blob: 54e9443e430a90e3a3fb91a7c72564564b14342b [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "aom/aom_image.h"
#include "config/aom_config.h"
#include "config/aom_scale_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/entropymode.h"
#include "av1/common/thread_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
// Set up nsync by width.
static INLINE int get_sync_range(int width) {
// nsync numbers are picked by testing. For example, for 4k
// video, using 4 gives best performance.
if (width < 640)
return 1;
else if (width <= 1280)
return 2;
else if (width <= 4096)
return 4;
else
return 8;
}
static INLINE int get_lr_sync_range(int width) {
#if 0
// nsync numbers are picked by testing. For example, for 4k
// video, using 4 gives best performance.
if (width < 640)
return 1;
else if (width <= 1280)
return 2;
else if (width <= 4096)
return 4;
else
return 8;
#else
(void)width;
return 1;
#endif
}
// Allocate memory for lf row synchronization
void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
int width, int num_workers) {
lf_sync->rows = rows;
#if CONFIG_MULTITHREAD
{
int i, j;
for (j = 0; j < MAX_MB_PLANE; j++) {
CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
if (lf_sync->mutex_[j]) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
}
}
CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
if (lf_sync->cond_[j]) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&lf_sync->cond_[j][i], NULL);
}
}
}
CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
aom_malloc(sizeof(*(lf_sync->job_mutex))));
if (lf_sync->job_mutex) {
pthread_mutex_init(lf_sync->job_mutex, NULL);
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, lf_sync->lfdata,
aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
lf_sync->num_workers = num_workers;
for (int j = 0; j < MAX_MB_PLANE; j++) {
CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
}
CHECK_MEM_ERROR(
cm, lf_sync->job_queue,
aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
// Set up nsync.
lf_sync->sync_range = get_sync_range(width);
}
// Deallocate lf synchronization related mutex and data
void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
if (lf_sync != NULL) {
int j;
#if CONFIG_MULTITHREAD
int i;
for (j = 0; j < MAX_MB_PLANE; j++) {
if (lf_sync->mutex_[j] != NULL) {
for (i = 0; i < lf_sync->rows; ++i) {
pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
}
aom_free(lf_sync->mutex_[j]);
}
if (lf_sync->cond_[j] != NULL) {
for (i = 0; i < lf_sync->rows; ++i) {
pthread_cond_destroy(&lf_sync->cond_[j][i]);
}
aom_free(lf_sync->cond_[j]);
}
}
if (lf_sync->job_mutex != NULL) {
pthread_mutex_destroy(lf_sync->job_mutex);
aom_free(lf_sync->job_mutex);
}
#endif // CONFIG_MULTITHREAD
aom_free(lf_sync->lfdata);
for (j = 0; j < MAX_MB_PLANE; j++) {
aom_free(lf_sync->cur_sb_col[j]);
}
aom_free(lf_sync->job_queue);
// clear the structure as the source of this call may be a resize in which
// case this call will be followed by an _alloc() which may fail.
av1_zero(*lf_sync);
}
}
static void loop_filter_data_reset(LFWorkerData *lf_data,
YV12_BUFFER_CONFIG *frame_buffer,
struct AV1Common *cm, MACROBLOCKD *xd) {
struct macroblockd_plane *pd = xd->plane;
lf_data->frame_buffer = frame_buffer;
lf_data->cm = cm;
lf_data->xd = xd;
for (int i = 0; i < MAX_MB_PLANE; i++) {
memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst));
lf_data->planes[i].subsampling_x = pd[i].subsampling_x;
lf_data->planes[i].subsampling_y = pd[i].subsampling_y;
}
}
void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync,
int num_workers) {
if (num_workers < 1) return;
#if CONFIG_MULTITHREAD
if (cdef_sync->mutex_ == NULL) {
CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
aom_malloc(sizeof(*(cdef_sync->mutex_))));
if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
}
#else
(void)cm;
(void)cdef_sync;
#endif // CONFIG_MULTITHREAD
}
void av1_free_cdef_sync(AV1CdefSync *cdef_sync) {
