blob: 482d5fdafd5739fbeda241225faf8cfcbcbfb101 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_MVREF_COMMON_H_
#define AOM_AV1_COMMON_MVREF_COMMON_H_
#include "av1/common/onyxc_int.h"
#include "av1/common/blockd.h"
#ifdef __cplusplus
extern "C" {
#endif
#define MVREF_ROW_COLS 3
// Set the upper limit of the motion vector component magnitude.
// This would make a motion vector fit in 26 bits. Plus 3 bits for the
// reference frame index. A tuple of motion vector can hence be stored within
// 32 bit range for efficient load/store operations.
#define REFMVS_LIMIT ((1 << 12) - 1)
typedef struct position {
int row;
int col;
} POSITION;
// clamp_mv_ref
#define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units
static INLINE int get_relative_dist(const OrderHintInfo *oh, int a, int b) {
if (!oh->enable_order_hint) return 0;
const int bits = oh->order_hint_bits_minus_1 + 1;
assert(bits >= 1);
assert(a >= 0 && a < (1 << bits));
assert(b >= 0 && b < (1 << bits));
int diff = a - b;
const int m = 1 << (bits - 1);
diff = (diff & (m - 1)) - (diff & m);
return diff;
}
static INLINE void clamp_mv_ref(MV *mv, int bw, int bh, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - bw * 8 - MV_BORDER,
xd->mb_to_right_edge + bw * 8 + MV_BORDER,
xd->mb_to_top_edge - bh * 8 - MV_BORDER,
xd->mb_to_bottom_edge + bh * 8 + MV_BORDER);
}
// This function returns either the appropriate sub block or block's mv
// on whether the block_size < 8x8 and we have check_sub_blocks set.
static INLINE int_mv get_sub_block_mv(const MB_MODE_INFO *candidate,
int which_mv, int search_col) {
(void)search_col;
return candidate->mv[which_mv];
}
static INLINE int_mv get_sub_block_pred_mv(const MB_MODE_INFO *candidate,
int which_mv, int search_col) {
(void)search_col;
return candidate->mv[which_mv];
}
// Checks that the given mi_row, mi_col and search point
// are inside the borders of the tile.
static INLINE int is_inside(const TileInfo *const tile, int mi_col, int mi_row,
const POSITION *mi_pos) {
return !(mi_row + mi_pos->row < tile->mi_row_start ||
mi_col + mi_pos->col < tile->mi_col_start ||
mi_row + mi_pos->row >= tile->mi_row_end ||
mi_col + mi_pos->col >= tile->mi_col_end);
}
static INLINE int find_valid_row_offset(const TileInfo *const tile, int mi_row,
int row_offset) {
return clamp(row_offset, tile->mi_row_start - mi_row,
tile->mi_row_end - mi_row - 1);
}
static INLINE int find_valid_col_offset(const TileInfo *const tile, int mi_col,
int col_offset) {
return clamp(col_offset, tile->mi_col_start - mi_col,
tile->mi_col_end - mi_col - 1);
}
static INLINE void lower_mv_precision(MV *mv, int allow_hp, int is_integer) {
if (is_integer) {
integer_mv_precision(mv);
} else {
if (!allow_hp) {
if (mv->row & 1) mv->row += (mv->row > 0 ? -1 : 1);
if (mv->col & 1) mv->col += (mv->col > 0 ? -1 : 1);
}
}
}
static INLINE int8_t get_uni_comp_ref_idx(const MV_REFERENCE_FRAME *const rf) {
// Single ref pred
if (rf[1] <= INTRA_FRAME) return -1;
// Bi-directional comp ref pred
if ((rf[0] < BWDREF_FRAME) && (rf[1] >= BWDREF_FRAME)) return -1;
for (int8_t ref_idx = 0; ref_idx < TOTAL_UNIDIR_COMP_REFS; ++ref_idx) {
if (rf[0] == comp_ref0(ref_idx) && rf[1] == comp_ref1(ref_idx))
return ref_idx;
}
return -1;
}
static INLINE int8_t av1_ref_frame_type(const MV_REFERENCE_FRAME *const rf) {
if (rf[1] > INTRA_FRAME) {
const int8_t uni_comp_ref_idx = get_uni_comp_ref_idx(rf);
if (uni_comp_ref_idx >= 0) {
assert((REF_FRAMES + FWD_REFS * BWD_REFS + uni_comp_ref_idx) <
MODE_CTX_REF_FRAMES);
return REF_FRAMES + FWD_REFS * BWD_REFS + uni_comp_ref_idx;
} else {
return REF_FRAMES + FWD_RF_OFFSET(rf[0]) +
BWD_RF_OFFSET(rf[1]) * FWD_REFS;
}
}
return rf[0];
}
// clang-format off
static MV_REFERENCE_FRAME ref_frame_map[TOTAL_COMP_REFS][2] = {
{ LAST_FRAME, BWDREF_FRAME }, { LAST2_FRAME, BWDREF_FRAME },
{ LAST3_FRAME, BWDREF_FRAME }, { GOLDEN_FRAME, BWDREF_FRAME },
{ LAST_FRAME, ALTREF2_FRAME }, { LAST2_FRAME, ALTREF2_FRAME },
{ LAST3_FRAME, ALTREF2_FRAME }, { GOLDEN_FRAME, ALTREF2_FRAME },
{ LAST_FRAME, ALTREF_FRAME }, { LAST2_FRAME, ALTREF_FRAME },
{ LAST3_FRAME, ALTREF_FRAME }, { GOLDEN_FRAME, ALTREF_FRAME },
{ LAST_FRAME, LAST2_FRAME }, { LAST_FRAME, LAST3_FRAME },
{ LAST_FRAME, GOLDEN_FRAME }, { BWDREF_FRAME, ALTREF_FRAME },
// NOTE: Following reference frame pairs are not supported to be explicitly
// signalled, but they are possibly chosen by the use of skip_mode,
// which may use the most recent one-sided reference frame pair.
