| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/enums.h" |
| #include "av1/common/av1_txfm.h" |
| #include "av1/common/av1_inv_txfm1d.h" |
| #include "av1/common/av1_inv_txfm1d_cfg.h" |
| |
| void av1_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, |
| int stride, int bd) { |
| /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds, |
| 0.5 shifts per pixel. */ |
| int i; |
| tran_low_t output[16]; |
| tran_low_t a1, b1, c1, d1, e1; |
| const tran_low_t *ip = input; |
| tran_low_t *op = output; |
| uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip[0] >> UNIT_QUANT_SHIFT; |
| c1 = ip[1] >> UNIT_QUANT_SHIFT; |
| d1 = ip[2] >> UNIT_QUANT_SHIFT; |
| b1 = ip[3] >> UNIT_QUANT_SHIFT; |
| a1 += c1; |
| d1 -= b1; |
| e1 = (a1 - d1) >> 1; |
| b1 = e1 - b1; |
| c1 = e1 - c1; |
| a1 -= b1; |
| d1 += c1; |
| |
| op[0] = a1; |
| op[1] = b1; |
| op[2] = c1; |
| op[3] = d1; |
| ip += 4; |
| op += 4; |
| } |
| |
| ip = output; |
| for (i = 0; i < 4; i++) { |
| a1 = ip[4 * 0]; |
| c1 = ip[4 * 1]; |
| d1 = ip[4 * 2]; |
| b1 = ip[4 * 3]; |
| a1 += c1; |
| d1 -= b1; |
| e1 = (a1 - d1) >> 1; |
| b1 = e1 - b1; |
| c1 = e1 - c1; |
| a1 -= b1; |
| d1 += c1; |
| |
| range_check_value(a1, bd + 1); |
| range_check_value(b1, bd + 1); |
| range_check_value(c1, bd + 1); |
| range_check_value(d1, bd + 1); |
| |
| dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd); |
| dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd); |
| dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd); |
| dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd); |
| |
| ip++; |
| dest++; |
| } |
| } |
| |
| void av1_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8, |
| int dest_stride, int bd) { |
| int i; |
| tran_low_t a1, e1; |
| tran_low_t tmp[4]; |
| const tran_low_t *ip = in; |
| tran_low_t *op = tmp; |
| uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); |
| (void)bd; |
| |
| a1 = ip[0] >> UNIT_QUANT_SHIFT; |
| e1 = a1 >> 1; |
| a1 -= e1; |
| op[0] = a1; |
| op[1] = op[2] = op[3] = e1; |
| |
| ip = tmp; |
| for (i = 0; i < 4; i++) { |
| e1 = ip[0] >> 1; |
| a1 = ip[0] - e1; |
| dest[dest_stride * 0] = |
| highbd_clip_pixel_add(dest[dest_stride * 0], a1, bd); |
| dest[dest_stride * 1] = |
| highbd_clip_pixel_add(dest[dest_stride * 1], e1, bd); |
| dest[dest_stride * 2] = |
| highbd_clip_pixel_add(dest[dest_stride * 2], e1, bd); |
| dest[dest_stride * 3] = |
| highbd_clip_pixel_add(dest[dest_stride * 3], e1, bd); |
| ip++; |
| dest++; |
| } |
| } |
| |
| static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) { |
| switch (txfm_type) { |
| case TXFM_TYPE_DCT4: return av1_idct4; |
| case TXFM_TYPE_DCT8: return av1_idct8; |
| case TXFM_TYPE_DCT16: return av1_idct16; |
| case TXFM_TYPE_DCT32: return av1_idct32; |
| case TXFM_TYPE_DCT64: return av1_idct64; |
| case TXFM_TYPE_ADST4: return av1_iadst4; |
| case TXFM_TYPE_ADST8: return av1_iadst8; |
| case TXFM_TYPE_ADST16: return av1_iadst16; |
| case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c; |
| case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c; |
| case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c; |
| case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static const int8_t inv_shift_4x4[2] = { 0, -4 }; |
| static const int8_t inv_shift_8x8[2] = { -1, -4 }; |
| static const int8_t inv_shift_16x16[2] = { -2, -4 }; |
| static const int8_t inv_shift_32x32[2] = { -2, -4 }; |
| static const int8_t inv_shift_64x64[2] = { -2, -4 }; |
| static const int8_t inv_shift_4x8[2] = { 0, -4 }; |
| static const int8_t inv_shift_8x4[2] = { 0, -4 }; |
| static const int8_t inv_shift_8x16[2] = { -1, -4 }; |
| static const int8_t inv_shift_16x8[2] = { -1, -4 }; |
| static const int8_t inv_shift_16x32[2] = { -1, -4 }; |
| static const int8_t inv_shift_32x16[2] = { -1, -4 }; |
| static const int8_t inv_shift_32x64[2] = { -1, -4 }; |
| static const int8_t inv_shift_64x32[2] = { -1, -4 }; |
| static const int8_t inv_shift_4x16[2] = { -1, -4 }; |
| static const int8_t inv_shift_16x4[2] = { -1, -4 }; |
| static const int8_t inv_shift_8x32[2] = { -2, -4 }; |
