blob: 3f72dc48557546982ba255e22f61f80abf1c25e9 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <emmintrin.h> // SSE2
#include <smmintrin.h> /* SSE4.1 */
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/x86/intrapred_x86.h"
#include "aom_dsp/x86/intrapred_utils.h"
#include "aom_dsp/x86/lpf_common_sse2.h"
// Low bit depth functions
static DECLARE_ALIGNED(16, uint8_t, Mask[2][33][16]) = {
{ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0,
0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0,
0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0,
0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0,
0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff } },
{
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0,
0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0,
0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0,
0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0,
0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
},
};
/* clang-format on */
static AOM_FORCE_INLINE void dr_prediction_z1_HxW_internal_sse4_1(
int H, int W, __m128i *dst, const uint8_t *above, int upsample_above,
int dx) {
const int frac_bits = 6 - upsample_above;
const int max_base_x = ((W + H) - 1) << upsample_above;
assert(dx > 0);
// pre-filter above pixels
// store in temp buffers:
// above[x] * 32 + 16
// above[x+1] - above[x]
// final pixels will be calculated as:
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
__m128i a0, a1, a32, a16;
__m128i diff, c3f;
__m128i a_mbase_x;
a16 = _mm_set1_epi16(16);
a_mbase_x = _mm_set1_epi8((char)above[max_base_x]);
c3f = _mm_set1_epi16(0x3f);
int x = dx;
for (int r = 0; r < W; r++) {
__m128i b, res, res1, shift;
__m128i a0_above, a1_above;
int base = x >> frac_bits;
int base_max_diff = (max_base_x - base) >> upsample_above;
if (base_max_diff <= 0) {
for (int i = r; i < W; ++i) {
dst[i] = a_mbase_x; // save 4 values
}
return;
}
if (base_max_diff > H) base_max_diff = H;
a0_above = _mm_loadu_si128((__m128i *)(above + base));
a1_above = _mm_loadu_si128((__m128i *)(above + base + 1));
if (upsample_above) {
a0_above = _mm_shuffle_epi8(a0_above, *(__m128i *)EvenOddMaskx[0]);
a1_above = _mm_srli_si128(a0_above, 8);
shift = _mm_srli_epi16(
_mm_and_si128(_mm_slli_epi16(_mm_set1_epi16(x), upsample_above), c3f),
1);
} else {
shift = _mm_srli_epi16(_mm_and_si128(_mm_set1_epi16(x), c3f), 1);
}
// lower half
a0 = _mm_cvtepu8_epi16(a0_above);
a1 = _mm_cvtepu8_epi16(a1_above);
diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res = _mm_add_epi16(a32, b);
res = _mm_srli_epi16(res, 5);
// uppar half
a0 = _mm_cvtepu8_epi16(_mm_srli_si128(a0_above, 8));
a1 = _mm_cvtepu8_epi16(_mm_srli_si128(a1_above, 8));
diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res1 = _mm_add_epi16(a32, b);
res1 = _mm_srli_epi16(res1, 5);
res = _mm_packus_epi16(res, res1);
dst[r] =
_mm_blendv_epi8(a_mbase_x, res, *(__m128i *)Mask[0][base_max_diff]);
x += dx;
}
}
static void dr_prediction_z1_4xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride,
const uint8_t *above,
int upsample_above, int dx) {
__m128i dstvec[16];
dr_prediction_z1_HxW_internal_sse4_1(4, N, dstvec, above, upsample_above, dx);
for (int i = 0; i < N; i++) {
*(int *)(dst + stride * i) = _mm_cvtsi128_si32(dstvec[i]);
}
}
static void dr_prediction_z1_8xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride,
const uint8_t *above,
int upsample_above, int dx) {
__m128i dstvec[32];
dr_prediction_z1_HxW_internal_sse4_1(8, N, dstvec, above, upsample_above, dx);
for (int i = 0; i < N; i++) {
_mm_storel_epi64((__m128i *)(dst + stride * i), dstvec[i]);
}
}
static void dr_prediction_z1_16xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride,
const uint8_t *above,
int upsample_above, int dx) {
__m128i dstvec[64];
dr_prediction_z1_HxW_internal_sse4_1(16, N, dstvec, above, upsample_above,
dx);
for (int i = 0; i < N; i++) {
_mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]);
}
}
static AOM_FORCE_INLINE void dr_prediction_z1_32xN_internal_sse4_1(
int N, __m128i *dstvec, __m128i *dstvec_h, const uint8_t *above,
int upsample_above, int dx) {
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
(void)upsample_above;
const int frac_bits = 6;
const int max_base_x = ((32 + N) - 1);
// pre-filter above pixels
// store in temp buffers:
// above[x] * 32 + 16
// above[x+1] - above[x]
// final pixels will be calculated as:
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
