| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/enums.h" |
| #include "av1/common/av1_txfm.h" |
| #include "av1/common/x86/av1_txfm_sse2.h" |
| #include "av1/common/x86/highbd_txfm_utility_sse4.h" |
| #include "av1/encoder/av1_fwd_txfm1d_cfg.h" |
| #include "av1/encoder/x86/av1_txfm1d_sse4.h" |
| #include "av1/encoder/x86/av1_fwd_txfm_sse2.h" |
| |
| static INLINE void int16_array_with_stride_to_int32_array_without_stride( |
| const int16_t *input, int stride, int32_t *output, int txfm1d_size) { |
| int r, c; |
| for (r = 0; r < txfm1d_size; r++) { |
| for (c = 0; c < txfm1d_size; c++) { |
| output[r * txfm1d_size + c] = (int32_t)input[r * stride + c]; |
| } |
| } |
| } |
| |
| typedef void (*TxfmFuncSSE2)(__m128i *input, __m128i *output, |
| const int8_t cos_bit, const int8_t *stage_range); |
| |
| static void fdct32_new_sse4_1(__m128i *input, __m128i *output, |
| const int8_t cos_bit, const int8_t *stage_range) { |
| const int txfm_size = 32; |
| const int num_per_128 = 4; |
| int col_num = txfm_size / num_per_128; |
| int col; |
| (void)stage_range; |
| for (col = 0; col < col_num; col++) { |
| av1_fdct32_new_sse4_1((input + col), (output + col), cos_bit, col_num); |
| } |
| } |
| |
| static void fdct64_new_sse4_1(__m128i *input, __m128i *output, |
| const int8_t cos_bit, const int8_t *stage_range) { |
| const int txfm_size = 64; |
| const int num_per_128 = 4; |
| int col_num = txfm_size / num_per_128; |
| (void)stage_range; |
| for (int col = 0; col < col_num; col++) { |
| av1_fdct64_new_sse4_1((input + col), (output + col), cos_bit, col_num, |
| col_num); |
| } |
| } |
| |
| static INLINE TxfmFuncSSE2 fwd_txfm_type_to_func(TXFM_TYPE txfm_type) { |
| switch (txfm_type) { |
| case TXFM_TYPE_DCT32: return fdct32_new_sse4_1; break; |
| case TXFM_TYPE_DCT64: return fdct64_new_sse4_1; break; |
| default: assert(0); |
| } |
| return NULL; |
| } |
| |
| static INLINE void fwd_txfm2d_sse4_1(const int16_t *input, int32_t *output, |
| const int stride, |
| const TXFM_2D_FLIP_CFG *cfg, |
| int32_t *txfm_buf) { |
| // TODO(sarahparker) This does not currently support rectangular transforms |
| // and will break without splitting txfm_size out into row and col size. |
| // Rectangular transforms use c code only, so it should be ok for now. |
| // It will be corrected when there are sse implementations for rectangular |
| // transforms. |
| assert(cfg->tx_size < TX_SIZES); |
| const int txfm_size = tx_size_wide[cfg->tx_size]; |
| const int8_t *shift = cfg->shift; |
| const int8_t *stage_range_col = cfg->stage_range_col; |
| const int8_t *stage_range_row = cfg->stage_range_row; |
| const int8_t cos_bit_col = cfg->cos_bit_col; |
| const int8_t cos_bit_row = cfg->cos_bit_row; |
| const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); |
| const TxfmFuncSSE2 txfm_func_row = fwd_txfm_type_to_func(cfg->txfm_type_row); |
| |
| __m128i *buf_128 = (__m128i *)txfm_buf; |
| __m128i *out_128 = (__m128i *)output; |
| int num_per_128 = 4; |
| int txfm2d_size_128 = txfm_size * txfm_size / num_per_128; |
| |
| int16_array_with_stride_to_int32_array_without_stride(input, stride, txfm_buf, |
| txfm_size); |
| av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[0]); |
| txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col); |
| av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]); |
| transpose_32(txfm_size, out_128, buf_128); |