| static const int8_t inv_shift_32x8[2] = { -2, -4 }; |
| static const int8_t inv_shift_16x64[2] = { -2, -4 }; |
| static const int8_t inv_shift_64x16[2] = { -2, -4 }; |
| |
| const int8_t *av1_inv_txfm_shift_ls[TX_SIZES_ALL] = { |
| inv_shift_4x4, inv_shift_8x8, inv_shift_16x16, inv_shift_32x32, |
| inv_shift_64x64, inv_shift_4x8, inv_shift_8x4, inv_shift_8x16, |
| inv_shift_16x8, inv_shift_16x32, inv_shift_32x16, inv_shift_32x64, |
| inv_shift_64x32, inv_shift_4x16, inv_shift_16x4, inv_shift_8x32, |
| inv_shift_32x8, inv_shift_16x64, inv_shift_64x16, |
| }; |
| |
| static const int8_t iadst4_range[7] = { 0, 1, 0, 0, 0, 0, 0 }; |
| |
| void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size, |
| TXFM_2D_FLIP_CFG *cfg) { |
| assert(cfg != NULL); |
| cfg->tx_size = tx_size; |
| av1_zero(cfg->stage_range_col); |
| av1_zero(cfg->stage_range_row); |
| set_flip_cfg(tx_type, cfg); |
| const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type]; |
| const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type]; |
| cfg->shift = av1_inv_txfm_shift_ls[tx_size]; |
| const int txw_idx = get_txw_idx(tx_size); |
| const int txh_idx = get_txh_idx(tx_size); |
| cfg->cos_bit_col = INV_COS_BIT; |
| cfg->cos_bit_row = INV_COS_BIT; |
| cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col]; |
| if (cfg->txfm_type_col == TXFM_TYPE_ADST4) { |
| memcpy(cfg->stage_range_col, iadst4_range, sizeof(iadst4_range)); |
| } |
| cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row]; |
| if (cfg->txfm_type_row == TXFM_TYPE_ADST4) { |
| memcpy(cfg->stage_range_row, iadst4_range, sizeof(iadst4_range)); |
| } |
| cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col]; |
| cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row]; |
| } |
| |
| void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, |
| const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size, |
| int bd) { |
| const int fwd_shift = inv_start_range[tx_size]; |
| const int8_t *shift = cfg->shift; |
| int8_t opt_range_row, opt_range_col; |
| if (bd == 8) { |
| opt_range_row = 16; |
| opt_range_col = 16; |
| } else if (bd == 10) { |
| opt_range_row = 18; |
| opt_range_col = 16; |
| } else { |
| assert(bd == 12); |
| opt_range_row = 20; |
| opt_range_col = 18; |
| } |
| // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning |
| for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) { |
| int real_range_row = cfg->stage_range_row[i] + fwd_shift + bd + 1; |
| (void)real_range_row; |
| if (cfg->txfm_type_row == TXFM_TYPE_ADST4 && i == 1) { |
| // the adst4 may use 1 extra bit on top of opt_range_row at stage 1 |
| // so opt_range_row >= real_range_row will not hold |
| stage_range_row[i] = opt_range_row; |
| } else { |
| assert(opt_range_row >= real_range_row); |
| stage_range_row[i] = opt_range_row; |
| } |
| } |
| // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning |
| for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) { |
| int real_range_col = |
| cfg->stage_range_col[i] + fwd_shift + shift[0] + bd + 1; |
| (void)real_range_col; |
| if (cfg->txfm_type_col == TXFM_TYPE_ADST4 && i == 1) { |
| // the adst4 may use 1 extra bit on top of opt_range_col at stage 1 |
| // so opt_range_col >= real_range_col will not hold |
| stage_range_col[i] = opt_range_col; |
| } else { |
| assert(opt_range_col >= real_range_col); |
| stage_range_col[i] = opt_range_col; |
| } |
| } |
| } |
| |
| static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output, |
| int stride, TXFM_2D_FLIP_CFG *cfg, |
| int32_t *txfm_buf, TX_SIZE tx_size, |
| int bd) { |
| // Note when assigning txfm_size_col, we use the txfm_size from the |
| // row configuration and vice versa. This is intentionally done to |
| // accurately perform rectangular transforms. When the transform is |
| // rectangular, the number of columns will be the same as the |
| // txfm_size stored in the row cfg struct. It will make no difference |
| // for square transforms. |
| const int txfm_size_col = tx_size_wide[cfg->tx_size]; |
| const int txfm_size_row = tx_size_high[cfg->tx_size]; |