__m128i a0, a1, a32, a16;
__m128i a_mbase_x, diff, c3f;
a16 = _mm_set1_epi16(16);
a_mbase_x = _mm_set1_epi8((char)above[max_base_x]);
c3f = _mm_set1_epi16(0x3f);
int x = dx;
for (int r = 0; r < N; r++) {
__m128i b, res, res1, res16[2];
__m128i a0_above, a1_above;
int base = x >> frac_bits;
int base_max_diff = (max_base_x - base);
if (base_max_diff <= 0) {
for (int i = r; i < N; ++i) {
dstvec[i] = a_mbase_x; // save 32 values
dstvec_h[i] = a_mbase_x;
}
return;
}
if (base_max_diff > 32) base_max_diff = 32;
__m128i shift = _mm_srli_epi16(_mm_and_si128(_mm_set1_epi16(x), c3f), 1);
for (int j = 0, jj = 0; j < 32; j += 16, jj++) {
int mdiff = base_max_diff - j;
if (mdiff <= 0) {
res16[jj] = a_mbase_x;
} else {
a0_above = _mm_loadu_si128((__m128i *)(above + base + j));
a1_above = _mm_loadu_si128((__m128i *)(above + base + j + 1));
// lower half
a0 = _mm_cvtepu8_epi16(a0_above);
a1 = _mm_cvtepu8_epi16(a1_above);
diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res = _mm_add_epi16(a32, b);
res = _mm_srli_epi16(res, 5);
// uppar half
a0 = _mm_cvtepu8_epi16(_mm_srli_si128(a0_above, 8));
a1 = _mm_cvtepu8_epi16(_mm_srli_si128(a1_above, 8));
diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res1 = _mm_add_epi16(a32, b);
res1 = _mm_srli_epi16(res1, 5);
res16[jj] = _mm_packus_epi16(res, res1); // 16 8bit values
}
}
dstvec[r] =
_mm_blendv_epi8(a_mbase_x, res16[0],
*(__m128i *)Mask[0][base_max_diff]); // 16 8bit values
dstvec_h[r] =
_mm_blendv_epi8(a_mbase_x, res16[1],
*(__m128i *)Mask[1][base_max_diff]); // 16 8bit values
x += dx;
}
}
static void dr_prediction_z1_32xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride,
const uint8_t *above,
int upsample_above, int dx) {
__m128i dstvec[64], dstvec_h[64];
dr_prediction_z1_32xN_internal_sse4_1(N, dstvec, dstvec_h, above,
upsample_above, dx);
for (int i = 0; i < N; i++) {
_mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]);
_mm_storeu_si128((__m128i *)(dst + stride * i + 16), dstvec_h[i]);
}
}
static void dr_prediction_z1_64xN_sse4_1(int N, uint8_t *dst, ptrdiff_t stride,
const uint8_t *above,
int upsample_above, int dx) {
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
(void)upsample_above;
const int frac_bits = 6;
const int max_base_x = ((64 + N) - 1);
// pre-filter above pixels
// store in temp buffers:
// above[x] * 32 + 16
// above[x+1] - above[x]
// final pixels will be calculated as:
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
__m128i a0, a1, a32, a16;
__m128i a_mbase_x, diff, c3f;
__m128i max_base, base_inc, mask;
a16 = _mm_set1_epi16(16);
a_mbase_x = _mm_set1_epi8((char)above[max_base_x]);
max_base = _mm_set1_epi8(max_base_x);
c3f = _mm_set1_epi16(0x3f);
int x = dx;
for (int r = 0; r < N; r++, dst += stride) {
__m128i b, res, res1;
int base = x >> frac_bits;
if (base >= max_base_x) {
for (int i = r; i < N; ++i) {
_mm_storeu_si128((__m128i *)dst, a_mbase_x); // save 32 values
_mm_storeu_si128((__m128i *)(dst + 16), a_mbase_x);
_mm_storeu_si128((__m128i *)(dst + 32), a_mbase_x);
_mm_storeu_si128((__m128i *)(dst + 48), a_mbase_x);
dst += stride;
}
return;
}
__m128i shift =
_mm_srli_epi16(_mm_and_si128(_mm_set1_epi16(x), c3f), 1); // 8 element
__m128i a0_above, a1_above, res_val;
for (int j = 0; j < 64; j += 16) {
int mdif = max_base_x - (base + j);
if (mdif <= 0) {
_mm_storeu_si128((__m128i *)(dst + j), a_mbase_x);
} else {
a0_above =
_mm_loadu_si128((__m128i *)(above + base + j)); // load 16 element
a1_above = _mm_loadu_si128((__m128i *)(above + base + 1 + j));
// lower half
a0 = _mm_cvtepu8_epi16(a0_above);
a1 = _mm_cvtepu8_epi16(a1_above);
diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res = _mm_add_epi16(a32, b);
res = _mm_srli_epi16(res, 5);
// uppar half
a0 = _mm_cvtepu8_epi16(_mm_srli_si128(a0_above, 8));
a1 = _mm_cvtepu8_epi16(_mm_srli_si128(a1_above, 8));
diff = _mm_sub_epi16(a1, a0); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res1 = _mm_add_epi16(a32, b);
res1 = _mm_srli_epi16(res1, 5);
res = _mm_packus_epi16(res, res1); // 16 8bit values
base_inc =
_mm_setr_epi8((int8_t)(base + j), (int8_t)(base + j + 1),
(int8_t)(base + j + 2), (int8_t)(base + j + 3),
(int8_t)(base + j + 4), (int8_t)(base + j + 5),
(int8_t)(base + j + 6), (int8_t)(base + j + 7),
(int8_t)(base + j + 8), (int8_t)(base + j + 9),
(int8_t)(base + j + 10), (int8_t)(base + j + 11),
(int8_t)(base + j + 12), (int8_t)(base + j + 13),
