally available copy of this and the next frame's iiratio. */ | 
 |     cpi->twopass.this_iiratio = (unsigned int)(this_frame_intra_error / | 
 |                         DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); | 
 |     { | 
 |         FIRSTPASS_STATS next_frame; | 
 |         if ( lookup_next_frame_stats(cpi, &next_frame) != EOF ) | 
 |         { | 
 |             cpi->twopass.next_iiratio = (unsigned int)(next_frame.intra_error / | 
 |                                 DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Set nominal per second bandwidth for this frame */ | 
 |     cpi->target_bandwidth = (int) | 
 |     (cpi->per_frame_bandwidth * cpi->output_frame_rate); | 
 |     if (cpi->target_bandwidth < 0) | 
 |         cpi->target_bandwidth = 0; | 
 |  | 
 |  | 
 |     /* Account for mv, mode and other overheads. */ | 
 |     overhead_bits = (int)estimate_modemvcost( | 
 |                         cpi, &cpi->twopass.total_left_stats ); | 
 |  | 
 |     /* Special case code for first frame. */ | 
 |     if (cpi->common.current_video_frame == 0) | 
 |     { | 
 |         cpi->twopass.est_max_qcorrection_factor = 1.0; | 
 |  | 
 |         /* Set a cq_level in constrained quality mode. */ | 
 |         if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY ) | 
 |         { | 
 |             int est_cq; | 
 |  | 
 |             est_cq = | 
 |                 estimate_cq( cpi, | 
 |                              &cpi->twopass.total_left_stats, | 
 |                              (int)(cpi->twopass.bits_left / frames_left), | 
 |                              overhead_bits ); | 
 |  | 
 |             cpi->cq_target_quality = cpi->oxcf.cq_level; | 
 |             if ( est_cq > cpi->cq_target_quality ) | 
 |                 cpi->cq_target_quality = est_cq; | 
 |         } | 
 |  | 
 |         /* guess at maxq needed in 2nd pass */ | 
 |         cpi->twopass.maxq_max_limit = cpi->worst_quality; | 
 |         cpi->twopass.maxq_min_limit = cpi->best_quality; | 
 |  | 
 |         tmp_q = estimate_max_q( | 
 |                     cpi, | 
 |                     &cpi->twopass.total_left_stats, | 
 |                     (int)(cpi->twopass.bits_left / frames_left), | 
 |                     overhead_bits ); | 
 |  | 
 |         /* Limit the maxq value returned subsequently. | 
 |          * This increases the risk of overspend or underspend if the initial | 
 |          * estimate for the clip is bad, but helps prevent excessive | 
 |          * variation in Q, especially near the end of a clip | 
 |          * where for example a small overspend may cause Q to crash | 
 |          */ | 
 |         cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality) | 
 |                                   ? (tmp_q + 32) : cpi->worst_quality; | 
 |         cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality) | 
 |                                   ? (tmp_q - 32) : cpi->best_quality; | 
 |  | 
 |         cpi->active_worst_quality         = tmp_q; | 
 |         cpi->ni_av_qi                     = tmp_q; | 
 |     } | 
 |  | 
 |     /* The last few frames of a clip almost always have to few or too many | 
 |      * bits and for the sake of over exact rate control we dont want to make | 
 |      * radical adjustments to the allowed quantizer range just to use up a | 
 |      * few surplus bits or get beneath the target rate. | 
 |      */ | 
 |     else if ( (cpi->common.current_video_frame < | 
 |                  (((unsigned int)cpi->twopass.total_stats.count * 255)>>8)) && | 
 |               ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < | 
 |                  (unsigned int)cpi->twopass.total_stats.count) ) | 
 |     { | 
 |         if (frames_left < 1) | 
 |             frames_left = 1; | 
 |  | 
 |         tmp_q = estimate_max_q( | 
 |                     cpi, | 
 |                     &cpi->twopass.total_left_stats, | 
 |                     (int)(cpi->twopass.bits_left / frames_left), | 
 |                     overhead_bits ); | 
 |  | 
 |         /* Move active_worst_quality but in a damped way */ | 
 |         if (tmp_q > cpi->active_worst_quality) | 
 |             cpi->active_worst_quality ++; | 
 |         else if (tmp_q < cpi->active_worst_quality) | 
 |             cpi->active_worst_quality --; | 
 |  | 
 |         cpi->active_worst_quality = | 
 |             ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; | 
 |     } | 