| // Take the shift from the larger dimension in the rectangular case. |
| const int8_t *shift = cfg->shift; |
| const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row); |
| int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; |
| int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; |
| assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM); |
| assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM); |
| av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, tx_size, bd); |
| |
| const int8_t cos_bit_col = cfg->cos_bit_col; |
| const int8_t cos_bit_row = cfg->cos_bit_row; |
| const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->txfm_type_col); |
| const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->txfm_type_row); |
| |
| // txfm_buf's length is txfm_size_row * txfm_size_col + 2 * |
| // AOMMAX(txfm_size_row, txfm_size_col) |
| // it is used for intermediate data buffering |
| const int buf_offset = AOMMAX(txfm_size_row, txfm_size_col); |
| int32_t *temp_in = txfm_buf; |
| int32_t *temp_out = temp_in + buf_offset; |
| int32_t *buf = temp_out + buf_offset; |
| int32_t *buf_ptr = buf; |
| int c, r; |
| |
| // Rows |
| for (r = 0; r < txfm_size_row; ++r) { |
| if (abs(rect_type) == 1) { |
| for (c = 0; c < txfm_size_col; ++c) { |
| temp_in[c] = round_shift((int64_t)input[c] * NewInvSqrt2, NewSqrt2Bits); |
| } |
| clamp_buf(temp_in, txfm_size_col, bd + 8); |
| txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row); |
| } else { |
| for (c = 0; c < txfm_size_col; ++c) { |
| temp_in[c] = input[c]; |
| } |
| clamp_buf(temp_in, txfm_size_col, bd + 8); |
| txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row); |
| } |
| av1_round_shift_array(buf_ptr, txfm_size_col, -shift[0]); |
| input += txfm_size_col; |
| buf_ptr += txfm_size_col; |
| } |
| |
| // Columns |
| for (c = 0; c < txfm_size_col; ++c) { |
| if (cfg->lr_flip == 0) { |
| for (r = 0; r < txfm_size_row; ++r) |
| temp_in[r] = buf[r * txfm_size_col + c]; |
| } else { |
| // flip left right |
| for (r = 0; r < txfm_size_row; ++r) |
| temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)]; |
| } |
| clamp_buf(temp_in, txfm_size_row, AOMMAX(bd + 6, 16)); |
| txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col); |
| av1_round_shift_array(temp_out, txfm_size_row, -shift[1]); |
| if (cfg->ud_flip == 0) { |
| for (r = 0; r < txfm_size_row; ++r) { |
| output[r * stride + c] = |
| highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd); |
| } |
| } else { |
| // flip upside down |
| for (r = 0; r < txfm_size_row; ++r) { |
| output[r * stride + c] = highbd_clip_pixel_add( |
| output[r * stride + c], temp_out[txfm_size_row - r - 1], bd); |
| } |
| } |
| } |
| } |
| |
| static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output, |
| int stride, int32_t *txfm_buf, |
| TX_TYPE tx_type, TX_SIZE tx_size, |
| int bd) { |
| TXFM_2D_FLIP_CFG cfg; |
| av1_get_inv_txfm_cfg(tx_type, tx_size, &cfg); |
| // Forward shift sum uses larger square size, to be consistent with what |
| // av1_gen_inv_stage_range() does for inverse shifts. |
| inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, tx_size, bd); |
| } |
| |
| void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[4 * 8 + 8 + 8]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd); |
| } |
| |
| void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[8 * 4 + 8 + 8]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd); |
| } |
| |
| void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[8 * 16 + 16 + 16]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd); |
| } |
| |
| void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[16 * 8 + 16 + 16]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd); |
| } |
| |
| void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[16 * 32 + 32 + 32]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd); |
| } |
| |
| void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[32 * 16 + 32 + 32]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd); |
| } |
| |
| void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[4 * 4 + 4 + 4]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd); |