(int8_t)(base + j + 14), (int8_t)(base + j + 15));
mask = _mm_cmpgt_epi8(_mm_subs_epu8(max_base, base_inc),
_mm_setzero_si128());
res_val = _mm_blendv_epi8(a_mbase_x, res, mask);
_mm_storeu_si128((__m128i *)(dst + j), res_val);
}
}
x += dx;
}
}
// Directional prediction, zone 1: 0 < angle < 90
void av1_dr_prediction_z1_sse4_1(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left,
int upsample_above, int dx, int dy) {
(void)left;
(void)dy;
switch (bw) {
case 4:
dr_prediction_z1_4xN_sse4_1(bh, dst, stride, above, upsample_above, dx);
break;
case 8:
dr_prediction_z1_8xN_sse4_1(bh, dst, stride, above, upsample_above, dx);
break;
case 16:
dr_prediction_z1_16xN_sse4_1(bh, dst, stride, above, upsample_above, dx);
break;
case 32:
dr_prediction_z1_32xN_sse4_1(bh, dst, stride, above, upsample_above, dx);
break;
case 64:
dr_prediction_z1_64xN_sse4_1(bh, dst, stride, above, upsample_above, dx);
break;
default: assert(0 && "Invalid block size");
}
return;
}
static void dr_prediction_z2_Nx4_sse4_1(int N, uint8_t *dst, ptrdiff_t stride,
const uint8_t *above,
const uint8_t *left, int upsample_above,
int upsample_left, int dx, int dy) {
const int min_base_x = -(1 << upsample_above);
const int min_base_y = -(1 << upsample_left);
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
assert(dx > 0);
// pre-filter above pixels
// store in temp buffers:
// above[x] * 32 + 16
// above[x+1] - above[x]
// final pixels will be calculated as:
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
__m128i a0_x, a1_x, a32, diff;
const __m128i c3f = _mm_set1_epi16(0x3f);
const __m128i min_y_base = _mm_set1_epi16(min_base_y);
const __m128i c1234 = _mm_setr_epi16(0, 1, 2, 3, 4, 0, 0, 0);
const __m128i dy_reg = _mm_set1_epi16(dy);
const __m128i a16 = _mm_set1_epi16(16);
for (int r = 0; r < N; r++) {
__m128i b, res, shift, r6, ydx;
__m128i resx, resy, resxy;
__m128i a0_above, a1_above;
int y = r + 1;
int base_x = (-y * dx) >> frac_bits_x;
int base_shift = 0;
if (base_x < (min_base_x - 1)) {
base_shift = (min_base_x - base_x - 1) >> upsample_above;
}
int base_min_diff =
(min_base_x - base_x + upsample_above) >> upsample_above;
if (base_min_diff > 4) {
base_min_diff = 4;
} else {
if (base_min_diff < 0) base_min_diff = 0;
}
if (base_shift > 3) {
a0_x = _mm_setzero_si128();
a1_x = _mm_setzero_si128();
shift = _mm_setzero_si128();
} else {
a0_above = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
ydx = _mm_set1_epi16(y * dx);
r6 = _mm_slli_epi16(c1234, 6);
if (upsample_above) {
a0_above =
_mm_shuffle_epi8(a0_above, *(__m128i *)EvenOddMaskx[base_shift]);
a1_above = _mm_srli_si128(a0_above, 8);
shift = _mm_srli_epi16(
_mm_and_si128(
_mm_slli_epi16(_mm_sub_epi16(r6, ydx), upsample_above), c3f),
1);
} else {
a0_above =
_mm_shuffle_epi8(a0_above, *(__m128i *)LoadMaskx[base_shift]);
a1_above = _mm_srli_si128(a0_above, 1);
shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1);
}
a0_x = _mm_cvtepu8_epi16(a0_above);
a1_x = _mm_cvtepu8_epi16(a1_above);
}
// y calc
__m128i a0_y, a1_y, shifty;
if (base_x < min_base_x) {
DECLARE_ALIGNED(32, int16_t, base_y_c[8]);
__m128i y_c, base_y_c_reg, mask, c1234_;
c1234_ = _mm_srli_si128(c1234, 2);
r6 = _mm_set1_epi16(r << 6);
y_c = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234_, dy_reg));
base_y_c_reg = _mm_srai_epi16(y_c, frac_bits_y);
mask = _mm_cmpgt_epi16(min_y_base, base_y_c_reg);
base_y_c_reg = _mm_andnot_si128(mask, base_y_c_reg);
_mm_store_si128((__m128i *)base_y_c, base_y_c_reg);
a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0);
base_y_c_reg = _mm_add_epi16(base_y_c_reg, _mm_srli_epi16(a16, 4));
_mm_store_si128((__m128i *)base_y_c, base_y_c_reg);
a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0);
if (upsample_left) {
shifty = _mm_srli_epi16(
_mm_and_si128(_mm_slli_epi16(y_c, upsample_left), c3f), 1);
} else {
shifty = _mm_srli_epi16(_mm_and_si128(y_c, c3f), 1);
}
a0_x = _mm_unpacklo_epi64(a0_x, a0_y);
a1_x = _mm_unpacklo_epi64(a1_x, a1_y);
shift = _mm_unpacklo_epi64(shift, shifty);
}
diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res = _mm_add_epi16(a32, b);
res = _mm_srli_epi16(res, 5);
resx = _mm_packus_epi16(res, res);
resy = _mm_srli_si128(resx, 4);
resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)Mask[0][base_min_diff]);
*(int *)(dst) = _mm_cvtsi128_si32(resxy);
dst += stride;
}
}
static void dr_prediction_z2_Nx8_sse4_1(int N, uint8_t *dst, ptrdiff_t stride,
const uint8_t *above,