if (cdef_sync == NULL) return;
#if CONFIG_MULTITHREAD
if (cdef_sync->mutex_ != NULL) {
pthread_mutex_destroy(cdef_sync->mutex_);
aom_free(cdef_sync->mutex_);
}
#endif // CONFIG_MULTITHREAD
}
static INLINE void cdef_row_mt_sync_read(AV1CdefSync *const cdef_sync,
int row) {
if (!row) return;
#if CONFIG_MULTITHREAD
AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_);
while (cdef_row_mt[row - 1].is_row_done != 1)
pthread_cond_wait(cdef_row_mt[row - 1].row_cond_,
cdef_row_mt[row - 1].row_mutex_);
cdef_row_mt[row - 1].is_row_done = 0;
pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_);
#else
(void)cdef_sync;
#endif // CONFIG_MULTITHREAD
}
static INLINE void cdef_row_mt_sync_write(AV1CdefSync *const cdef_sync,
int row) {
#if CONFIG_MULTITHREAD
AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
pthread_mutex_lock(cdef_row_mt[row].row_mutex_);
pthread_cond_signal(cdef_row_mt[row].row_cond_);
cdef_row_mt[row].is_row_done = 1;
pthread_mutex_unlock(cdef_row_mt[row].row_mutex_);
#else
(void)cdef_sync;
(void)row;
#endif // CONFIG_MULTITHREAD
}
static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c,
int plane) {
#if CONFIG_MULTITHREAD
const int nsync = lf_sync->sync_range;
if (r && !(c & (nsync - 1))) {
pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
pthread_mutex_lock(mutex);
while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)lf_sync;
(void)r;
(void)c;
(void)plane;
#endif // CONFIG_MULTITHREAD
}
static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
const int sb_cols, int plane) {
#if CONFIG_MULTITHREAD
const int nsync = lf_sync->sync_range;
int cur;
// Only signal when there are enough filtered SB for next row to run.
int sig = 1;
if (c < sb_cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = sb_cols + nsync;
}
if (sig) {
pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
lf_sync->cur_sb_col[plane][r] = cur;
pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
}
#else
(void)lf_sync;
(void)r;
(void)c;
(void)sb_cols;
(void)plane;
#endif // CONFIG_MULTITHREAD
}
static AOM_FORCE_INLINE bool skip_loop_filter_plane(const int planes_to_lf[3],
int plane,
int lpf_opt_level) {
// If LPF_PICK_METHOD is LPF_PICK_FROM_Q, we have the option to filter both
// chroma planes together
if (lpf_opt_level == 2) {
if (plane == AOM_PLANE_Y) {
return !planes_to_lf[plane];
}
if (plane == AOM_PLANE_U) {
// U and V are handled together
return !planes_to_lf[1] && !planes_to_lf[2];
}
assert(plane == AOM_PLANE_V);
if (plane == AOM_PLANE_V) {
// V is handled when u is filtered
return true;
}
}
// Normal operation mode
return !planes_to_lf[plane];
}
static void enqueue_lf_jobs(AV1LfSync *lf_sync, int start, int stop,
const int planes_to_lf[3], int lpf_opt_level) {
int mi_row, plane, dir;
AV1LfMTInfo *lf_job_queue = lf_sync->job_queue;
lf_sync->jobs_enqueued = 0;
lf_sync->jobs_dequeued = 0;
// Launch all vertical jobs first, as they are blocking the horizontal ones.
// Launch top row jobs for all planes first, in case the output can be
// partially reconstructed row by row.
for (dir = 0; dir < 2; ++dir) {
for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
for (plane = 0; plane < 3; ++plane) {
if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) {
continue;
}
if (!planes_to_lf[plane]) continue;
lf_job_queue->mi_row = mi_row;
lf_job_queue->plane = plane;
lf_job_queue->dir = dir;
lf_job_queue->lpf_opt_level = lpf_opt_level;
lf_job_queue++;
lf_sync->jobs_enqueued++;
}
}
}
}
static AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) {
AV1LfMTInfo *cur_job_info = NULL;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(lf_sync->job_mutex);
if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) {
cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued;
lf_sync->jobs_dequeued++;
}
pthread_mutex_unlock(lf_sync->job_mutex);
#else
(void)lf_sync;
#endif
return cur_job_info;
}
// One job of row loopfiltering.
