| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <limits.h> |
| #include <float.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <time.h> |
| #include <stdlib.h> |
| |
| #include "av1/common/scale.h" |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom/aomcx.h" |
| |
| #if CONFIG_DENOISE |
| #include "aom_dsp/grain_table.h" |
| #include "aom_dsp/noise_util.h" |
| #include "aom_dsp/noise_model.h" |
| #endif |
| #include "aom_dsp/flow_estimation/corner_detect.h" |
| #include "aom_dsp/psnr.h" |
| #if CONFIG_INTERNAL_STATS |
| #include "aom_dsp/ssim.h" |
| #endif |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_scale/aom_scale.h" |
| #if CONFIG_BITSTREAM_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_BITSTREAM_DEBUG |
| |
| #include "av1/common/alloccommon.h" |
| #include "av1/common/filter.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/resize.h" |
| #include "av1/common/tile_common.h" |
| |
| #include "av1/encoder/allintra_vis.h" |
| #include "av1/encoder/aq_complexity.h" |
| #include "av1/encoder/aq_cyclicrefresh.h" |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/bitstream.h" |
| #include "av1/encoder/context_tree.h" |
| #include "av1/encoder/dwt.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encode_strategy.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encoder_alloc.h" |
| #include "av1/encoder/encoder_utils.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/ethread.h" |
| #include "av1/encoder/firstpass.h" |
| #include "av1/encoder/hash_motion.h" |
| #include "av1/encoder/hybrid_fwd_txfm.h" |
| #include "av1/encoder/intra_mode_search.h" |
| #include "av1/encoder/mv_prec.h" |
| #include "av1/encoder/pass2_strategy.h" |
| #include "av1/encoder/pickcdef.h" |
| #include "av1/encoder/picklpf.h" |
| #include "av1/encoder/pickrst.h" |
| #include "av1/encoder/random.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/rc_utils.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| #if CONFIG_SALIENCY_MAP |
| #include "av1/encoder/saliency_map.h" |
| #endif |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/speed_features.h" |
| #include "av1/encoder/superres_scale.h" |
| #include "av1/encoder/thirdpass.h" |
| #include "av1/encoder/tpl_model.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/var_based_part.h" |
| |
| #define DEFAULT_EXPLICIT_ORDER_HINT_BITS 7 |
| |
| // #define OUTPUT_YUV_REC |
| #ifdef OUTPUT_YUV_REC |
| FILE *yuv_rec_file; |
| #define FILE_NAME_LEN 100 |
| #endif |
| |
| #ifdef OUTPUT_YUV_DENOISED |
| FILE *yuv_denoised_file = NULL; |
| #endif |
| |
| static INLINE void Scale2Ratio(AOM_SCALING_MODE mode, int *hr, int *hs) { |
| switch (mode) { |
| case AOME_NORMAL: |
| *hr = 1; |
| *hs = 1; |
| break; |
| case AOME_FOURFIVE: |
| *hr = 4; |
| *hs = 5; |
| break; |
| case AOME_THREEFIVE: |
| *hr = 3; |
| *hs = 5; |
| break; |
| case AOME_THREEFOUR: |
| *hr = 3; |
| *hs = 4; |
| break; |
| case AOME_ONEFOUR: |
| *hr = 1; |
| *hs = 4; |
| break; |
| case AOME_ONEEIGHT: |
| *hr = 1; |
| *hs = 8; |
| break; |
| case AOME_ONETWO: |
| *hr = 1; |
| *hs = 2; |
| break; |
| case AOME_TWOTHREE: |