const uint8_t *left, int upsample_above,
int upsample_left, int dx, int dy) {
const int min_base_x = -(1 << upsample_above);
const int min_base_y = -(1 << upsample_left);
const int frac_bits_x = 6 - upsample_above;
const int frac_bits_y = 6 - upsample_left;
// pre-filter above pixels
// store in temp buffers:
// above[x] * 32 + 16
// above[x+1] - above[x]
// final pixels will be calculated as:
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
__m128i diff, a32;
__m128i a0_x, a1_x, a0_y, a1_y;
__m128i a0_above, a1_above;
const __m128i a16 = _mm_set1_epi16(16);
const __m128i c3f = _mm_set1_epi16(0x3f);
const __m128i min_y_base = _mm_set1_epi16(min_base_y);
const __m128i dy_reg = _mm_set1_epi16(dy);
const __m128i c1234 = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
for (int r = 0; r < N; r++) {
__m128i b, res, res1, shift, shifty;
__m128i resx, resy, resxy, r6, ydx;
int y = r + 1;
int base_x = (-y * dx) >> frac_bits_x;
int base_shift = 0;
if (base_x < (min_base_x - 1)) {
base_shift = (min_base_x - base_x - 1) >> upsample_above;
}
int base_min_diff =
(min_base_x - base_x + upsample_above) >> upsample_above;
if (base_min_diff > 8) {
base_min_diff = 8;
} else {
if (base_min_diff < 0) base_min_diff = 0;
}
if (base_shift > 7) {
a0_x = _mm_setzero_si128();
a1_x = _mm_setzero_si128();
a0_y = _mm_setzero_si128();
a1_y = _mm_setzero_si128();
shift = _mm_setzero_si128();
} else {
a0_above = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
ydx = _mm_set1_epi16(y * dx);
r6 = _mm_slli_epi16(_mm_srli_si128(c1234, 2), 6);
if (upsample_above) {
a0_above =
_mm_shuffle_epi8(a0_above, *(__m128i *)EvenOddMaskx[base_shift]);
a1_above = _mm_srli_si128(a0_above, 8);
shift = _mm_srli_epi16(
_mm_and_si128(
_mm_slli_epi16(_mm_sub_epi16(r6, ydx), upsample_above), c3f),
1);
} else {
a1_above = _mm_srli_si128(a0_above, 1);
a0_above =
_mm_shuffle_epi8(a0_above, *(__m128i *)LoadMaskx[base_shift]);
a1_above =
_mm_shuffle_epi8(a1_above, *(__m128i *)LoadMaskx[base_shift]);
shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1);
}
a0_x = _mm_cvtepu8_epi16(a0_above);
a1_x = _mm_cvtepu8_epi16(a1_above);
a0_y = _mm_setzero_si128();
a1_y = _mm_setzero_si128();
shifty = shift;
}
// y calc
if (base_x < min_base_x) {
DECLARE_ALIGNED(32, int16_t, base_y_c[16]);
__m128i y_c, base_y_c_reg, mask;
r6 = _mm_set1_epi16(r << 6);
y_c = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234, dy_reg));
base_y_c_reg = _mm_srai_epi16(y_c, frac_bits_y);
mask = _mm_cmpgt_epi16(min_y_base, base_y_c_reg);
base_y_c_reg = _mm_andnot_si128(mask, base_y_c_reg);
_mm_store_si128((__m128i *)base_y_c, base_y_c_reg);
a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
left[base_y_c[2]], left[base_y_c[3]],
left[base_y_c[4]], left[base_y_c[5]],
left[base_y_c[6]], left[base_y_c[7]]);
base_y_c_reg = _mm_add_epi16(base_y_c_reg, _mm_srli_epi16(a16, 4));
_mm_store_si128((__m128i *)base_y_c, base_y_c_reg);
a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
left[base_y_c[2]], left[base_y_c[3]],
left[base_y_c[4]], left[base_y_c[5]],
left[base_y_c[6]], left[base_y_c[7]]);
if (upsample_left) {
shifty = _mm_srli_epi16(
_mm_and_si128(_mm_slli_epi16(y_c, upsample_left), c3f), 1);
} else {
shifty = _mm_srli_epi16(_mm_and_si128(y_c, c3f), 1);
}
}
diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res = _mm_add_epi16(a32, b);
res = _mm_srli_epi16(res, 5);
diff = _mm_sub_epi16(a1_y, a0_y); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0_y, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shifty);
res1 = _mm_add_epi16(a32, b);
res1 = _mm_srli_epi16(res1, 5);
resx = _mm_packus_epi16(res, res);
resy = _mm_packus_epi16(res1, res1);
resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)Mask[0][base_min_diff]);
_mm_storel_epi64((__m128i *)(dst), resxy);
dst += stride;
}
}
static void dr_prediction_z2_HxW_sse4_1(int H, int W, uint8_t *dst,
ptrdiff_t stride, const uint8_t *above,
const uint8_t *left, int upsample_above,
int upsample_left, int dx, int dy) {
// here upsample_above and upsample_left are 0 by design of
// av1_use_intra_edge_upsample
const int min_base_x = -1;
const int min_base_y = -1;
(void)upsample_above;
(void)upsample_left;
const int frac_bits_x = 6;
const int frac_bits_y = 6;
__m128i a0_x, a1_x, a0_y, a1_y, a0_y_h, a1_y_h, a32;
__m128i diff, shifty, shifty_h;
__m128i a0_above, a1_above;
DECLARE_ALIGNED(32, int16_t, base_y_c[16]);
const __m128i a16 = _mm_set1_epi16(16);