static INLINE void thread_loop_filter_rows(
const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane,
int dir, int lpf_opt_level, AV1LfSync *const lf_sync,
AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf) {
const int sb_cols =
CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2);
const int r = mi_row >> MAX_MIB_SIZE_LOG2;
int mi_col, c;
const bool joint_filter_chroma = (lpf_opt_level == 2) && plane > AOM_PLANE_Y;
const int num_planes = joint_filter_chroma ? 2 : 1;
assert(IMPLIES(joint_filter_chroma, plane == AOM_PLANE_U));
if (dir == 0) {
for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
c = mi_col >> MAX_MIB_SIZE_LOG2;
av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
mi_row, mi_col, plane, plane + num_planes);
if (lpf_opt_level) {
if (plane == AOM_PLANE_Y) {
av1_filter_block_plane_vert_opt(cm, xd, &planes[plane], mi_row,
mi_col, params_buf, tx_buf);
} else {
av1_filter_block_plane_vert_opt_chroma(cm, xd, &planes[plane], mi_row,
mi_col, params_buf, tx_buf,
plane, joint_filter_chroma);
}
} else {
av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
mi_col);
}
if (lf_sync != NULL) {
sync_write(lf_sync, r, c, sb_cols, plane);
}
}
} else if (dir == 1) {
for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
c = mi_col >> MAX_MIB_SIZE_LOG2;
if (lf_sync != NULL) {
// Wait for vertical edge filtering of the top-right block to be
// completed
sync_read(lf_sync, r, c, plane);
// Wait for vertical edge filtering of the right block to be completed
sync_read(lf_sync, r + 1, c, plane);
}
av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
mi_row, mi_col, plane, plane + num_planes);
if (lpf_opt_level) {
if (plane == AOM_PLANE_Y) {
av1_filter_block_plane_horz_opt(cm, xd, &planes[plane], mi_row,
mi_col, params_buf, tx_buf);
} else {
av1_filter_block_plane_horz_opt_chroma(cm, xd, &planes[plane], mi_row,
mi_col, params_buf, tx_buf,
plane, joint_filter_chroma);
}
} else {
av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
mi_col);
}
}
}
}
// Row-based multi-threaded loopfilter hook
static int loop_filter_row_worker(void *arg1, void *arg2) {
AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
LFWorkerData *const lf_data = (LFWorkerData *)arg2;
AV1LfMTInfo *cur_job_info;
while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
const int lpf_opt_level = cur_job_info->lpf_opt_level;
thread_loop_filter_rows(
lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
lpf_opt_level, lf_sync, lf_data->params_buf, lf_data->tx_buf);
}
return 1;
}
static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
MACROBLOCKD *xd, int start, int stop,
const int planes_to_lf[3], AVxWorker *workers,
int num_workers, AV1LfSync *lf_sync,
int lpf_opt_level) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
// Number of superblock rows and cols
const int sb_rows =
CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, MAX_MIB_SIZE_LOG2);
int i;
if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
num_workers > lf_sync->num_workers) {
av1_loop_filter_dealloc(lf_sync);
av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
}
// Initialize cur_sb_col to -1 for all SB rows.
for (i = 0; i < MAX_MB_PLANE; i++) {
memset(lf_sync->cur_sb_col[i], -1,
sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows);
}
enqueue_lf_jobs(lf_sync, start, stop, planes_to_lf, lpf_opt_level);
// Set up loopfilter thread data.
for (i = num_workers - 1; i >= 0; --i) {
AVxWorker *const worker = &workers[i];
LFWorkerData *const lf_data = &lf_sync->lfdata[i];
worker->hook = loop_filter_row_worker;
worker->data1 = lf_sync;
worker->data2 = lf_data;
// Loopfilter data
loop_filter_data_reset(lf_data, frame, cm, xd);
// Start loopfiltering
if (i == 0) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait till all rows are finished
for (i = 1; i < num_workers; ++i) {
winterface->sync(&workers[i]);
}
}
static void loop_filter_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
MACROBLOCKD *xd, int start, int stop,
const int planes_to_lf[3], int lpf_opt_level) {
// Filter top rows of all planes first, in case the output can be partially
// reconstructed row by row.
int mi_row, plane, dir;
AV1_DEBLOCKING_PARAMETERS params_buf[MAX_MIB_SIZE];
TX_SIZE tx_buf[MAX_MIB_SIZE];
for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
for (plane = 0; plane < 3; ++plane) {
if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) {
continue;
}
for (dir = 0; dir < 2; ++dir) {
thread_loop_filter_rows(frame, cm, xd->plane, xd, mi_row, plane, dir,
lpf_opt_level, /*lf_sync=*/NULL, params_buf,
tx_buf);
}
}
}
}
void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
MACROBLOCKD *xd, int plane_start, int plane_end,
int partial_frame, AVxWorker *workers,
int num_workers, AV1LfSync *lf_sync,
int lpf_opt_level) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
int planes_to_lf[3];
// For each luma and chroma plane, whether to filter it or not.