| } |
| |
| void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[8 * 8 + 8 + 8]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd); |
| } |
| |
| void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[16 * 16 + 16 + 16]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd); |
| } |
| |
| void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[32 * 32 + 32 + 32]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd); |
| } |
| |
| void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| // TODO(urvang): Can the same array be reused, instead of using a new array? |
| // Remap 32x32 input into a modified 64x64 by: |
| // - Copying over these values in top-left 32x32 locations. |
| // - Setting the rest of the locations to 0. |
| int32_t mod_input[64 * 64]; |
| for (int row = 0; row < 32; ++row) { |
| memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input)); |
| memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input)); |
| } |
| memset(mod_input + 32 * 64, 0, 32 * 64 * sizeof(*mod_input)); |
| DECLARE_ALIGNED(32, int, txfm_buf[64 * 64 + 64 + 64]); |
| inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X64, |
| bd); |
| } |
| |
| void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| // Remap 32x32 input into a modified 64x32 by: |
| // - Copying over these values in top-left 32x32 locations. |
| // - Setting the rest of the locations to 0. |
| int32_t mod_input[64 * 32]; |
| for (int row = 0; row < 32; ++row) { |
| memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input)); |
| memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input)); |
| } |
| DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]); |
| inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X32, |
| bd); |
| } |
| |
| void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| // Remap 32x32 input into a modified 32x64 input by: |
| // - Copying over these values in top-left 32x32 locations. |
| // - Setting the rest of the locations to 0. |
| int32_t mod_input[32 * 64]; |
| memcpy(mod_input, input, 32 * 32 * sizeof(*mod_input)); |
| memset(mod_input + 32 * 32, 0, 32 * 32 * sizeof(*mod_input)); |
| DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]); |
| inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_32X64, |
| bd); |
| } |
| |
| void av1_inv_txfm2d_add_16x64_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| // Remap 16x32 input into a modified 16x64 input by: |
| // - Copying over these values in top-left 16x32 locations. |
| // - Setting the rest of the locations to 0. |
| int32_t mod_input[16 * 64]; |
| memcpy(mod_input, input, 16 * 32 * sizeof(*mod_input)); |
| memset(mod_input + 16 * 32, 0, 16 * 32 * sizeof(*mod_input)); |
| DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]); |
| inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_16X64, |
| bd); |
| } |
| |
| void av1_inv_txfm2d_add_64x16_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| // Remap 32x16 input into a modified 64x16 by: |
| // - Copying over these values in top-left 32x16 locations. |
| // - Setting the rest of the locations to 0. |
| int32_t mod_input[64 * 16]; |
| for (int row = 0; row < 16; ++row) { |
| memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input)); |
| memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input)); |
| } |
| DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]); |
| inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X16, |
| bd); |
| } |
| |
| void av1_inv_txfm2d_add_4x16_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X16, bd); |
| } |
| |
| void av1_inv_txfm2d_add_16x4_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X4, bd); |
| } |
| |
| void av1_inv_txfm2d_add_8x32_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X32, bd); |
| } |
| |
| void av1_inv_txfm2d_add_32x8_c(const int32_t *input, uint16_t *output, |
| int stride, TX_TYPE tx_type, int bd) { |
| DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]); |
| inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X8, bd); |
| } |