| *hr = 2; |
| *hs = 3; |
| break; |
| case AOME_ONETHREE: |
| *hr = 1; |
| *hs = 3; |
| break; |
| default: |
| *hr = 1; |
| *hs = 1; |
| assert(0); |
| break; |
| } |
| } |
| |
| int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows, |
| int cols) { |
| const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; |
| if (rows == mi_params->mb_rows && cols == mi_params->mb_cols) { |
| unsigned char *const active_map_4x4 = cpi->active_map.map; |
| const int mi_rows = mi_params->mi_rows; |
| const int mi_cols = mi_params->mi_cols; |
| const int row_scale = mi_size_high_log2[BLOCK_16X16]; |
| const int col_scale = mi_size_wide_log2[BLOCK_16X16]; |
| cpi->active_map.update = 0; |
| assert(mi_rows % 2 == 0); |
| assert(mi_cols % 2 == 0); |
| if (new_map_16x16) { |
| for (int r = 0; r < (mi_rows >> row_scale); ++r) { |
| for (int c = 0; c < (mi_cols >> col_scale); ++c) { |
| const uint8_t val = new_map_16x16[r * cols + c] |
| ? AM_SEGMENT_ID_ACTIVE |
| : AM_SEGMENT_ID_INACTIVE; |
| active_map_4x4[(2 * r + 0) * mi_cols + (c + 0)] = val; |
| active_map_4x4[(2 * r + 0) * mi_cols + (c + 1)] = val; |
| active_map_4x4[(2 * r + 1) * mi_cols + (c + 0)] = val; |
| active_map_4x4[(2 * r + 1) * mi_cols + (c + 1)] = val; |
| } |
| } |
| cpi->active_map.enabled = 1; |
| } |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| int av1_get_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows, |
| int cols) { |
| const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; |
| if (rows == mi_params->mb_rows && cols == mi_params->mb_cols && |
| new_map_16x16) { |
| unsigned char *const seg_map_8x8 = cpi->enc_seg.map; |
| const int mi_rows = mi_params->mi_rows; |
| const int mi_cols = mi_params->mi_cols; |
| const int row_scale = mi_size_high_log2[BLOCK_16X16]; |
| const int col_scale = mi_size_wide_log2[BLOCK_16X16]; |
| assert(mi_rows % 2 == 0); |
| assert(mi_cols % 2 == 0); |
| |
| memset(new_map_16x16, !cpi->active_map.enabled, rows * cols); |
| if (cpi->active_map.enabled) { |
| for (int r = 0; r < (mi_rows >> row_scale); ++r) { |
| for (int c = 0; c < (mi_cols >> col_scale); ++c) { |
| // Cyclic refresh segments are considered active despite not having |
| // AM_SEGMENT_ID_ACTIVE |
| uint8_t temp = 0; |
| temp |= seg_map_8x8[(2 * r + 0) * mi_cols + (2 * c + 0)] != |
| AM_SEGMENT_ID_INACTIVE; |
| temp |= seg_map_8x8[(2 * r + 0) * mi_cols + (2 * c + 1)] != |
| AM_SEGMENT_ID_INACTIVE; |
| temp |= seg_map_8x8[(2 * r + 1) * mi_cols + (2 * c + 0)] != |
| AM_SEGMENT_ID_INACTIVE; |
| temp |= seg_map_8x8[(2 * r + 1) * mi_cols + (2 * c + 1)] != |
| AM_SEGMENT_ID_INACTIVE; |
| new_map_16x16[r * cols + c] |= temp; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| void av1_initialize_enc(unsigned int usage, enum aom_rc_mode end_usage) { |
| bool is_allintra = usage == ALLINTRA; |
| |
| av1_rtcd(); |
| aom_dsp_rtcd(); |
| aom_scale_rtcd(); |
| av1_init_intra_predictors(); |
| av1_init_me_luts(); |
| if (!is_allintra) av1_init_wedge_masks(); |
| if (!is_allintra || end_usage != AOM_Q) av1_rc_init_minq_luts(); |
| } |
| |
| void av1_new_framerate(AV1_COMP *cpi, double framerate) { |