planes_to_lf[0] = (cm->lf.filter_level[0] || cm->lf.filter_level[1]) &&
plane_start <= 0 && 0 < plane_end;
planes_to_lf[1] = cm->lf.filter_level_u && plane_start <= 1 && 1 < plane_end;
planes_to_lf[2] = cm->lf.filter_level_v && plane_start <= 2 && 2 < plane_end;
// If the luma plane is purposely not filtered, neither are the chroma planes.
if (!planes_to_lf[0] && plane_start <= 0 && 0 < plane_end) return;
// Early exit.
if (!planes_to_lf[0] && !planes_to_lf[1] && !planes_to_lf[2]) return;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_params.mi_rows;
if (partial_frame && cm->mi_params.mi_rows > 8) {
start_mi_row = cm->mi_params.mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
av1_loop_filter_frame_init(cm, plane_start, plane_end);
if (num_workers > 1) {
// Enqueue and execute loopfiltering jobs.
loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
workers, num_workers, lf_sync, lpf_opt_level);
} else {
// Directly filter in the main thread.
loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
lpf_opt_level);
}
}
static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
#if CONFIG_MULTITHREAD
AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
const int nsync = loop_res_sync->sync_range;
if (r && !(c & (nsync - 1))) {
pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
pthread_mutex_lock(mutex);
while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)lr_sync;
(void)r;
(void)c;
(void)plane;
#endif // CONFIG_MULTITHREAD
}
static INLINE void lr_sync_write(void *const lr_sync, int r, int c,
const int sb_cols, int plane) {
#if CONFIG_MULTITHREAD
AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
const int nsync = loop_res_sync->sync_range;
int cur;
// Only signal when there are enough filtered SB for next row to run.
int sig = 1;
if (c < sb_cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = sb_cols + nsync;
}
if (sig) {
pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
loop_res_sync->cur_sb_col[plane][r] = cur;
pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
}
#else
(void)lr_sync;
(void)r;
(void)c;
(void)sb_cols;
(void)plane;
#endif // CONFIG_MULTITHREAD
}
// Allocate memory for loop restoration row synchronization
void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
int num_workers, int num_rows_lr,
int num_planes, int width) {
lr_sync->rows = num_rows_lr;
lr_sync->num_planes = num_planes;
#if CONFIG_MULTITHREAD
{
int i, j;
for (j = 0; j < num_planes; j++) {
CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
if (lr_sync->mutex_[j]) {
for (i = 0; i < num_rows_lr; ++i) {
pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
}
}
CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
if (lr_sync->cond_[j]) {
for (i = 0; i < num_rows_lr; ++i) {
pthread_cond_init(&lr_sync->cond_[j][i], NULL);
}
}
}
CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
aom_malloc(sizeof(*(lr_sync->job_mutex))));
if (lr_sync->job_mutex) {
pthread_mutex_init(lr_sync->job_mutex, NULL);
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata))));
for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
if (worker_idx < num_workers - 1) {
CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
(int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
aom_malloc(sizeof(RestorationLineBuffers)));
} else {
lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
}
}
lr_sync->num_workers = num_workers;
for (int j = 0; j < num_planes; j++) {
CHECK_MEM_ERROR(
cm, lr_sync->cur_sb_col[j],
aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
}
CHECK_MEM_ERROR(
cm, lr_sync->job_queue,
aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
// Set up nsync.
lr_sync->sync_range = get_lr_sync_range(width);
}
// Deallocate loop restoration synchronization related mutex and data
void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) {
if (lr_sync != NULL) {
int j;
#if CONFIG_MULTITHREAD
int i;
for (j = 0; j < MAX_MB_PLANE; j++) {
if (lr_sync->mutex_[j] != NULL) {
for (i = 0; i < lr_sync->rows; ++i) {
pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
}
aom_free(lr_sync->mutex_[j]);
}
if (lr_sync->cond_[j] != NULL) {
for (i = 0; i < lr_sync->rows; ++i) {
pthread_cond_destroy(&lr_sync->cond_[j][i]);
}
aom_free(lr_sync->cond_[j]);
}
}
if (lr_sync->job_mutex != NULL) {
pthread_mutex_destroy(lr_sync->job_mutex);
aom_free(lr_sync->job_mutex);
}
#endif // CONFIG_MULTITHREAD
for (j = 0; j < MAX_MB_PLANE; j++) {
aom_free(lr_sync->cur_sb_col[j]);
}
aom_free(lr_sync->job_queue);
if (lr_sync->lrworkerdata) {
for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) {
LRWorkerData *const workerdata_data =
lr_sync->lrworkerdata + worker_idx;
aom_free(workerdata_data->rst_tmpbuf);
aom_free(workerdata_data->rlbs);
}
aom_free(lr_sync->lrworkerdata);
}
// clear the structure as the source of this call may be a resize in which
// case this call will be followed by an _alloc() which may fail.