const __m128i c1 = _mm_srli_epi16(a16, 4);
const __m128i min_y_base = _mm_set1_epi16(min_base_y);
const __m128i c3f = _mm_set1_epi16(0x3f);
const __m128i dy256 = _mm_set1_epi16(dy);
const __m128i c0123 = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7);
const __m128i c0123_h = _mm_setr_epi16(8, 9, 10, 11, 12, 13, 14, 15);
const __m128i c1234 = _mm_add_epi16(c0123, c1);
const __m128i c1234_h = _mm_add_epi16(c0123_h, c1);
for (int r = 0; r < H; r++) {
__m128i b, res, res1, shift, reg_j, r6, ydx;
__m128i resx, resy;
__m128i resxy;
int y = r + 1;
ydx = _mm_set1_epi16((int16_t)(y * dx));
int base_x = (-y * dx) >> frac_bits_x;
for (int j = 0; j < W; j += 16) {
reg_j = _mm_set1_epi16(j);
int base_shift = 0;
if ((base_x + j) < (min_base_x - 1)) {
base_shift = (min_base_x - (base_x + j) - 1);
}
int base_min_diff = (min_base_x - base_x - j);
if (base_min_diff > 16) {
base_min_diff = 16;
} else {
if (base_min_diff < 0) base_min_diff = 0;
}
if (base_shift < 16) {
a0_above =
_mm_loadu_si128((__m128i *)(above + base_x + base_shift + j));
a1_above =
_mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1 + j));
a0_above =
_mm_shuffle_epi8(a0_above, *(__m128i *)LoadMaskx[base_shift]);
a1_above =
_mm_shuffle_epi8(a1_above, *(__m128i *)LoadMaskx[base_shift]);
a0_x = _mm_cvtepu8_epi16(a0_above);
a1_x = _mm_cvtepu8_epi16(a1_above);
r6 = _mm_slli_epi16(_mm_add_epi16(c0123, reg_j), 6);
shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1);
diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res = _mm_add_epi16(a32, b);
res = _mm_srli_epi16(res, 5); // 16 16-bit values
a0_x = _mm_cvtepu8_epi16(_mm_srli_si128(a0_above, 8));
a1_x = _mm_cvtepu8_epi16(_mm_srli_si128(a1_above, 8));
r6 = _mm_slli_epi16(_mm_add_epi16(c0123_h, reg_j), 6);
shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1);
diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shift);
res1 = _mm_add_epi16(a32, b);
res1 = _mm_srli_epi16(res1, 5); // 16 16-bit values
resx = _mm_packus_epi16(res, res1);
} else {
resx = _mm_setzero_si128();
}
// y calc
if (base_x < min_base_x) {
__m128i c_reg, c_reg_h, y_reg, y_reg_h, base_y, base_y_h;
__m128i mask, mask_h, mul16, mul16_h;
r6 = _mm_set1_epi16(r << 6);
c_reg = _mm_add_epi16(reg_j, c1234);
c_reg_h = _mm_add_epi16(reg_j, c1234_h);
mul16 = _mm_min_epu16(_mm_mullo_epi16(c_reg, dy256),
_mm_srli_epi16(min_y_base, 1));
mul16_h = _mm_min_epu16(_mm_mullo_epi16(c_reg_h, dy256),
_mm_srli_epi16(min_y_base, 1));
y_reg = _mm_sub_epi16(r6, mul16);
y_reg_h = _mm_sub_epi16(r6, mul16_h);
base_y = _mm_srai_epi16(y_reg, frac_bits_y);
base_y_h = _mm_srai_epi16(y_reg_h, frac_bits_y);
mask = _mm_cmpgt_epi16(min_y_base, base_y);
mask_h = _mm_cmpgt_epi16(min_y_base, base_y_h);
base_y = _mm_blendv_epi8(base_y, min_y_base, mask);
base_y_h = _mm_blendv_epi8(base_y_h, min_y_base, mask_h);
int16_t min_y = (int16_t)_mm_extract_epi16(base_y_h, 7);
int16_t max_y = (int16_t)_mm_extract_epi16(base_y, 0);
int16_t offset_diff = max_y - min_y;
if (offset_diff < 16) {
__m128i min_y_reg = _mm_set1_epi16(min_y);
__m128i base_y_offset = _mm_sub_epi16(base_y, min_y_reg);
__m128i base_y_offset_h = _mm_sub_epi16(base_y_h, min_y_reg);
__m128i y_offset = _mm_packs_epi16(base_y_offset, base_y_offset_h);
__m128i a0_mask = _mm_loadu_si128((__m128i *)(left + min_y));
__m128i a1_mask = _mm_loadu_si128((__m128i *)(left + min_y + 1));
__m128i LoadMask =
_mm_loadu_si128((__m128i *)(LoadMaskz2[offset_diff / 4]));
a0_mask = _mm_and_si128(a0_mask, LoadMask);
a1_mask = _mm_and_si128(a1_mask, LoadMask);
a0_mask = _mm_shuffle_epi8(a0_mask, y_offset);
a1_mask = _mm_shuffle_epi8(a1_mask, y_offset);
a0_y = _mm_cvtepu8_epi16(a0_mask);
a1_y = _mm_cvtepu8_epi16(a1_mask);
a0_y_h = _mm_cvtepu8_epi16(_mm_srli_si128(a0_mask, 8));
a1_y_h = _mm_cvtepu8_epi16(_mm_srli_si128(a1_mask, 8));
} else {
base_y = _mm_andnot_si128(mask, base_y);
base_y_h = _mm_andnot_si128(mask_h, base_y_h);
_mm_store_si128((__m128i *)base_y_c, base_y);
_mm_store_si128((__m128i *)&base_y_c[8], base_y_h);
a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
left[base_y_c[2]], left[base_y_c[3]],
left[base_y_c[4]], left[base_y_c[5]],
left[base_y_c[6]], left[base_y_c[7]]);
a0_y_h = _mm_setr_epi16(left[base_y_c[8]], left[base_y_c[9]],
left[base_y_c[10]], left[base_y_c[11]],
left[base_y_c[12]], left[base_y_c[13]],
left[base_y_c[14]], left[base_y_c[15]]);
base_y = _mm_add_epi16(base_y, c1);
base_y_h = _mm_add_epi16(base_y_h, c1);