| cpi->framerate = framerate < 0.1 ? 30 : framerate; |
| av1_rc_update_framerate(cpi, cpi->common.width, cpi->common.height); |
| } |
| |
| double av1_get_compression_ratio(const AV1_COMMON *const cm, |
| size_t encoded_frame_size) { |
| const int upscaled_width = cm->superres_upscaled_width; |
| const int height = cm->height; |
| const int64_t luma_pic_size = (int64_t)upscaled_width * height; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| const BITSTREAM_PROFILE profile = seq_params->profile; |
| const int pic_size_profile_factor = |
| profile == PROFILE_0 ? 15 : (profile == PROFILE_1 ? 30 : 36); |
| encoded_frame_size = |
| (encoded_frame_size > 129 ? encoded_frame_size - 128 : 1); |
| const int64_t uncompressed_frame_size = |
| (luma_pic_size * pic_size_profile_factor) >> 3; |
| return (double)uncompressed_frame_size / encoded_frame_size; |
| } |
| |
| static void auto_tile_size_balancing(AV1_COMMON *const cm, int num_sbs, |
| int num_tiles_lg, int tile_col_row) { |
| CommonTileParams *const tiles = &cm->tiles; |
| int i, start_sb; |
| int size_sb = num_sbs >> num_tiles_lg; |
| int res_sbs = num_sbs - (size_sb << num_tiles_lg); |
| int num_tiles = 1 << num_tiles_lg; |
| int inc_index = num_tiles - res_sbs; |
| |
| tiles->uniform_spacing = 0; |
| |
| for (i = 0, start_sb = 0; start_sb < num_sbs && i < MAX_TILE_COLS; ++i) { |
| if (i == inc_index) ++size_sb; |
| if (tile_col_row) |
| tiles->col_start_sb[i] = start_sb; |
| else |
| tiles->row_start_sb[i] = start_sb; |
| |
| start_sb += AOMMIN(size_sb, tiles->max_width_sb); |
| } |
| |
| if (tile_col_row) { |
| tiles->cols = i; |
| tiles->col_start_sb[i] = num_sbs; |
| } else { |
| tiles->rows = i; |
| tiles->row_start_sb[i] = num_sbs; |
| } |
| } |
| |
| static void set_tile_info(AV1_COMMON *const cm, |
| const TileConfig *const tile_cfg) { |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| CommonTileParams *const tiles = &cm->tiles; |
| int i, start_sb; |
| |
| av1_get_tile_limits(cm); |
| |
| int sb_cols = |
| CEIL_POWER_OF_TWO(mi_params->mi_cols, seq_params->mib_size_log2); |
| // configure tile columns |
| if (tile_cfg->tile_width_count == 0 || tile_cfg->tile_height_count == 0) { |
| tiles->uniform_spacing = 1; |
| tiles->log2_cols = AOMMAX(tile_cfg->tile_columns, tiles->min_log2_cols); |
| // Add a special case to handle super resolution |
| sb_cols = coded_to_superres_mi(sb_cols, cm->superres_scale_denominator); |
| int min_log2_cols = 0; |
| for (; (tiles->max_width_sb << min_log2_cols) <= sb_cols; ++min_log2_cols) { |
| } |
| tiles->log2_cols = AOMMAX(tiles->log2_cols, min_log2_cols); |
| |
| tiles->log2_cols = AOMMIN(tiles->log2_cols, tiles->max_log2_cols); |
| } else if (tile_cfg->tile_widths[0] < 0) { |
| auto_tile_size_balancing(cm, sb_cols, tile_cfg->tile_columns, 1); |
| } else { |
| int size_sb, j = 0; |
| tiles->uniform_spacing = 0; |
| for (i = 0, start_sb = 0; start_sb < sb_cols && i < MAX_TILE_COLS; i++) { |
| tiles->col_start_sb[i] = start_sb; |
| size_sb = tile_cfg->tile_widths[j++]; |
| if (j >= tile_cfg->tile_width_count) j = 0; |