av1_zero(*lr_sync);
}
}
static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
AV1_COMMON *cm) {
FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
const int num_planes = av1_num_planes(cm);
AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
int32_t lr_job_counter[2], num_even_lr_jobs = 0;
lr_sync->jobs_enqueued = 0;
lr_sync->jobs_dequeued = 0;
for (int plane = 0; plane < num_planes; plane++) {
if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
num_even_lr_jobs =
num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1);
}
lr_job_counter[0] = 0;
lr_job_counter[1] = num_even_lr_jobs;
for (int plane = 0; plane < num_planes; plane++) {
if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
const int is_uv = plane > 0;
const int ss_y = is_uv && cm->seq_params->subsampling_y;
AV1PixelRect tile_rect = ctxt[plane].tile_rect;
const int unit_size = ctxt[plane].rsi->restoration_unit_size;
const int tile_h = tile_rect.bottom - tile_rect.top;
const int ext_size = unit_size * 3 / 2;
int y0 = 0, i = 0;
while (y0 < tile_h) {
int remaining_h = tile_h - y0;
int h = (remaining_h < ext_size) ? remaining_h : unit_size;
RestorationTileLimits limits;
limits.v_start = tile_rect.top + y0;
limits.v_end = tile_rect.top + y0 + h;
assert(limits.v_end <= tile_rect.bottom);
// Offset the tile upwards to align with the restoration processing stripe
const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset);
if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset;
assert(lr_job_counter[0] <= num_even_lr_jobs);
lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
lr_job_queue[lr_job_counter[i & 1]].plane = plane;
lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
if ((i & 1) == 0) {
lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
limits.v_start + RESTORATION_BORDER;
lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
limits.v_end - RESTORATION_BORDER;
if (i == 0) {
assert(limits.v_start == tile_rect.top);
lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top;
}
if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) {
assert(limits.v_end == tile_rect.bottom);
lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom;
}
} else {
lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top);
lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom);
}
lr_job_counter[i & 1]++;
lr_sync->jobs_enqueued++;
y0 += h;
++i;
}
}
}
static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
AV1LrMTInfo *cur_job_info = NULL;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(lr_sync->job_mutex);
if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
lr_sync->jobs_dequeued++;
}
pthread_mutex_unlock(lr_sync->job_mutex);
#else
(void)lr_sync;
#endif
return cur_job_info;
}
// Implement row loop restoration for each thread.
static int loop_restoration_row_worker(void *arg1, void *arg2) {
AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
int lr_unit_row;
int plane;
const int tile_row = LR_TILE_ROW;
const int tile_col = LR_TILE_COL;
const int tile_cols = LR_TILE_COLS;
const int tile_idx = tile_col + tile_row * tile_cols;
typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
int vstart, int vend);
static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
aom_yv12_partial_coloc_copy_u,
aom_yv12_partial_coloc_copy_v };
while (1) {
AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
if (cur_job_info != NULL) {
RestorationTileLimits limits;
sync_read_fn_t on_sync_read;
sync_write_fn_t on_sync_write;
limits.v_start = cur_job_info->v_start;
limits.v_end = cur_job_info->v_end;
lr_unit_row = cur_job_info->lr_unit_row;
plane = cur_job_info->plane;
const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile;
// sync_mode == 1 implies only sync read is required in LR Multi-threading
// sync_mode == 0 implies only sync write is required.