 |  | 
 |     cpi->twopass.frames_to_key --; | 
 |  | 
 |     /* Update the total stats remaining sturcture */ | 
 |     subtract_stats(&cpi->twopass.total_left_stats, &this_frame ); | 
 | } | 
 |  | 
 |  | 
 | static int test_candidate_kf(VP8_COMP *cpi,  FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) | 
 | { | 
 |     int is_viable_kf = 0; | 
 |  | 
 |     /* Does the frame satisfy the primary criteria of a key frame | 
 |      *      If so, then examine how well it predicts subsequent frames | 
 |      */ | 
 |     if ((this_frame->pcnt_second_ref < 0.10) && | 
 |         (next_frame->pcnt_second_ref < 0.10) && | 
 |         ((this_frame->pcnt_inter < 0.05) || | 
 |          ( | 
 |              ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && | 
 |              ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && | 
 |              ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || | 
 |               (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || | 
 |               ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) | 
 |              ) | 
 |          ) | 
 |         ) | 
 |        ) | 
 |     { | 
 |         int i; | 
 |         FIRSTPASS_STATS *start_pos; | 
 |  | 
 |         FIRSTPASS_STATS local_next_frame; | 
 |  | 
 |         double boost_score = 0.0; | 
 |         double old_boost_score = 0.0; | 
 |         double decay_accumulator = 1.0; | 
 |         double next_iiratio; | 
 |  | 
 |         vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); | 
 |  | 
 |         /* Note the starting file position so we can reset to it */ | 
 |         start_pos = cpi->twopass.stats_in; | 
 |  | 
 |         /* Examine how well the key frame predicts subsequent frames */ | 
 |         for (i = 0 ; i < 16; i++) | 
 |         { | 
 |             next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ; | 
 |  | 
 |             if (next_iiratio > RMAX) | 
 |                 next_iiratio = RMAX; | 
 |  | 
 |             /* Cumulative effect of decay in prediction quality */ | 
 |             if (local_next_frame.pcnt_inter > 0.85) | 
 |                 decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; | 
 |             else | 
 |                 decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); | 
 |  | 
 |             /* Keep a running total */ | 
 |             boost_score += (decay_accumulator * next_iiratio); | 
 |  | 
 |             /* Test various breakout clauses */ | 
 |             if ((local_next_frame.pcnt_inter < 0.05) || | 
 |                 (next_iiratio < 1.5) || | 
 |                 (((local_next_frame.pcnt_inter - | 
 |                    local_next_frame.pcnt_neutral) < 0.20) && | 
 |                  (next_iiratio < 3.0)) || | 
 |                 ((boost_score - old_boost_score) < 0.5) || | 
 |                 (local_next_frame.intra_error < 200) | 
 |                ) | 
 |             { | 
 |                 break; | 
 |             } | 
 |  | 
 |             old_boost_score = boost_score; | 
 |  | 
 |             /* Get the next frame details */ | 
 |             if (EOF == input_stats(cpi, &local_next_frame)) | 
 |                 break; | 
 |         } | 
 |  | 
 |         /* If there is tolerable prediction for at least the next 3 frames | 
 |          * then break out else discard this pottential key frame and move on | 
 |          */ | 
 |         if (boost_score > 5.0 && (i > 3)) | 
 |             is_viable_kf = 1; | 
 |         else | 
 |         { | 
 |             /* Reset the file position */ | 
 |             reset_fpf_position(cpi, start_pos); | 
 |  | 
 |             is_viable_kf = 0; | 
 |         } | 
 |     } | 
 |  | 
 |     return is_viable_kf; | 
 | } | 
 | static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) | 
 | { | 
 |     int i,j; | 
 |     FIRSTPASS_STATS last_frame; | 
 |     FIRSTPASS_STATS first_frame; | 
 |     FIRSTPASS_STATS next_frame; | 
 |     FIRSTPASS_STATS *start_position; | 
 |  | 
 |     double decay_accumulator = 1.0; | 
 |     double boost_score = 0; | 
 |     double old_boost_score = 0.0; | 
 |     double loop_decay_rate; | 
 |  | 
 |     double kf_mod_err = 0.0; | 
 |     double kf_group_err = 0.0; | 
 |     double kf_group_intra_err = 0.0; | 
 |     double kf_group_coded_err = 0.0; | 
 |     double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}; | 
 |  | 
 |     vpx_memset(&next_frame, 0, sizeof(next_frame)); | 
 |  | 