| start_sb += AOMMIN(size_sb, tiles->max_width_sb); |
| } |
| tiles->cols = i; |
| tiles->col_start_sb[i] = sb_cols; |
| } |
| av1_calculate_tile_cols(seq_params, mi_params->mi_rows, mi_params->mi_cols, |
| tiles); |
| |
| // configure tile rows |
| int sb_rows = |
| CEIL_POWER_OF_TWO(mi_params->mi_rows, seq_params->mib_size_log2); |
| if (tiles->uniform_spacing) { |
| tiles->log2_rows = AOMMAX(tile_cfg->tile_rows, tiles->min_log2_rows); |
| tiles->log2_rows = AOMMIN(tiles->log2_rows, tiles->max_log2_rows); |
| } else if (tile_cfg->tile_heights[0] < 0) { |
| auto_tile_size_balancing(cm, sb_rows, tile_cfg->tile_rows, 0); |
| } else { |
| int size_sb, j = 0; |
| for (i = 0, start_sb = 0; start_sb < sb_rows && i < MAX_TILE_ROWS; i++) { |
| tiles->row_start_sb[i] = start_sb; |
| size_sb = tile_cfg->tile_heights[j++]; |
| if (j >= tile_cfg->tile_height_count) j = 0; |
| start_sb += AOMMIN(size_sb, tiles->max_height_sb); |
| } |
| tiles->rows = i; |
| tiles->row_start_sb[i] = sb_rows; |
| } |
| av1_calculate_tile_rows(seq_params, mi_params->mi_rows, tiles); |
| } |
| |
| void av1_update_frame_size(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| |
| // Setup mi_params here in case we need more mi's. |
| CommonModeInfoParams *const mi_params = &cm->mi_params; |
| mi_params->set_mb_mi(mi_params, cm->width, cm->height, |
| cpi->sf.part_sf.default_min_partition_size); |
| |
| av1_init_macroblockd(cm, xd); |
| |
| if (!cpi->ppi->seq_params_locked) |
| set_sb_size(cm->seq_params, |
| av1_select_sb_size(&cpi->oxcf, cm->width, cm->height, |
| cpi->ppi->number_spatial_layers)); |
| |
| set_tile_info(cm, &cpi->oxcf.tile_cfg); |
| } |
| |
| static INLINE int does_level_match(int width, int height, double fps, |
| int lvl_width, int lvl_height, |
| double lvl_fps, int lvl_dim_mult) { |
| const int64_t lvl_luma_pels = (int64_t)lvl_width * lvl_height; |
| const double lvl_display_sample_rate = lvl_luma_pels * lvl_fps; |
| const int64_t luma_pels = (int64_t)width * height; |
| const double display_sample_rate = luma_pels * fps; |
| return luma_pels <= lvl_luma_pels && |
| display_sample_rate <= lvl_display_sample_rate && |
| width <= lvl_width * lvl_dim_mult && |
| height <= lvl_height * lvl_dim_mult; |
| } |
| |
| static void set_bitstream_level_tier(AV1_PRIMARY *const ppi, int width, |
| int height, double init_framerate) { |
| SequenceHeader *const seq_params = &ppi->seq_params; |
| const AV1LevelParams *const level_params = &ppi->level_params; |
| // TODO(any): This is a placeholder function that only addresses dimensions |
| // and max display sample rates. |
| // Need to add checks for max bit rate, max decoded luma sample rate, header |
| // rate, etc. that are not covered by this function. |
| AV1_LEVEL level = SEQ_LEVEL_MAX; |
| if (does_level_match(width, height, init_framerate, 512, 288, 30.0, 4)) { |
| level = SEQ_LEVEL_2_0; |
| } else if (does_level_match(width, height, init_framerate, 704, 396, 30.0, |
| 4)) { |
| level = SEQ_LEVEL_2_1; |
| } else if (does_level_match(width, height, init_framerate, 1088, 612, 30.0, |
| 4)) { |
| level = SEQ_LEVEL_3_0; |