_mm_store_si128((__m128i *)base_y_c, base_y);
_mm_store_si128((__m128i *)&base_y_c[8], base_y_h);
a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
left[base_y_c[2]], left[base_y_c[3]],
left[base_y_c[4]], left[base_y_c[5]],
left[base_y_c[6]], left[base_y_c[7]]);
a1_y_h = _mm_setr_epi16(left[base_y_c[8]], left[base_y_c[9]],
left[base_y_c[10]], left[base_y_c[11]],
left[base_y_c[12]], left[base_y_c[13]],
left[base_y_c[14]], left[base_y_c[15]]);
}
shifty = _mm_srli_epi16(_mm_and_si128(y_reg, c3f), 1);
shifty_h = _mm_srli_epi16(_mm_and_si128(y_reg_h, c3f), 1);
diff = _mm_sub_epi16(a1_y, a0_y); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0_y, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shifty);
res = _mm_add_epi16(a32, b);
res = _mm_srli_epi16(res, 5); // 16 16-bit values
diff = _mm_sub_epi16(a1_y_h, a0_y_h); // a[x+1] - a[x]
a32 = _mm_slli_epi16(a0_y_h, 5); // a[x] * 32
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
b = _mm_mullo_epi16(diff, shifty_h);
res1 = _mm_add_epi16(a32, b);
res1 = _mm_srli_epi16(res1, 5); // 16 16-bit values
resy = _mm_packus_epi16(res, res1);
} else {
resy = _mm_setzero_si128();
}
resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)Mask[0][base_min_diff]);
_mm_storeu_si128((__m128i *)(dst + j), resxy);
} // for j
dst += stride;
}
}
// Directional prediction, zone 2: 90 < angle < 180
void av1_dr_prediction_z2_sse4_1(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left,
int upsample_above, int upsample_left, int dx,
int dy) {
assert(dx > 0);
assert(dy > 0);
switch (bw) {
case 4:
dr_prediction_z2_Nx4_sse4_1(bh, dst, stride, above, left, upsample_above,
upsample_left, dx, dy);
break;
case 8:
dr_prediction_z2_Nx8_sse4_1(bh, dst, stride, above, left, upsample_above,
upsample_left, dx, dy);
break;
default:
dr_prediction_z2_HxW_sse4_1(bh, bw, dst, stride, above, left,
upsample_above, upsample_left, dx, dy);
}
return;
}
// z3 functions
static void dr_prediction_z3_4x4_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[4], d[4];
dr_prediction_z1_HxW_internal_sse4_1(4, 4, dstvec, left, upsample_left, dy);
transpose4x8_8x4_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3],
&d[0], &d[1], &d[2], &d[3]);
*(int *)(dst + stride * 0) = _mm_cvtsi128_si32(d[0]);
*(int *)(dst + stride * 1) = _mm_cvtsi128_si32(d[1]);
*(int *)(dst + stride * 2) = _mm_cvtsi128_si32(d[2]);
*(int *)(dst + stride * 3) = _mm_cvtsi128_si32(d[3]);
return;
}
static void dr_prediction_z3_8x8_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[8], d[8];
dr_prediction_z1_HxW_internal_sse4_1(8, 8, dstvec, left, upsample_left, dy);
transpose8x8_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4],
&dstvec[5], &dstvec[6], &dstvec[7], &d[0], &d[1], &d[2],
&d[3]);
_mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]);
_mm_storel_epi64((__m128i *)(dst + 1 * stride), _mm_srli_si128(d[0], 8));
_mm_storel_epi64((__m128i *)(dst + 2 * stride), d[1]);
_mm_storel_epi64((__m128i *)(dst + 3 * stride), _mm_srli_si128(d[1], 8));
_mm_storel_epi64((__m128i *)(dst + 4 * stride), d[2]);
_mm_storel_epi64((__m128i *)(dst + 5 * stride), _mm_srli_si128(d[2], 8));
_mm_storel_epi64((__m128i *)(dst + 6 * stride), d[3]);
_mm_storel_epi64((__m128i *)(dst + 7 * stride), _mm_srli_si128(d[3], 8));
}
static void dr_prediction_z3_4x8_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[4], d[8];
dr_prediction_z1_HxW_internal_sse4_1(8, 4, dstvec, left, upsample_left, dy);
transpose4x8_8x4_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &d[0],
&d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]);
for (int i = 0; i < 8; i++) {
*(int *)(dst + stride * i) = _mm_cvtsi128_si32(d[i]);
}
}
static void dr_prediction_z3_8x4_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[8], d[4];
dr_prediction_z1_HxW_internal_sse4_1(4, 8, dstvec, left, upsample_left, dy);
transpose8x8_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3],
&dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &d[0],
&d[1], &d[2], &d[3]);
_mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]);
_mm_storel_epi64((__m128i *)(dst + 1 * stride), d[1]);
_mm_storel_epi64((__m128i *)(dst + 2 * stride), d[2]);
_mm_storel_epi64((__m128i *)(dst + 3 * stride), d[3]);
}
static void dr_prediction_z3_8x16_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[8], d[8];
dr_prediction_z1_HxW_internal_sse4_1(16, 8, dstvec, left, upsample_left, dy);
transpose8x16_16x8_sse2(dstvec, dstvec + 1, dstvec + 2, dstvec + 3,