 |     vp8_clear_system_state(); | 
 |     start_position = cpi->twopass.stats_in; | 
 |  | 
 |     cpi->common.frame_type = KEY_FRAME; | 
 |  | 
 |     /* is this a forced key frame by interval */ | 
 |     cpi->this_key_frame_forced = cpi->next_key_frame_forced; | 
 |  | 
 |     /* Clear the alt ref active flag as this can never be active on a key | 
 |      * frame | 
 |      */ | 
 |     cpi->source_alt_ref_active = 0; | 
 |  | 
 |     /* Kf is always a gf so clear frames till next gf counter */ | 
 |     cpi->frames_till_gf_update_due = 0; | 
 |  | 
 |     cpi->twopass.frames_to_key = 1; | 
 |  | 
 |     /* Take a copy of the initial frame details */ | 
 |     vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame)); | 
 |  | 
 |     cpi->twopass.kf_group_bits = 0; | 
 |     cpi->twopass.kf_group_error_left = 0; | 
 |  | 
 |     kf_mod_err = calculate_modified_err(cpi, this_frame); | 
 |  | 
 |     /* find the next keyframe */ | 
 |     i = 0; | 
 |     while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) | 
 |     { | 
 |         /* Accumulate kf group error */ | 
 |         kf_group_err += calculate_modified_err(cpi, this_frame); | 
 |  | 
 |         /* These figures keep intra and coded error counts for all frames | 
 |          * including key frames in the group. The effect of the key frame | 
 |          * itself can be subtracted out using the first_frame data | 
 |          * collected above | 
 |          */ | 
 |         kf_group_intra_err += this_frame->intra_error; | 
 |         kf_group_coded_err += this_frame->coded_error; | 
 |  | 
 |         /* load a the next frame's stats */ | 
 |         vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame)); | 
 |         input_stats(cpi, this_frame); | 
 |  | 
 |         /* Provided that we are not at the end of the file... */ | 
 |         if (cpi->oxcf.auto_key | 
 |             && lookup_next_frame_stats(cpi, &next_frame) != EOF) | 
 |         { | 
 |             /* Normal scene cut check */ | 
 |             if ( ( i >= MIN_GF_INTERVAL ) && | 
 |                  test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) ) | 
 |             { | 
 |                 break; | 
 |             } | 
 |  | 
 |             /* How fast is prediction quality decaying */ | 
 |             loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); | 
 |  | 
 |             /* We want to know something about the recent past... rather than | 
 |              * as used elsewhere where we are concened with decay in prediction | 
 |              * quality since the last GF or KF. | 
 |              */ | 
 |             recent_loop_decay[i%8] = loop_decay_rate; | 
 |             decay_accumulator = 1.0; | 
 |             for (j = 0; j < 8; j++) | 
 |             { | 
 |                 decay_accumulator = decay_accumulator * recent_loop_decay[j]; | 
 |             } | 
 |  | 
 |             /* Special check for transition or high motion followed by a | 
 |              * static scene. | 
 |              */ | 
 |             if ( detect_transition_to_still( cpi, i, | 
 |                                              (cpi->key_frame_frequency-i), | 
 |                                              loop_decay_rate, | 
 |                                              decay_accumulator ) ) | 
 |             { | 
 |                 break; | 
 |             } | 
 |  | 
 |  | 
 |             /* Step on to the next frame */ | 
 |             cpi->twopass.frames_to_key ++; | 
 |  | 
 |             /* If we don't have a real key frame within the next two | 
 |              * forcekeyframeevery intervals then break out of the loop. | 
 |              */ | 
 |             if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency) | 
 |                 break; | 
 |         } else | 
 |             cpi->twopass.frames_to_key ++; | 
 |  | 
 |         i++; | 
 |     } | 
 |  | 
 |     /* If there is a max kf interval set by the user we must obey it. | 
 |      * We already breakout of the loop above at 2x max. | 
 |      * This code centers the extra kf if the actual natural | 
 |      * interval is between 1x and 2x | 
 |      */ | 
 |     if (cpi->oxcf.auto_key | 
 |         && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency ) | 
 |     { | 
 |         FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; | 
 |         FIRSTPASS_STATS tmp_frame; | 
 |  | 
 |         cpi->twopass.frames_to_key /= 2; | 
 |  | 
