|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "av1/encoder/ml.h" | 
|  |  | 
|  | void av1_nn_output_prec_reduce(float *const output, int num_output) { | 
|  | const int prec_bits = 11; | 
|  | const int prec = 1 << prec_bits; | 
|  | const float inv_prec = (float)(1.0 / prec); | 
|  | for (int i = 0; i < num_output; i++) { | 
|  | output[i] = ((int)(output[i] * prec + 0.5)) * inv_prec; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate prediction based on the given input features and neural net config. | 
|  | // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden | 
|  | // layer. | 
|  | void av1_nn_predict_c(const float *input_nodes, | 
|  | const NN_CONFIG *const nn_config, int reduce_prec, | 
|  | float *const output) { | 
|  | int num_input_nodes = nn_config->num_inputs; | 
|  | int buf_index = 0; | 
|  | float buf[2][NN_MAX_NODES_PER_LAYER]; | 
|  |  | 
|  | // Propagate hidden layers. | 
|  | const int num_layers = nn_config->num_hidden_layers; | 
|  | assert(num_layers <= NN_MAX_HIDDEN_LAYERS); | 
|  | for (int layer = 0; layer < num_layers; ++layer) { | 
|  | const float *layer_weights = nn_config->weights[layer]; | 
|  | const float *layer_bias = nn_config->bias[layer]; | 
|  | float *output_nodes = buf[buf_index]; | 
|  | const int num_output_nodes = nn_config->num_hidden_nodes[layer]; | 
|  | assert(num_output_nodes < NN_MAX_NODES_PER_LAYER); | 
|  | for (int node = 0; node < num_output_nodes; ++node) { | 
|  | float val = layer_bias[node]; | 
|  | for (int i = 0; i < num_input_nodes; ++i) | 
|  | val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; | 
|  | // ReLU as activation function. | 
|  | val = val > 0.0f ? val : 0.0f;  // Could use AOMMAX(). | 
|  | output_nodes[node] = val; | 
|  | } | 
|  | num_input_nodes = num_output_nodes; | 
|  | input_nodes = output_nodes; | 
|  | buf_index = 1 - buf_index; | 
|  | } | 
|  |  | 
|  | // Final output layer. | 
|  | const float *layer_weights = nn_config->weights[num_layers]; | 
|  | const float *layer_bias = nn_config->bias[num_layers]; | 
|  | for (int node = 0; node < nn_config->num_outputs; ++node) { | 
|  | float val = layer_bias[node]; | 
|  | for (int i = 0; i < num_input_nodes; ++i) | 
|  | val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; | 
|  | output[node] = val; | 
|  | } | 
|  | if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs); | 
|  | } | 
|  |  | 
|  | #if CONFIG_NN_V2 | 
|  | // Applies the ReLu activation to one fc layer | 
|  | // output[i] = Max(input[i],0.0f) | 
|  | static float *nn_relu(const float *input, FC_LAYER *layer) { | 
|  | for (int i = 0; i < layer->num_outputs; ++i) { | 
|  | layer->output[i] = AOMMAX(input[i], 0.0f); | 
|  | } | 
|  |  | 
|  | return layer->output; | 
|  | } | 
|  |  | 
|  | // Applies the Sigmoid activation to one fc layer | 
|  | // output[i] = 1/(1+exp(input[i])) | 
|  | static float *nn_sigmoid(const float *input, FC_LAYER *layer) { | 
|  | for (int i = 0; i < layer->num_outputs; ++i) { | 
|  | const float tmp = AOMMIN(AOMMAX(input[i], -10.0f), 10.0f); | 
|  | layer->output[i] = 1.0f / (1.0f + expf(-tmp)); | 
|  | } | 
|  |  | 
|  | return layer->output; | 
|  | } | 
|  |  | 
|  | // Forward prediction in one fc layer, used in function av1_nn_predict_V2 | 
|  | static float *nn_fc_forward(const float *input, FC_LAYER *layer) { | 
|  | const float *weights = layer->weights; | 
|  | const float *bias = layer->bias; | 
|  | assert(layer->num_outputs < NN_MAX_NODES_PER_LAYER); | 
|  | // fc | 
|  | for (int node = 0; node < layer->num_outputs; ++node) { | 
|  | float val = bias[node]; | 
|  | for (int i = 0; i < layer->num_inputs; ++i) val += weights[i] * input[i]; | 
|  | layer->output[node] = val; | 
|  | weights += layer->num_inputs; | 
|  | } | 
|  |  | 
|  | // activation | 
|  | switch (layer->activation) { | 
|  | case NONE: return layer->output; | 
|  | case RELU: return nn_relu(layer->output, layer); | 
|  | case SIGMOID: return nn_sigmoid(layer->output, layer); | 
|  | case SOFTSIGN: | 
|  | assert(0 && "Softsign has not been supported in NN.");  // TO DO | 
|  | return NULL; | 
|  | default: | 
|  | assert(0 && "Unknown activation");  // Unknown activation | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_nn_predict_v2(const float *feature, NN_CONFIG_V2 *nn_config, | 
|  | int reduce_prec, float *output) { | 
|  | const float *input_nodes = feature; | 
|  |  | 
|  | // Propagate the layers. | 
|  | const int num_layers = nn_config->num_hidden_layers; | 
|  | assert(num_layers <= NN_MAX_HIDDEN_LAYERS); | 
|  | for (int i = 0; i < num_layers; ++i) { | 
|  | input_nodes = nn_fc_forward(input_nodes, nn_config->layer + i); | 
|  | assert(nn_config->layer[i + 1].num_inputs == | 
|  | nn_config->layer[i].num_outputs); | 
|  | } | 
|  |  | 
|  | // Final layer | 
|  | input_nodes = nn_fc_forward(input_nodes, nn_config->layer + num_layers); | 
|  | assert(nn_config->layer[num_layers].num_outputs == nn_config->num_logits); | 
|  | // Copy the final layer output | 
|  | memcpy(output, input_nodes, sizeof(*input_nodes) * nn_config->num_logits); | 
|  | if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_logits); | 
|  | } | 
|  | #endif  // CONFIG_NN_V2 | 
|  |  | 
|  | void av1_nn_softmax(const float *input, float *output, int n) { | 
|  | // Softmax function is invariant to adding the same constant | 
|  | // to all input values, so we subtract the maximum input to avoid | 
|  | // possible overflow. | 
|  | float max_inp = input[0]; | 
|  | for (int i = 1; i < n; i++) max_inp = AOMMAX(max_inp, input[i]); | 
|  | float sum_out = 0.0f; | 
|  | for (int i = 0; i < n; i++) { | 
|  | // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors. | 
|  | const float normalized_input = AOMMAX(input[i] - max_inp, -10.0f); | 
|  | output[i] = (float)exp(normalized_input); | 
|  | sum_out += output[i]; | 
|  | } | 
|  | for (int i = 0; i < n; i++) output[i] /= sum_out; | 
|  | } |