dstvec + 4, dstvec + 5, dstvec + 6, dstvec + 7, d,
d + 1, d + 2, d + 3, d + 4, d + 5, d + 6, d + 7);
for (int i = 0; i < 8; i++) {
_mm_storel_epi64((__m128i *)(dst + i * stride), d[i]);
_mm_storel_epi64((__m128i *)(dst + (i + 8) * stride),
_mm_srli_si128(d[i], 8));
}
}
static void dr_prediction_z3_16x8_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[16], d[16];
dr_prediction_z1_HxW_internal_sse4_1(8, 16, dstvec, left, upsample_left, dy);
transpose16x8_8x16_sse2(
&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5],
&dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11],
&dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2],
&d[3], &d[4], &d[5], &d[6], &d[7]);
for (int i = 0; i < 8; i++) {
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
}
}
static void dr_prediction_z3_4x16_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[4], d[16];
dr_prediction_z1_HxW_internal_sse4_1(16, 4, dstvec, left, upsample_left, dy);
transpose4x16_sse2(dstvec, d);
for (int i = 0; i < 16; i++) {
*(int *)(dst + stride * i) = _mm_cvtsi128_si32(d[i]);
}
}
static void dr_prediction_z3_16x4_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[16], d[8];
dr_prediction_z1_HxW_internal_sse4_1(4, 16, dstvec, left, upsample_left, dy);
for (int i = 4; i < 8; i++) {
d[i] = _mm_setzero_si128();
}
transpose16x8_8x16_sse2(
&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5],
&dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11],
&dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2],
&d[3], &d[4], &d[5], &d[6], &d[7]);
for (int i = 0; i < 4; i++) {
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
}
}
static void dr_prediction_z3_8x32_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[16], d[16], dstvec_h[16], d_h[16];
dr_prediction_z1_32xN_internal_sse4_1(8, dstvec, dstvec_h, left,
upsample_left, dy);
for (int i = 8; i < 16; i++) {
dstvec[i] = _mm_setzero_si128();
dstvec_h[i] = _mm_setzero_si128();
}
transpose16x16_sse2(dstvec, d);
transpose16x16_sse2(dstvec_h, d_h);
for (int i = 0; i < 16; i++) {
_mm_storel_epi64((__m128i *)(dst + i * stride), d[i]);
}
for (int i = 0; i < 16; i++) {
_mm_storel_epi64((__m128i *)(dst + (i + 16) * stride), d_h[i]);
}
}
static void dr_prediction_z3_32x8_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left, int upsample_left,
int dy) {
__m128i dstvec[32], d[16];
dr_prediction_z1_HxW_internal_sse4_1(8, 32, dstvec, left, upsample_left, dy);
transpose16x8_8x16_sse2(
&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5],
&dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11],
&dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2],
&d[3], &d[4], &d[5], &d[6], &d[7]);
transpose16x8_8x16_sse2(
&dstvec[0 + 16], &dstvec[1 + 16], &dstvec[2 + 16], &dstvec[3 + 16],
&dstvec[4 + 16], &dstvec[5 + 16], &dstvec[6 + 16], &dstvec[7 + 16],
&dstvec[8 + 16], &dstvec[9 + 16], &dstvec[10 + 16], &dstvec[11 + 16],
&dstvec[12 + 16], &dstvec[13 + 16], &dstvec[14 + 16], &dstvec[15 + 16],
&d[0 + 8], &d[1 + 8], &d[2 + 8], &d[3 + 8], &d[4 + 8], &d[5 + 8],
&d[6 + 8], &d[7 + 8]);
for (int i = 0; i < 8; i++) {
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
_mm_storeu_si128((__m128i *)(dst + i * stride + 16), d[i + 8]);
}
}
static void dr_prediction_z3_16x16_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left,
int upsample_left, int dy) {
__m128i dstvec[16], d[16];
dr_prediction_z1_HxW_internal_sse4_1(16, 16, dstvec, left, upsample_left, dy);
transpose16x16_sse2(dstvec, d);
for (int i = 0; i < 16; i++) {
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
}
}
static void dr_prediction_z3_32x32_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left,
int upsample_left, int dy) {
__m128i dstvec[32], d[32], dstvec_h[32], d_h[32];
dr_prediction_z1_32xN_internal_sse4_1(32, dstvec, dstvec_h, left,
upsample_left, dy);
transpose16x16_sse2(dstvec, d);
transpose16x16_sse2(dstvec_h, d_h);
transpose16x16_sse2(dstvec + 16, d + 16);
transpose16x16_sse2(dstvec_h + 16, d_h + 16);
for (int j = 0; j < 16; j++) {
_mm_storeu_si128((__m128i *)(dst + j * stride), d[j]);
_mm_storeu_si128((__m128i *)(dst + j * stride + 16), d[j + 16]);
}
for (int j = 0; j < 16; j++) {
_mm_storeu_si128((__m128i *)(dst + (j + 16) * stride), d_h[j]);
_mm_storeu_si128((__m128i *)(dst + (j + 16) * stride + 16), d_h[j + 16]);
}
}
static void dr_prediction_z3_64x64_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left,