 |         /* Copy first frame details */ | 
 |         vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); | 
 |  | 
 |         /* Reset to the start of the group */ | 
 |         reset_fpf_position(cpi, start_position); | 
 |  | 
 |         kf_group_err = 0; | 
 |         kf_group_intra_err = 0; | 
 |         kf_group_coded_err = 0; | 
 |  | 
 |         /* Rescan to get the correct error data for the forced kf group */ | 
 |         for( i = 0; i < cpi->twopass.frames_to_key; i++ ) | 
 |         { | 
 |             /* Accumulate kf group errors */ | 
 |             kf_group_err += calculate_modified_err(cpi, &tmp_frame); | 
 |             kf_group_intra_err += tmp_frame.intra_error; | 
 |             kf_group_coded_err += tmp_frame.coded_error; | 
 |  | 
 |             /* Load a the next frame's stats */ | 
 |             input_stats(cpi, &tmp_frame); | 
 |         } | 
 |  | 
 |         /* Reset to the start of the group */ | 
 |         reset_fpf_position(cpi, current_pos); | 
 |  | 
 |         cpi->next_key_frame_forced = 1; | 
 |     } | 
 |     else | 
 |         cpi->next_key_frame_forced = 0; | 
 |  | 
 |     /* Special case for the last frame of the file */ | 
 |     if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) | 
 |     { | 
 |         /* Accumulate kf group error */ | 
 |         kf_group_err += calculate_modified_err(cpi, this_frame); | 
 |  | 
 |         /* These figures keep intra and coded error counts for all frames | 
 |          * including key frames in the group. The effect of the key frame | 
 |          * itself can be subtracted out using the first_frame data | 
 |          * collected above | 
 |          */ | 
 |         kf_group_intra_err += this_frame->intra_error; | 
 |         kf_group_coded_err += this_frame->coded_error; | 
 |     } | 
 |  | 
 |     /* Calculate the number of bits that should be assigned to the kf group. */ | 
 |     if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) | 
 |     { | 
 |         /* Max for a single normal frame (not key frame) */ | 
 |         int max_bits = frame_max_bits(cpi); | 
 |  | 
 |         /* Maximum bits for the kf group */ | 
 |         int64_t max_grp_bits; | 
 |  | 
 |         /* Default allocation based on bits left and relative | 
 |          * complexity of the section | 
 |          */ | 
 |         cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left * | 
 |                                           ( kf_group_err / | 
 |                                             cpi->twopass.modified_error_left )); | 
 |  | 
 |         /* Clip based on maximum per frame rate defined by the user. */ | 
 |         max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; | 
 |         if (cpi->twopass.kf_group_bits > max_grp_bits) | 
 |             cpi->twopass.kf_group_bits = max_grp_bits; | 
 |  | 
 |         /* Additional special case for CBR if buffer is getting full. */ | 
 |         if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |         { | 
 |             int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; | 
 |             int64_t buffer_lvl = cpi->buffer_level; | 
 |  | 
 |             /* If the buffer is near or above the optimal and this kf group is | 
 |              * not being allocated much then increase the allocation a bit. | 
 |              */ | 
 |             if (buffer_lvl >= opt_buffer_lvl) | 
 |             { | 
 |                 int64_t high_water_mark = (opt_buffer_lvl + | 
 |                                        cpi->oxcf.maximum_buffer_size) >> 1; | 
 |  | 
 |                 int64_t av_group_bits; | 
 |  | 
 |                 /* Av bits per frame * number of frames */ | 
 |                 av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * | 
 |                                 (int64_t)cpi->twopass.frames_to_key; | 
 |  | 
 |                 /* We are at or above the maximum. */ | 
 |                 if (cpi->buffer_level >= high_water_mark) | 
 |                 { | 
 |                     int64_t min_group_bits; | 
 |  | 
 |                     min_group_bits = av_group_bits + | 
 |                                      (int64_t)(buffer_lvl - | 
 |                                                  high_water_mark); | 
 |  | 
 |                     if (cpi->twopass.kf_group_bits < min_group_bits) | 
 |                         cpi->twopass.kf_group_bits = min_group_bits; | 
 |                 } | 