| txfm_func_row(buf_128, out_128, cos_bit_row, stage_range_row); |
| av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]); |
| transpose_32(txfm_size, buf_128, out_128); |
| } |
| |
| static INLINE void fwd_txfm2d_64x64_sse4_1(const int16_t *input, |
| int32_t *output, const int stride, |
| const TXFM_2D_FLIP_CFG *cfg, |
| int32_t *txfm_buf) { |
| assert(cfg->tx_size < TX_SIZES); |
| const int txfm_size = tx_size_wide[cfg->tx_size]; |
| const int8_t *shift = cfg->shift; |
| const int8_t *stage_range_col = cfg->stage_range_col; |
| const int8_t cos_bit_col = cfg->cos_bit_col; |
| const int8_t cos_bit_row = cfg->cos_bit_row; |
| const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); |
| __m128i *buf_128 = (__m128i *)txfm_buf; |
| __m128i *out_128 = (__m128i *)output; |
| |
| const int num_per_128 = 4; |
| int txfm2d_size_128 = txfm_size * txfm_size / num_per_128; |
| int col_num = txfm_size / num_per_128; |
| |
| int16_array_with_stride_to_int32_array_without_stride(input, stride, output, |
| txfm_size); |
| /*col wise transform*/ |
| txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col); |
| av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]); |
| transpose_32(txfm_size, out_128, buf_128); |
| |
| /*row wise transform*/ |
| for (int col = 0; col < (col_num >> 1); col++) { |
| av1_fdct64_new_sse4_1((buf_128 + col), (out_128 + col), cos_bit_row, |
| col_num, (col_num >> 1)); |
| } |
| |
| txfm2d_size_128 = (col_num >> 1) * (txfm_size >> 1); |
| av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]); |
| transpose_8nx8n(buf_128, out_128, 32, 32); |
| } |
| |
| void av1_fwd_txfm2d_32x32_sse4_1(const int16_t *input, int32_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(16, int32_t, txfm_buf[1024]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_32X32, &cfg); |
| (void)bd; |
| fwd_txfm2d_sse4_1(input, output, stride, &cfg, txfm_buf); |
| } |
| |
| void av1_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(16, int32_t, txfm_buf[4096]); |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_fwd_txfm_cfg(tx_type, TX_64X64, &cfg); |
| (void)bd; |
| fwd_txfm2d_64x64_sse4_1(input, output, stride, &cfg, txfm_buf); |
| } |
| |
| static INLINE void transpose_32_4x4x2(int stride, const __m128i *inputA, |
| const __m128i *inputB, __m128i *output) { |
| __m128i temp0 = _mm_unpacklo_epi32(inputA[0], inputA[2]); |
| __m128i temp1 = _mm_unpackhi_epi32(inputA[0], inputA[2]); |
| __m128i temp2 = _mm_unpacklo_epi32(inputA[1], inputA[3]); |
| __m128i temp3 = _mm_unpackhi_epi32(inputA[1], inputA[3]); |
| |
| output[0 * stride] = _mm_unpacklo_epi32(temp0, temp2); |
| output[1 * stride] = _mm_unpackhi_epi32(temp0, temp2); |
| output[2 * stride] = _mm_unpacklo_epi32(temp1, temp3); |
| output[3 * stride] = _mm_unpackhi_epi32(temp1, temp3); |
| |
| temp0 = _mm_unpacklo_epi32(inputB[0], inputB[2]); |
| temp1 = _mm_unpackhi_epi32(inputB[0], inputB[2]); |
| temp2 = _mm_unpacklo_epi32(inputB[1], inputB[3]); |
| temp3 = _mm_unpackhi_epi32(inputB[1], inputB[3]); |
| |
| output[4 * stride] = _mm_unpacklo_epi32(temp0, temp2); |
| output[5 * stride] = _mm_unpackhi_epi32(temp0, temp2); |
| output[6 * stride] = _mm_unpacklo_epi32(temp1, temp3); |
| output[7 * stride] = _mm_unpackhi_epi32(temp1, temp3); |
| } |
| |
| static void lowbd_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| (void)bd; |
| (void)tx_type; |