| } else if (does_level_match(width, height, init_framerate, 1376, 774, 30.0, |
| 4)) { |
| level = SEQ_LEVEL_3_1; |
| } else if (does_level_match(width, height, init_framerate, 2048, 1152, 30.0, |
| 3)) { |
| level = SEQ_LEVEL_4_0; |
| } else if (does_level_match(width, height, init_framerate, 2048, 1152, 60.0, |
| 3)) { |
| level = SEQ_LEVEL_4_1; |
| } else if (does_level_match(width, height, init_framerate, 4096, 2176, 30.0, |
| 2)) { |
| level = SEQ_LEVEL_5_0; |
| } else if (does_level_match(width, height, init_framerate, 4096, 2176, 60.0, |
| 2)) { |
| level = SEQ_LEVEL_5_1; |
| } else if (does_level_match(width, height, init_framerate, 4096, 2176, 120.0, |
| 2)) { |
| level = SEQ_LEVEL_5_2; |
| } else if (does_level_match(width, height, init_framerate, 8192, 4352, 30.0, |
| 2)) { |
| level = SEQ_LEVEL_6_0; |
| } else if (does_level_match(width, height, init_framerate, 8192, 4352, 60.0, |
| 2)) { |
| level = SEQ_LEVEL_6_1; |
| } else if (does_level_match(width, height, init_framerate, 8192, 4352, 120.0, |
| 2)) { |
| level = SEQ_LEVEL_6_2; |
| } |
| #if CONFIG_CWG_C013 |
| // TODO(bohanli): currently target level is only working for the 0th operating |
| // point, so scalable coding is not supported. |
| else if (level_params->target_seq_level_idx[0] >= SEQ_LEVEL_7_0 && |
| level_params->target_seq_level_idx[0] <= SEQ_LEVEL_8_3) { |
| // Only use level 7.x to 8.x when explicitly asked to. |
| if (does_level_match(width, height, init_framerate, 16384, 8704, 30.0, 2)) { |
| level = SEQ_LEVEL_7_0; |
| } else if (does_level_match(width, height, init_framerate, 16384, 8704, |
| 60.0, 2)) { |
| level = SEQ_LEVEL_7_1; |
| } else if (does_level_match(width, height, init_framerate, 16384, 8704, |
| 120.0, 2)) { |
| level = SEQ_LEVEL_7_2; |
| } else if (does_level_match(width, height, init_framerate, 32768, 17408, |
| 30.0, 2)) { |
| level = SEQ_LEVEL_8_0; |
| } else if (does_level_match(width, height, init_framerate, 32768, 17408, |
| 60.0, 2)) { |
| level = SEQ_LEVEL_8_1; |
| } else if (does_level_match(width, height, init_framerate, 32768, 17408, |
| 120.0, 2)) { |
| level = SEQ_LEVEL_8_2; |
| } |
| } |
| #endif |
| |
| for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) { |
| assert(is_valid_seq_level_idx(level_params->target_seq_level_idx[i]) || |
| level_params->target_seq_level_idx[i] == SEQ_LEVEL_KEEP_STATS); |
| // If a higher target level is specified, it is then used rather than the |
| // inferred one from resolution and framerate. |
| seq_params->seq_level_idx[i] = |
| level_params->target_seq_level_idx[i] < SEQ_LEVELS && |
| level_params->target_seq_level_idx[i] > level |
| ? level_params->target_seq_level_idx[i] |
| : level; |
| // Set the maximum parameters for bitrate and buffer size for this profile, |
| // level, and tier |
| seq_params->op_params[i].bitrate = av1_max_level_bitrate( |
| seq_params->profile, seq_params->seq_level_idx[i], seq_params->tier[i]); |
| // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass the |
| // check |
| if (seq_params->op_params[i].bitrate == 0) |
| aom_internal_error( |