{ LAST2_FRAME, LAST3_FRAME }, { LAST2_FRAME, GOLDEN_FRAME },
{ LAST3_FRAME, GOLDEN_FRAME }, {BWDREF_FRAME, ALTREF2_FRAME},
{ ALTREF2_FRAME, ALTREF_FRAME }
};
// clang-format on
static INLINE void av1_set_ref_frame(MV_REFERENCE_FRAME *rf,
MV_REFERENCE_FRAME ref_frame_type) {
if (ref_frame_type >= REF_FRAMES) {
rf[0] = ref_frame_map[ref_frame_type - REF_FRAMES][0];
rf[1] = ref_frame_map[ref_frame_type - REF_FRAMES][1];
} else {
assert(ref_frame_type > NONE_FRAME);
rf[0] = ref_frame_type;
rf[1] = NONE_FRAME;
}
}
static uint16_t compound_mode_ctx_map[3][COMP_NEWMV_CTXS] = {
{ 0, 1, 1, 1, 1 },
{ 1, 2, 3, 4, 4 },
{ 4, 4, 5, 6, 7 },
};
static INLINE int16_t av1_mode_context_analyzer(
const int16_t *const mode_context, const MV_REFERENCE_FRAME *const rf) {
const int8_t ref_frame = av1_ref_frame_type(rf);
if (rf[1] <= INTRA_FRAME) return mode_context[ref_frame];
const int16_t newmv_ctx = mode_context[ref_frame] & NEWMV_CTX_MASK;
const int16_t refmv_ctx =
(mode_context[ref_frame] >> REFMV_OFFSET) & REFMV_CTX_MASK;
const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
newmv_ctx, COMP_NEWMV_CTXS - 1)];
return comp_ctx;
}
static INLINE uint8_t av1_drl_ctx(const uint16_t *ref_mv_weight, int ref_idx) {
if (ref_mv_weight[ref_idx] >= REF_CAT_LEVEL &&
ref_mv_weight[ref_idx + 1] >= REF_CAT_LEVEL)
return 0;
if (ref_mv_weight[ref_idx] >= REF_CAT_LEVEL &&
ref_mv_weight[ref_idx + 1] < REF_CAT_LEVEL)
return 1;
if (ref_mv_weight[ref_idx] < REF_CAT_LEVEL &&
ref_mv_weight[ref_idx + 1] < REF_CAT_LEVEL)
return 2;
return 0;
}
void av1_setup_frame_buf_refs(AV1_COMMON *cm);
void av1_setup_frame_sign_bias(AV1_COMMON *cm);
void av1_setup_skip_mode_allowed(AV1_COMMON *cm);
void av1_setup_motion_field(AV1_COMMON *cm);
void av1_set_frame_refs(AV1_COMMON *const cm, int *remapped_ref_idx,
int lst_map_idx, int gld_map_idx);
static INLINE void av1_collect_neighbors_ref_counts(MACROBLOCKD *const xd) {
av1_zero(xd->neighbors_ref_counts);
uint8_t *const ref_counts = xd->neighbors_ref_counts;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Above neighbor
if (above_in_image && is_inter_block(above_mbmi)) {
ref_counts[above_mbmi->ref_frame[0]]++;
if (has_second_ref(above_mbmi)) {
ref_counts[above_mbmi->ref_frame[1]]++;
}
}
// Left neighbor
if (left_in_image && is_inter_block(left_mbmi)) {
ref_counts[left_mbmi->ref_frame[0]]++;
if (has_second_ref(left_mbmi)) {
ref_counts[left_mbmi->ref_frame[1]]++;
}
}
}
void av1_copy_frame_mvs(const AV1_COMMON *const cm,
const MB_MODE_INFO *const mi, int mi_row, int mi_col,
int x_mis, int y_mis);
// The global_mvs output parameter points to an array of REF_FRAMES elements.