| assert(tx_type == DCT_DCT); |
| const TX_SIZE tx_size = TX_64X64; |
| __m128i buf0[64], buf1[512]; |
| const int8_t *shift = fwd_txfm_shift_ls[tx_size]; |
| const int txw_idx = get_txw_idx(tx_size); |
| const int txh_idx = get_txh_idx(tx_size); |
| const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; |
| const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| const transform_1d_sse2 col_txfm = fdct8x64_new_sse2; |
| const int width_div8 = (width >> 3); |
| const int height_div8 = (height >> 3); |
| |
| for (int i = 0; i < width_div8; i++) { |
| load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); |
| round_shift_16bit(buf0, height, shift[0]); |
| col_txfm(buf0, buf0, cos_bit_col); |
| round_shift_16bit(buf0, height, shift[1]); |
| for (int j = 0; j < AOMMIN(4, height_div8); ++j) { |
| transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); |
| } |
| } |
| for (int i = 0; i < AOMMIN(4, height_div8); i++) { |
| __m128i bufA[64]; |
| __m128i bufB[64]; |
| __m128i *buf = buf1 + width * i; |
| for (int j = 0; j < width; ++j) { |
| bufA[j] = _mm_cvtepi16_epi32(buf[j]); |
| bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); |
| } |
| av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1); |
| av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1); |
| av1_round_shift_array_32_sse4_1(bufA, bufA, 32, -shift[2]); |
| av1_round_shift_array_32_sse4_1(bufB, bufB, 32, -shift[2]); |
| |
| int32_t *output8 = output + 8 * 32 * i; |
| for (int j = 0; j < width_div8; ++j) { |
| __m128i *out = (__m128i *)(output8 + 4 * j); |
| transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); |
| } |
| } |
| } |
| |
| static void lowbd_fwd_txfm2d_64x32_sse4_1(const int16_t *input, int32_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| (void)bd; |
| const TX_SIZE tx_size = TX_64X32; |
| __m128i buf0[64], buf1[256]; |
| const int8_t *shift = fwd_txfm_shift_ls[tx_size]; |
| const int txw_idx = get_txw_idx(tx_size); |
| const int txh_idx = get_txh_idx(tx_size); |
| const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; |
| const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type]; |
| const int width_div8 = (width >> 3); |
| const int height_div8 = (height >> 3); |
| |
| for (int i = 0; i < width_div8; i++) { |
| load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); |
| round_shift_16bit(buf0, height, shift[0]); |
| col_txfm(buf0, buf0, cos_bit_col); |
| round_shift_16bit(buf0, height, shift[1]); |
| for (int j = 0; j < AOMMIN(4, height_div8); ++j) { |
| transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); |
| } |
| } |
| assert(tx_type == DCT_DCT); |
| for (int i = 0; i < AOMMIN(4, height_div8); i++) { |
| __m128i bufA[64]; |
| __m128i bufB[64]; |
| __m128i *buf = buf1 + width * i; |
| for (int j = 0; j < width; ++j) { |
| bufA[j] = _mm_cvtepi16_epi32(buf[j]); |
| bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); |
| } |
| av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1); |
| av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1); |
| av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2); |
| av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2); |
| |
| int32_t *output8 = output + 8 * 32 * i; |
| for (int j = 0; j < width_div8; ++j) { |
| __m128i *out = (__m128i *)(output8 + 4 * j); |
| transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); |
| } |
| } |
| } |
| |