| &ppi->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "AV1 does not support this combination of profile, level, and tier."); |
| // Buffer size in bits/s is bitrate in bits/s * 1 s |
| seq_params->op_params[i].buffer_size = seq_params->op_params[i].bitrate; |
| } |
| } |
| |
| void av1_init_seq_coding_tools(AV1_PRIMARY *const ppi, |
| const AV1EncoderConfig *oxcf, |
| int disable_frame_id_numbers) { |
| SequenceHeader *const seq = &ppi->seq_params; |
| const FrameDimensionCfg *const frm_dim_cfg = &oxcf->frm_dim_cfg; |
| const ToolCfg *const tool_cfg = &oxcf->tool_cfg; |
| |
| seq->still_picture = |
| !tool_cfg->force_video_mode && (oxcf->input_cfg.limit == 1); |
| seq->reduced_still_picture_hdr = |
| seq->still_picture && !tool_cfg->full_still_picture_hdr; |
| seq->force_screen_content_tools = 2; |
| seq->force_integer_mv = 2; |
| seq->order_hint_info.enable_order_hint = tool_cfg->enable_order_hint; |
| seq->frame_id_numbers_present_flag = |
| !seq->reduced_still_picture_hdr && |
| !oxcf->tile_cfg.enable_large_scale_tile && |
| tool_cfg->error_resilient_mode && !disable_frame_id_numbers; |
| if (seq->reduced_still_picture_hdr) { |
| seq->order_hint_info.enable_order_hint = 0; |
| seq->force_screen_content_tools = 2; |
| seq->force_integer_mv = 2; |
| } |
| seq->order_hint_info.order_hint_bits_minus_1 = |
| seq->order_hint_info.enable_order_hint |
| ? DEFAULT_EXPLICIT_ORDER_HINT_BITS - 1 |
| : -1; |
| |
| seq->max_frame_width = frm_dim_cfg->forced_max_frame_width |
| ? frm_dim_cfg->forced_max_frame_width |
| : frm_dim_cfg->width; |
| seq->max_frame_height = frm_dim_cfg->forced_max_frame_height |
| ? frm_dim_cfg->forced_max_frame_height |
| : frm_dim_cfg->height; |
| seq->num_bits_width = |
| (seq->max_frame_width > 1) ? get_msb(seq->max_frame_width - 1) + 1 : 1; |
| seq->num_bits_height = |
| (seq->max_frame_height > 1) ? get_msb(seq->max_frame_height - 1) + 1 : 1; |
| assert(seq->num_bits_width <= 16); |
| assert(seq->num_bits_height <= 16); |
| |
| seq->frame_id_length = FRAME_ID_LENGTH; |
| seq->delta_frame_id_length = DELTA_FRAME_ID_LENGTH; |
| |
| seq->enable_dual_filter = tool_cfg->enable_dual_filter; |
| seq->order_hint_info.enable_dist_wtd_comp = |
| oxcf->comp_type_cfg.enable_dist_wtd_comp; |
| seq->order_hint_info.enable_dist_wtd_comp &= |
| seq->order_hint_info.enable_order_hint; |
| seq->order_hint_info.enable_ref_frame_mvs = tool_cfg->ref_frame_mvs_present; |
| seq->order_hint_info.enable_ref_frame_mvs &= |
| seq->order_hint_info.enable_order_hint; |
| seq->enable_superres = oxcf->superres_cfg.enable_superres; |
| seq->enable_cdef = tool_cfg->cdef_control != CDEF_NONE ? 1 : 0; |
| seq->enable_restoration = tool_cfg->enable_restoration; |
| seq->enable_warped_motion = oxcf->motion_mode_cfg.enable_warped_motion; |
| seq->enable_interintra_compound = tool_cfg->enable_interintra_comp; |
| seq->enable_masked_compound = oxcf->comp_type_cfg.enable_masked_comp; |
| seq->enable_intra_edge_filter = oxcf->intra_mode_cfg.enable_intra_edge_filter; |
| seq->enable_filter_intra = oxcf->intra_mode_cfg.enable_filter_intra; |
| |
| set_bitstream_level_tier(ppi, frm_dim_cfg->width, frm_dim_cfg->height, |