int upsample_left, int dy) {
uint8_t dstT[64 * 64];
dr_prediction_z1_64xN_sse4_1(64, dstT, 64, left, upsample_left, dy);
transpose(dstT, 64, dst, stride, 64, 64);
}
static void dr_prediction_z3_16x32_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left,
int upsample_left, int dy) {
__m128i dstvec[16], d[16], dstvec_h[16], d_h[16];
dr_prediction_z1_32xN_internal_sse4_1(16, dstvec, dstvec_h, left,
upsample_left, dy);
transpose16x16_sse2(dstvec, d);
transpose16x16_sse2(dstvec_h, d_h);
// store
for (int j = 0; j < 16; j++) {
_mm_storeu_si128((__m128i *)(dst + j * stride), d[j]);
_mm_storeu_si128((__m128i *)(dst + (j + 16) * stride), d_h[j]);
}
}
static void dr_prediction_z3_32x16_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left,
int upsample_left, int dy) {
__m128i dstvec[32], d[16];
dr_prediction_z1_HxW_internal_sse4_1(16, 32, dstvec, left, upsample_left, dy);
for (int i = 0; i < 32; i += 16) {
transpose16x16_sse2((dstvec + i), d);
for (int j = 0; j < 16; j++) {
_mm_storeu_si128((__m128i *)(dst + j * stride + i), d[j]);
}
}
}
static void dr_prediction_z3_32x64_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left,
int upsample_left, int dy) {
uint8_t dstT[64 * 32];
dr_prediction_z1_64xN_sse4_1(32, dstT, 64, left, upsample_left, dy);
transpose(dstT, 64, dst, stride, 32, 64);
}
static void dr_prediction_z3_64x32_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left,
int upsample_left, int dy) {
uint8_t dstT[32 * 64];
dr_prediction_z1_32xN_sse4_1(64, dstT, 32, left, upsample_left, dy);
transpose(dstT, 32, dst, stride, 64, 32);
return;
}
static void dr_prediction_z3_16x64_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left,
int upsample_left, int dy) {
uint8_t dstT[64 * 16];
dr_prediction_z1_64xN_sse4_1(16, dstT, 64, left, upsample_left, dy);
transpose(dstT, 64, dst, stride, 16, 64);
}
static void dr_prediction_z3_64x16_sse4_1(uint8_t *dst, ptrdiff_t stride,
const uint8_t *left,
int upsample_left, int dy) {
__m128i dstvec[64], d[16];
dr_prediction_z1_HxW_internal_sse4_1(16, 64, dstvec, left, upsample_left, dy);
for (int i = 0; i < 64; i += 16) {
transpose16x16_sse2(dstvec + i, d);
for (int j = 0; j < 16; j++) {
_mm_storeu_si128((__m128i *)(dst + j * stride + i), d[j]);
}
}
}
void av1_dr_prediction_z3_sse4_1(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
const uint8_t *above, const uint8_t *left,
int upsample_left, int dx, int dy) {
(void)above;
(void)dx;
assert(dx == 1);
assert(dy > 0);
if (bw == bh) {
switch (bw) {
case 4:
dr_prediction_z3_4x4_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 8:
dr_prediction_z3_8x8_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 16:
dr_prediction_z3_16x16_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 32:
dr_prediction_z3_32x32_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 64:
dr_prediction_z3_64x64_sse4_1(dst, stride, left, upsample_left, dy);
break;
default: assert(0 && "Invalid block size");
}
} else {
if (bw < bh) {
if (bw + bw == bh) {
switch (bw) {
case 4:
dr_prediction_z3_4x8_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 8:
dr_prediction_z3_8x16_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 16:
dr_prediction_z3_16x32_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 32:
dr_prediction_z3_32x64_sse4_1(dst, stride, left, upsample_left, dy);
break;
default: assert(0 && "Invalid block size");
}
} else {
switch (bw) {
case 4:
dr_prediction_z3_4x16_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 8:
dr_prediction_z3_8x32_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 16:
dr_prediction_z3_16x64_sse4_1(dst, stride, left, upsample_left, dy);
break;
default: assert(0 && "Invalid block size");
}
}
} else {
if (bh + bh == bw) {
switch (bh) {
case 4:
dr_prediction_z3_8x4_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 8:
dr_prediction_z3_16x8_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 16:
dr_prediction_z3_32x16_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 32:
dr_prediction_z3_64x32_sse4_1(dst, stride, left, upsample_left, dy);
break;
default: assert(0 && "Invalid block size");
}
} else {
switch (bh) {
case 4:
dr_prediction_z3_16x4_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 8:
dr_prediction_z3_32x8_sse4_1(dst, stride, left, upsample_left, dy);
break;
case 16:
dr_prediction_z3_64x16_sse4_1(dst, stride, left, upsample_left, dy);
break;
default: assert(0 && "Invalid block size");
}
}
}
}
}