 |                 /* We are above optimal but below the maximum */ | 
 |                 else if (cpi->twopass.kf_group_bits < av_group_bits) | 
 |                 { | 
 |                     int64_t bits_below_av = av_group_bits - | 
 |                                               cpi->twopass.kf_group_bits; | 
 |  | 
 |                     cpi->twopass.kf_group_bits += | 
 |                        (int64_t)((double)bits_below_av * | 
 |                                    (double)(buffer_lvl - opt_buffer_lvl) / | 
 |                                    (double)(high_water_mark - opt_buffer_lvl)); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |     else | 
 |         cpi->twopass.kf_group_bits = 0; | 
 |  | 
 |     /* Reset the first pass file position */ | 
 |     reset_fpf_position(cpi, start_position); | 
 |  | 
 |     /* determine how big to make this keyframe based on how well the | 
 |      * subsequent frames use inter blocks | 
 |      */ | 
 |     decay_accumulator = 1.0; | 
 |     boost_score = 0.0; | 
 |     loop_decay_rate = 1.00;       /* Starting decay rate */ | 
 |  | 
 |     for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) | 
 |     { | 
 |         double r; | 
 |  | 
 |         if (EOF == input_stats(cpi, &next_frame)) | 
 |             break; | 
 |  | 
 |         if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) | 
 |             r = (IIKFACTOR2 * next_frame.intra_error / | 
 |                      DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); | 
 |         else | 
 |             r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / | 
 |                      DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); | 
 |  | 
 |         if (r > RMAX) | 
 |             r = RMAX; | 
 |  | 
 |         /* How fast is prediction quality decaying */ | 
 |         loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); | 
 |  | 
 |         decay_accumulator = decay_accumulator * loop_decay_rate; | 
 |         decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; | 
 |  | 
 |         boost_score += (decay_accumulator * r); | 
 |  | 
 |         if ((i > MIN_GF_INTERVAL) && | 
 |             ((boost_score - old_boost_score) < 1.0)) | 
 |         { | 
 |             break; | 
 |         } | 
 |  | 
 |         old_boost_score = boost_score; | 
 |     } | 
 |  | 
 |     if (1) | 
 |     { | 
 |         FIRSTPASS_STATS sectionstats; | 
 |         double Ratio; | 
 |  | 
 |         zero_stats(§ionstats); | 
 |         reset_fpf_position(cpi, start_position); | 
 |  | 
 |         for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) | 
 |         { | 
 |             input_stats(cpi, &next_frame); | 
 |             accumulate_stats(§ionstats, &next_frame); | 
 |         } | 
 |  | 
 |         avg_stats(§ionstats); | 
 |  | 
 |         cpi->twopass.section_intra_rating = (unsigned int) | 
 |             (sectionstats.intra_error | 
 |             / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); | 
 |  | 
 |         Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); | 
 |         cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); | 
 |  | 
 |         if (cpi->twopass.section_max_qfactor < 0.80) | 
 |             cpi->twopass.section_max_qfactor = 0.80; | 
 |     } | 
 |  | 
 |     /* When using CBR apply additional buffer fullness related upper limits */ | 
 |     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |     { | 
 |         double max_boost; | 
 |  | 
 |         if (cpi->drop_frames_allowed) | 
 |         { | 
 |             int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark | 
 |                                   * (cpi->oxcf.optimal_buffer_level / 100)); | 
 |  | 
 |             if (cpi->buffer_level > df_buffer_level) | 
 |                 max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); | 
 |             else | 
 |                 max_boost = 0.0; | 
 |         } | 
 |         else if (cpi->buffer_level > 0) | 
 |         { | 
 |             max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); | 
 |         } | 
 |         else | 
 |         { | 
 |             max_boost = 0.0; | 
 |         } | 
 |  | 
 |         if (boost_score > max_boost) | 
 |             boost_score = max_boost; | 
 |     } | 
 |  | 
 |     /* Reset the first pass file position */ | 
 |     reset_fpf_position(cpi, start_position); | 
 |  | 
 |     /* Work out how many bits to allocate for the key frame itself */ | 