| static void lowbd_fwd_txfm2d_32x64_sse4_1(const int16_t *input, int32_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| (void)bd; |
| (void)tx_type; |
| assert(tx_type == DCT_DCT); |
| const TX_SIZE tx_size = TX_32X64; |
| __m128i buf0[64], buf1[256]; |
| const int8_t *shift = fwd_txfm_shift_ls[tx_size]; |
| const int txw_idx = get_txw_idx(tx_size); |
| const int txh_idx = get_txh_idx(tx_size); |
| const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; |
| const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| const transform_1d_sse2 col_txfm = fdct8x64_new_sse2; |
| const int width_div8 = (width >> 3); |
| const int height_div8 = (height >> 3); |
| |
| for (int i = 0; i < width_div8; i++) { |
| load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); |
| round_shift_16bit(buf0, height, shift[0]); |
| col_txfm(buf0, buf0, cos_bit_col); |
| round_shift_16bit(buf0, height, shift[1]); |
| for (int j = 0; j < AOMMIN(4, height_div8); ++j) { |
| transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); |
| } |
| } |
| |
| for (int i = 0; i < AOMMIN(4, height_div8); i++) { |
| __m128i bufA[32]; |
| __m128i bufB[32]; |
| __m128i *buf = buf1 + width * i; |
| for (int j = 0; j < width; ++j) { |
| bufA[j] = _mm_cvtepi16_epi32(buf[j]); |
| bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); |
| } |
| av1_fdct32_new_sse4_1(bufA, bufA, cos_bit_row, 1); |
| av1_fdct32_new_sse4_1(bufB, bufB, cos_bit_row, 1); |
| av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2); |
| av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2); |
| |
| int32_t *output8 = output + 8 * 32 * i; |
| for (int j = 0; j < (32 / 4); ++j) { |
| __m128i *out = (__m128i *)(output8 + 4 * j); |
| transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); |
| } |
| } |
| } |
| |
| static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = { |
| av1_lowbd_fwd_txfm2d_4x4_sse2, // 4x4 transform |
| av1_lowbd_fwd_txfm2d_8x8_sse2, // 8x8 transform |
| av1_lowbd_fwd_txfm2d_16x16_sse2, // 16x16 transform |
| av1_lowbd_fwd_txfm2d_32x32_sse2, // 32x32 transform |
| lowbd_fwd_txfm2d_64x64_sse4_1, // 64x64 transform |
| av1_lowbd_fwd_txfm2d_4x8_sse2, // 4x8 transform |
| av1_lowbd_fwd_txfm2d_8x4_sse2, // 8x4 transform |
| av1_lowbd_fwd_txfm2d_8x16_sse2, // 8x16 transform |
| av1_lowbd_fwd_txfm2d_16x8_sse2, // 16x8 transform |
| av1_lowbd_fwd_txfm2d_16x32_sse2, // 16x32 transform |
| av1_lowbd_fwd_txfm2d_32x16_sse2, // 32x16 transform |
| lowbd_fwd_txfm2d_32x64_sse4_1, // 32x64 transform |
| lowbd_fwd_txfm2d_64x32_sse4_1, // 64x32 transform |
| av1_lowbd_fwd_txfm2d_4x16_sse2, // 4x16 transform |
| av1_lowbd_fwd_txfm2d_16x4_sse2, // 16x4 transform |
| av1_lowbd_fwd_txfm2d_8x32_sse2, // 8x32 transform |
| av1_lowbd_fwd_txfm2d_32x8_sse2, // 32x8 transform |
| av1_lowbd_fwd_txfm2d_16x64_sse2, // 16x64 transform |
| av1_lowbd_fwd_txfm2d_64x16_sse2, // 64x16 transform |
| }; |
| |
| void av1_lowbd_fwd_txfm_sse4_1(const int16_t *src_diff, tran_low_t *coeff, |
| int diff_stride, TxfmParam *txfm_param) { |
| FwdTxfm2dFunc fwd_txfm2d_func = fwd_txfm2d_func_ls[txfm_param->tx_size]; |
| if ((fwd_txfm2d_func == NULL) || |
| (txfm_param->lossless && txfm_param->tx_size == TX_4X4)) { |
| av1_lowbd_fwd_txfm_c(src_diff, coeff, diff_stride, txfm_param); |
| } else { |
| fwd_txfm2d_func(src_diff, coeff, diff_stride, txfm_param->tx_type, |
| txfm_param->bd); |
| } |
| } |