on_sync_read =
cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
: av1_lr_sync_write_dummy;
av1_foreach_rest_unit_in_row(
&limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row,
ctxt[plane].rsi->restoration_unit_size, unit_idx0,
ctxt[plane].rsi->horz_units_per_tile,
ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane],
lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
on_sync_write, lr_sync);
copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left,
ctxt[plane].tile_rect.right, cur_job_info->v_copy_start,
cur_job_info->v_copy_end);
} else {
break;
}
}
return 1;
}
static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
AVxWorker *workers, int nworkers,
AV1LrSync *lr_sync, AV1_COMMON *cm) {
FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
const int num_planes = av1_num_planes(cm);
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int num_rows_lr = 0;
for (int plane = 0; plane < num_planes; plane++) {
if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
const AV1PixelRect tile_rect = ctxt[plane].tile_rect;
const int max_tile_h = tile_rect.bottom - tile_rect.top;
const int unit_size = cm->rst_info[plane].restoration_unit_size;
num_rows_lr =
AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h));
}
const int num_workers = nworkers;
int i;
assert(MAX_MB_PLANE == 3);
if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
num_workers > lr_sync->num_workers || num_planes > lr_sync->num_planes) {
av1_loop_restoration_dealloc(lr_sync, num_workers);
av1_loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr,
num_planes, cm->width);
}
// Initialize cur_sb_col to -1 for all SB rows.
for (i = 0; i < num_planes; i++) {
memset(lr_sync->cur_sb_col[i], -1,
sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
}
enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
// Set up looprestoration thread data.
for (i = num_workers - 1; i >= 0; --i) {
AVxWorker *const worker = &workers[i];
lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
worker->hook = loop_restoration_row_worker;
worker->data1 = lr_sync;
worker->data2 = &lr_sync->lrworkerdata[i];
// Start loop restoration
if (i == 0) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait till all rows are finished
for (i = 1; i < num_workers; ++i) {
winterface->sync(&workers[i]);
}
}
void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
AV1_COMMON *cm, int optimized_lr,
AVxWorker *workers, int num_workers,
AV1LrSync *lr_sync, void *lr_ctxt) {
assert(!cm->features.all_lossless);
const int num_planes = av1_num_planes(cm);
AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
optimized_lr, num_planes);
foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
cm);
}
// Initializes cdef_sync parameters.
static AOM_INLINE void reset_cdef_job_info(AV1CdefSync *const cdef_sync) {
cdef_sync->end_of_frame = 0;
cdef_sync->fbr = 0;
cdef_sync->fbc = 0;
}
static AOM_INLINE void launch_cdef_workers(AVxWorker *const workers,
int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &workers[i];
if (i == 0)
winterface->execute(worker);
else
winterface->launch(worker);
}
}
static AOM_INLINE void sync_cdef_workers(AVxWorker *const workers,
AV1_COMMON *const cm,
int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int had_error = 0;
// Wait for completion of Cdef frame.
for (int i = num_workers - 1; i > 0; i--) {
AVxWorker *const worker = &workers[i];
had_error |= !winterface->sync(worker);
}
if (had_error)
aom_internal_error(cm->error, AOM_CODEC_ERROR,
"Failed to process cdef frame");
}
// Updates the row index of the next job to be processed.
// Also updates end_of_frame flag when the processing of all rows is complete.
static void update_cdef_row_next_job_info(AV1CdefSync *const cdef_sync,
const int nvfb) {
cdef_sync->fbr++;
if (cdef_sync->fbr == nvfb) {
cdef_sync->end_of_frame = 1;
}
}
// Checks if a job is available. If job is available,
// populates next job information and returns 1, else returns 0.
static AOM_INLINE int get_cdef_row_next_job(AV1CdefSync *const cdef_sync,
int *cur_fbr, const int nvfb) {
#if CONFIG_MULTITHREAD
pthread_mutex_lock(cdef_sync->mutex_);
#endif // CONFIG_MULTITHREAD
int do_next_row = 0;
// Populates information needed for current job and update the row
// index of the next row to be processed.
if (cdef_sync->end_of_frame == 0) {
do_next_row = 1;
*cur_fbr = cdef_sync->fbr;
update_cdef_row_next_job_info(cdef_sync, nvfb);
}
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(cdef_sync->mutex_);
#endif // CONFIG_MULTITHREAD
return do_next_row;
}
// Hook function for each thread in CDEF multi-threading.
static int cdef_sb_row_worker_hook(void *arg1, void *arg2) {
AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1;
AV1CdefWorkerData *const cdef_worker = (AV1CdefWorkerData *)arg2;
const int nvfb =
(cdef_worker->cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
int cur_fbr;
while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) {
av1_cdef_fb_row(cdef_worker->cm, cdef_worker->xd, cdef_worker->linebuf,
cdef_worker->colbuf, cdef_worker->srcbuf, cur_fbr,
cdef_worker->cdef_init_fb_row_fn, cdef_sync);
}
return 1;
}
// Assigns CDEF hook function and thread data to each worker.