 |     if (1) | 
 |     { | 
 |         int kf_boost = (int)boost_score; | 
 |         int allocation_chunks; | 
 |         int Counter = cpi->twopass.frames_to_key; | 
 |         int alt_kf_bits; | 
 |         YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; | 
 |         /* Min boost based on kf interval */ | 
 | #if 0 | 
 |  | 
 |         while ((kf_boost < 48) && (Counter > 0)) | 
 |         { | 
 |             Counter -= 2; | 
 |             kf_boost ++; | 
 |         } | 
 |  | 
 | #endif | 
 |  | 
 |         if (kf_boost < 48) | 
 |         { | 
 |             kf_boost += ((Counter + 1) >> 1); | 
 |  | 
 |             if (kf_boost > 48) kf_boost = 48; | 
 |         } | 
 |  | 
 |         /* bigger frame sizes need larger kf boosts, smaller frames smaller | 
 |          * boosts... | 
 |          */ | 
 |         if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) | 
 |             kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); | 
 |         else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) | 
 |             kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); | 
 |  | 
 |         /* Min KF boost */ | 
 |         kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */ | 
 |         if (kf_boost < 250) | 
 |             kf_boost = 250; | 
 |  | 
 |         /* | 
 |          * We do three calculations for kf size. | 
 |          * The first is based on the error score for the whole kf group. | 
 |          * The second (optionaly) on the key frames own error if this is | 
 |          * smaller than the average for the group. | 
 |          * The final one insures that the frame receives at least the | 
 |          * allocation it would have received based on its own error score vs | 
 |          * the error score remaining | 
 |          * Special case if the sequence appears almost totaly static | 
 |          * as measured by the decay accumulator. In this case we want to | 
 |          * spend almost all of the bits on the key frame. | 
 |          * cpi->twopass.frames_to_key-1 because key frame itself is taken | 
 |          * care of by kf_boost. | 
 |          */ | 
 |         if ( decay_accumulator >= 0.99 ) | 
 |         { | 
 |             allocation_chunks = | 
 |                 ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; | 
 |         } | 
 |         else | 
 |         { | 
 |             allocation_chunks = | 
 |                 ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; | 
 |         } | 
 |  | 
 |         /* Normalize Altboost and allocations chunck down to prevent overflow */ | 
 |         while (kf_boost > 1000) | 
 |         { | 
 |             kf_boost /= 2; | 
 |             allocation_chunks /= 2; | 
 |         } | 
 |  | 
 |         cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; | 
 |  | 
 |         /* Calculate the number of bits to be spent on the key frame */ | 
 |         cpi->twopass.kf_bits  = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); | 
 |  | 
 |         /* Apply an additional limit for CBR */ | 
 |         if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |         { | 
 |             if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) | 
 |                 cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2); | 
 |         } | 
 |  | 
 |         /* If the key frame is actually easier than the average for the | 
 |          * kf group (which does sometimes happen... eg a blank intro frame) | 
 |          * Then use an alternate calculation based on the kf error score | 
 |          * which should give a smaller key frame. | 
 |          */ | 
 |         if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) | 
 |         { | 
 |             double  alt_kf_grp_bits = | 
 |                         ((double)cpi->twopass.bits_left * | 
 |                          (kf_mod_err * (double)cpi->twopass.frames_to_key) / | 
 |                          DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); | 
 |  | 
 |             alt_kf_bits = (int)((double)kf_boost * | 
 |                                 (alt_kf_grp_bits / (double)allocation_chunks)); | 
 |  | 
 |             if (cpi->twopass.kf_bits > alt_kf_bits) | 
 |             { | 
 |                 cpi->twopass.kf_bits = alt_kf_bits; | 
 |             } | 
 |         } | 
 |         /* Else if it is much harder than other frames in the group make sure | 