// The caller may pass a null global_mvs if it does not need the global_mvs
// output.
void av1_find_mv_refs(const AV1_COMMON *cm, const MACROBLOCKD *xd,
MB_MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
uint8_t ref_mv_count[MODE_CTX_REF_FRAMES],
CANDIDATE_MV ref_mv_stack[][MAX_REF_MV_STACK_SIZE],
uint16_t ref_mv_weight[][MAX_REF_MV_STACK_SIZE],
int_mv mv_ref_list[][MAX_MV_REF_CANDIDATES],
int_mv *global_mvs, int mi_row, int mi_col,
int16_t *mode_context);
// check a list of motion vectors by sad score using a number rows of pixels
// above and a number cols of pixels in the left to select the one with best
// score to use as ref motion vector
void av1_find_best_ref_mvs(int allow_hp, int_mv *mvlist, int_mv *nearest_mv,
int_mv *near_mv, int is_integer);
uint8_t av1_selectSamples(MV *mv, int *pts, int *pts_inref, int len,
BLOCK_SIZE bsize);
uint8_t av1_findSamples(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row,
int mi_col, int *pts, int *pts_inref);
#define INTRABC_DELAY_PIXELS 256 // Delay of 256 pixels
#define INTRABC_DELAY_SB64 (INTRABC_DELAY_PIXELS / 64)
static INLINE void av1_find_ref_dv(int_mv *ref_dv, const TileInfo *const tile,
int mib_size, int mi_row, int mi_col) {
(void)mi_col;
if (mi_row - mib_size < tile->mi_row_start) {
ref_dv->as_mv.row = 0;
ref_dv->as_mv.col = -MI_SIZE * mib_size - INTRABC_DELAY_PIXELS;
} else {
ref_dv->as_mv.row = -MI_SIZE * mib_size;
ref_dv->as_mv.col = 0;
}
ref_dv->as_mv.row *= 8;
ref_dv->as_mv.col *= 8;
}
static INLINE int av1_is_dv_valid(const MV dv, const AV1_COMMON *cm,
const MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize, int mib_size_log2) {
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const int SCALE_PX_TO_MV = 8;
// Disallow subpixel for now
// SUBPEL_MASK is not the correct scale
if (((dv.row & (SCALE_PX_TO_MV - 1)) || (dv.col & (SCALE_PX_TO_MV - 1))))
return 0;
const TileInfo *const tile = &xd->tile;
// Is the source top-left inside the current tile?
const int src_top_edge = mi_row * MI_SIZE * SCALE_PX_TO_MV + dv.row;
const int tile_top_edge = tile->mi_row_start * MI_SIZE * SCALE_PX_TO_MV;
if (src_top_edge < tile_top_edge) return 0;
const int src_left_edge = mi_col * MI_SIZE * SCALE_PX_TO_MV + dv.col;
const int tile_left_edge = tile->mi_col_start * MI_SIZE * SCALE_PX_TO_MV;
if (src_left_edge < tile_left_edge) return 0;
// Is the bottom right inside the current tile?
const int src_bottom_edge = (mi_row * MI_SIZE + bh) * SCALE_PX_TO_MV + dv.row;
const int tile_bottom_edge = tile->mi_row_end * MI_SIZE * SCALE_PX_TO_MV;
if (src_bottom_edge > tile_bottom_edge) return 0;
const int src_right_edge = (mi_col * MI_SIZE + bw) * SCALE_PX_TO_MV + dv.col;
const int tile_right_edge = tile->mi_col_end * MI_SIZE * SCALE_PX_TO_MV;
if (src_right_edge > tile_right_edge) return 0;
// Special case for sub 8x8 chroma cases, to prevent referring to chroma
// pixels outside current tile.
for (int plane = 1; plane < av1_num_planes(cm); ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y)) {
if (bw < 8 && pd->subsampling_x)
if (src_left_edge < tile_left_edge + 4 * SCALE_PX_TO_MV) return 0;
if (bh < 8 && pd->subsampling_y)
if (src_top_edge < tile_top_edge + 4 * SCALE_PX_TO_MV) return 0;
}
}
// Is the bottom right within an already coded SB? Also consider additional
// constraints to facilitate HW decoder.
const int max_mib_size = 1 << mib_size_log2;
const int active_sb_row = mi_row >> mib_size_log2;
const int active_sb64_col = (mi_col * MI_SIZE) >> 6;
const int sb_size = max_mib_size * MI_SIZE;
const int src_sb_row = ((src_bottom_edge >> 3) - 1) / sb_size;
const int src_sb64_col = ((src_right_edge >> 3) - 1) >> 6;
const int total_sb64_per_row =
((tile->mi_col_end - tile->mi_col_start - 1) >> 4) + 1;
const int active_sb64 = active_sb_row * total_sb64_per_row + active_sb64_col;
const int src_sb64 = src_sb_row * total_sb64_per_row + src_sb64_col;
if (src_sb64 >= active_sb64 - INTRABC_DELAY_SB64) return 0;
// Wavefront constraint: use only top left area of frame for reference.
const int gradient = 1 + INTRABC_DELAY_SB64 + (sb_size > 64);
const int wf_offset = gradient * (active_sb_row - src_sb_row);
if (src_sb_row > active_sb_row ||
src_sb64_col >= active_sb64_col - INTRABC_DELAY_SB64 + wf_offset)
return 0;
return 1;
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_MVREF_COMMON_H_