static void prepare_cdef_frame_workers(
AV1_COMMON *const cm, MACROBLOCKD *xd, AV1CdefWorkerData *const cdef_worker,
AVxWorkerHook hook, AVxWorker *const workers, AV1CdefSync *const cdef_sync,
int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn) {
const int num_planes = av1_num_planes(cm);
cdef_worker[0].srcbuf = cm->cdef_info.srcbuf;
for (int plane = 0; plane < num_planes; plane++)
cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane];
for (int i = num_workers - 1; i >= 0; i--) {
AVxWorker *const worker = &workers[i];
cdef_worker[i].cm = cm;
cdef_worker[i].xd = xd;
cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn;
for (int plane = 0; plane < num_planes; plane++)
cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane];
worker->hook = hook;
worker->data1 = cdef_sync;
worker->data2 = &cdef_worker[i];
}
}
// Initializes row-level parameters for CDEF frame.
void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
CdefBlockInfo *const fb_info,
uint16_t **const linebuf, uint16_t *const src,
struct AV1CdefSyncData *const cdef_sync, int fbr) {
const int num_planes = av1_num_planes(cm);
const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
const int luma_stride =
ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
// for the current filter block, it's top left corner mi structure (mi_tl)
// is first accessed to check whether the top and left boundaries are
// frame boundaries. Then bottom-left and top-right mi structures are
// accessed to check whether the bottom and right boundaries
// (respectively) are frame boundaries.
//
// Note that we can't just check the bottom-right mi structure - eg. if
// we're at the right-hand edge of the frame but not the bottom, then
// the bottom-right mi is NULL but the bottom-left is not.
fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
if (fbr != nvfb - 1)
fb_info->frame_boundary[BOTTOM] =
(MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
else
fb_info->frame_boundary[BOTTOM] = 1;
fb_info->src = src;
fb_info->damping = cm->cdef_info.cdef_damping;
fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
av1_zero(fb_info->dir);
av1_zero(fb_info->var);
for (int plane = 0; plane < num_planes; plane++) {
const int stride = luma_stride >> xd->plane[plane].subsampling_x;
uint16_t *top_linebuf = &linebuf[plane][0];
uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride];
{
const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
if (fbr != nvfb - 1) // if (fbr != 0) // top line buffer copy
av1_cdef_copy_sb8_16(
cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], stride,
xd->plane[plane].dst.buf, top_offset - CDEF_VBORDER, 0,
xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
if (fbr != nvfb - 1) // bottom line buffer copy
av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride],
stride, xd->plane[plane].dst.buf, bot_offset, 0,
xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
}
fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride];
fb_info->bot_linebuf[plane] =
&linebuf[plane]
[nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)];
}
cdef_row_mt_sync_write(cdef_sync, fbr);
cdef_row_mt_sync_read(cdef_sync, fbr);
}
// Implements multi-threading for CDEF.
// Perform CDEF on input frame.
// Inputs:
// frame: Pointer to input frame buffer.
// cm: Pointer to common structure.
// xd: Pointer to common current coding block structure.
// Returns:
// Nothing will be returned.
void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd,
AV1CdefWorkerData *const cdef_worker,
AVxWorker *const workers, AV1CdefSync *const cdef_sync,
int num_workers,
cdef_init_fb_row_t cdef_init_fb_row_fn) {
YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf;
const int num_planes = av1_num_planes(cm);
av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
num_planes);
reset_cdef_job_info(cdef_sync);
prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook,
workers, cdef_sync, num_workers,
cdef_init_fb_row_fn);
launch_cdef_workers(workers, num_workers);
sync_cdef_workers(workers, cm, num_workers);
}
int av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON *cm) {
// No additional top-right delay when intraBC tool is not enabled.
if (!av1_allow_intrabc(cm)) return 0;
// Due to the hardware constraints on processing the intraBC tool with row
// multithreading, a top-right delay of 3 superblocks of size 128x128 or 5
// superblocks of size 64x64 is mandated. However, a minimum top-right delay
// of 1 superblock is assured with 'sync_range'. Hence return only the
// additional superblock delay when the intraBC tool is enabled.
return cm->seq_params->sb_size == BLOCK_128X128 ? 2 : 4;
}