 |          * it at least receives an allocation in keeping with its relative | 
 |          * error score | 
 |          */ | 
 |         else | 
 |         { | 
 |             alt_kf_bits = | 
 |                 (int)((double)cpi->twopass.bits_left * | 
 |                       (kf_mod_err / | 
 |                        DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); | 
 |  | 
 |             if (alt_kf_bits > cpi->twopass.kf_bits) | 
 |             { | 
 |                 cpi->twopass.kf_bits = alt_kf_bits; | 
 |             } | 
 |         } | 
 |  | 
 |         cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; | 
 |         /* Add in the minimum frame allowance */ | 
 |         cpi->twopass.kf_bits += cpi->min_frame_bandwidth; | 
 |  | 
 |         /* Peer frame bit target for this frame */ | 
 |         cpi->per_frame_bandwidth = cpi->twopass.kf_bits; | 
 |  | 
 |         /* Convert to a per second bitrate */ | 
 |         cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * | 
 |                                       cpi->output_frame_rate); | 
 |     } | 
 |  | 
 |     /* Note the total error score of the kf group minus the key frame itself */ | 
 |     cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); | 
 |  | 
 |     /* Adjust the count of total modified error left. The count of bits left | 
 |      * is adjusted elsewhere based on real coded frame sizes | 
 |      */ | 
 |     cpi->twopass.modified_error_left -= kf_group_err; | 
 |  | 
 |     if (cpi->oxcf.allow_spatial_resampling) | 
 |     { | 
 |         int resample_trigger = 0; | 
 |         int last_kf_resampled = 0; | 
 |         int kf_q; | 
 |         int scale_val = 0; | 
 |         int hr, hs, vr, vs; | 
 |         int new_width = cpi->oxcf.Width; | 
 |         int new_height = cpi->oxcf.Height; | 
 |  | 
 |         int projected_buffer_level = (int)cpi->buffer_level; | 
 |         int tmp_q; | 
 |  | 
 |         double projected_bits_perframe; | 
 |         double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error); | 
 |         double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; | 
 |         double bits_per_frame; | 
 |         double av_bits_per_frame; | 
 |         double effective_size_ratio; | 
 |  | 
 |         if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height)) | 
 |             last_kf_resampled = 1; | 
 |  | 
 |         /* Set back to unscaled by defaults */ | 
 |         cpi->common.horiz_scale = NORMAL; | 
 |         cpi->common.vert_scale = NORMAL; | 
 |  | 
 |         /* Calculate Average bits per frame. */ | 
 |         av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->frame_rate); | 
 |  | 
 |         /* CBR... Use the clip average as the target for deciding resample */ | 
 |         if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |         { | 
 |             bits_per_frame = av_bits_per_frame; | 
 |         } | 
 |  | 
 |         /* In VBR we want to avoid downsampling in easy section unless we | 
 |          * are under extreme pressure So use the larger of target bitrate | 
 |          * for this section or average bitrate for sequence | 
 |          */ | 
 |         else | 
 |         { | 
 |             /* This accounts for how hard the section is... */ | 
 |             bits_per_frame = (double) | 
 |                 (cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key); | 
 |  | 
 |             /* Dont turn to resampling in easy sections just because they | 
 |              * have been assigned a small number of bits | 
 |              */ | 
 |             if (bits_per_frame < av_bits_per_frame) | 
 |                 bits_per_frame = av_bits_per_frame; | 
 |         } | 
 |  | 
 |         /* bits_per_frame should comply with our minimum */ | 
 |         if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100)) | 
 |             bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); | 
 |  | 
 |         /* Work out if spatial resampling is necessary */ | 
 |         kf_q = estimate_kf_group_q(cpi, err_per_frame, | 
 |                                   (int)bits_per_frame, group_iiratio); | 
 |  | 
 |         /* If we project a required Q higher than the maximum allowed Q then | 
 |          * make a guess at the actual size of frames in this section | 
 |          */ | 
 |         projected_bits_perframe = bits_per_frame; | 
 |         tmp_q = kf_q; | 
 |  | 
 |         while (tmp_q > cpi->worst_quality) | 
 |         { | 
 |             projected_bits_perframe *= 1.04; | 
 |             tmp_q--; | 
 |         } | 
 |  | 
 |         /* Guess at buffer level at the end of the section */ | 
 |         projected_buffer_level = (int) | 
 |                     (cpi->buffer_level - (int) | 
 |                     ((projected_bits_perframe - av_bits_per_frame) * | 
 |                     cpi->twopass.frames_to_key)); | 
 |  | 
 |         if (0) | 
 |         { | 
 |             FILE *f = fopen("Subsamle.stt", "a"); | 
 |             fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n",  cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale,  kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); | 
 |             fclose(f); | 
 |         } | 
 |  | 
 |         /* The trigger for spatial resampling depends on the various | 
 |          * parameters such as whether we are streaming (CBR) or VBR. | 
 |          */ | 
 |         if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |         { | 
 |             /* Trigger resample if we are projected to fall below down | 
 |              * sample level or resampled last time and are projected to | 
 |              * remain below the up sample level | 
 |              */ | 
 |             if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) || | 
 |                 (last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)))) | 
 |                 resample_trigger = 1; | 
 |             else | 
 |                 resample_trigger = 0; | 
 |         } | 
 |         else | 
 |         { | 
 |             int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->frame_rate)); | 
 |             int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; | 
 |  | 
 |             /* If triggered last time the threshold for triggering again is | 
 |              * reduced: | 
 |              * | 
 |              * Projected Q higher than allowed and Overspend > 5% of total | 
 |              * bits | 
 |              */ | 
 |             if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || | 
 |                 ((kf_q > cpi->worst_quality) && | 
 |                  (over_spend > clip_bits / 20))) | 
 |                 resample_trigger = 1; | 
 |             else | 
 |                 resample_trigger = 0; | 
 |  | 
 |         } | 
 |  | 
 |         if (resample_trigger) | 
 |         { | 
 |             while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) | 
 |             { | 
 |                 scale_val ++; | 
 |  | 
 |                 cpi->common.vert_scale   = vscale_lookup[scale_val]; | 
 |                 cpi->common.horiz_scale  = hscale_lookup[scale_val]; | 
 |  | 
 |                 Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); | 
 |                 Scale2Ratio(cpi->common.vert_scale, &vr, &vs); | 
 |  | 
 |                 new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; | 
 |                 new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; | 
 |  | 
 |                 /* Reducing the area to 1/4 does not reduce the complexity | 
 |                  * (err_per_frame) to 1/4... effective_sizeratio attempts | 
 |                  * to provide a crude correction for this | 
 |                  */ | 
 |                 effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height); | 
 |                 effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; | 
 |  | 
 |                 /* Now try again and see what Q we get with the smaller | 
 |                  * image size | 
 |                  */ | 
 |                 kf_q = estimate_kf_group_q(cpi, | 
 |                                           err_per_frame * effective_size_ratio, | 
 |                                           (int)bits_per_frame, group_iiratio); | 
 |  | 
 |                 if (0) | 
 |                 { | 
 |                     FILE *f = fopen("Subsamle.stt", "a"); | 
 |                     fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n",  kf_q, cpi->common.horiz_scale, cpi->common.vert_scale,  kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); | 
 |                     fclose(f); | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height)) | 
 |         { | 
 |             cpi->common.Width = new_width; | 
 |             cpi->common.Height = new_height; | 
 |             vp8_alloc_compressor_data(cpi); | 
 |         } | 
 |     } | 
 | } |