| oxcf->input_cfg.init_framerate); |
| |
| if (seq->operating_points_cnt_minus_1 == 0) { |
| seq->operating_point_idc[0] = 0; |
| } else { |
| // Set operating_point_idc[] such that the i=0 point corresponds to the |
| // highest quality operating point (all layers), and subsequent |
| // operarting points (i > 0) are lower quality corresponding to |
| // skip decoding enhancement layers (temporal first). |
| int i = 0; |
| assert(seq->operating_points_cnt_minus_1 == |
| (int)(ppi->number_spatial_layers * ppi->number_temporal_layers - 1)); |
| for (unsigned int sl = 0; sl < ppi->number_spatial_layers; sl++) { |
| for (unsigned int tl = 0; tl < ppi->number_temporal_layers; tl++) { |
| seq->operating_point_idc[i] = |
| (~(~0u << (ppi->number_spatial_layers - sl)) << 8) | |
| ~(~0u << (ppi->number_temporal_layers - tl)); |
| i++; |
| } |
| } |
| } |
| } |
| |
| static void init_config_sequence(struct AV1_PRIMARY *ppi, |
| const AV1EncoderConfig *oxcf) { |
| SequenceHeader *const seq_params = &ppi->seq_params; |
| const DecoderModelCfg *const dec_model_cfg = &oxcf->dec_model_cfg; |
| const ColorCfg *const color_cfg = &oxcf->color_cfg; |
| |
| ppi->use_svc = 0; |
| ppi->number_spatial_layers = 1; |
| ppi->number_temporal_layers = 1; |
| |
| seq_params->profile = oxcf->profile; |
| seq_params->bit_depth = oxcf->tool_cfg.bit_depth; |
| seq_params->use_highbitdepth = oxcf->use_highbitdepth; |
| seq_params->color_primaries = color_cfg->color_primaries; |
| seq_params->transfer_characteristics = color_cfg->transfer_characteristics; |
| seq_params->matrix_coefficients = color_cfg->matrix_coefficients; |
| seq_params->monochrome = oxcf->tool_cfg.enable_monochrome; |
| seq_params->chroma_sample_position = color_cfg->chroma_sample_position; |
| seq_params->color_range = color_cfg->color_range; |
| seq_params->timing_info_present = dec_model_cfg->timing_info_present; |
| seq_params->timing_info.num_units_in_display_tick = |
| dec_model_cfg->timing_info.num_units_in_display_tick; |
| seq_params->timing_info.time_scale = dec_model_cfg->timing_info.time_scale; |
| seq_params->timing_info.equal_picture_interval = |
| dec_model_cfg->timing_info.equal_picture_interval; |
| seq_params->timing_info.num_ticks_per_picture = |
| dec_model_cfg->timing_info.num_ticks_per_picture; |
| |
| seq_params->display_model_info_present_flag = |
| dec_model_cfg->display_model_info_present_flag; |
| seq_params->decoder_model_info_present_flag = |
| dec_model_cfg->decoder_model_info_present_flag; |
| if (dec_model_cfg->decoder_model_info_present_flag) { |
| // set the decoder model parameters in schedule mode |
| seq_params->decoder_model_info.num_units_in_decoding_tick = |
| dec_model_cfg->num_units_in_decoding_tick; |
| ppi->buffer_removal_time_present = 1; |
| av1_set_aom_dec_model_info(&seq_params->decoder_model_info); |
| av1_set_dec_model_op_parameters(&seq_params->op_params[0]); |
| } else if (seq_params->timing_info_present && |
| seq_params->timing_info.equal_picture_interval && |
| !seq_params->decoder_model_info_present_flag) { |
| // set the decoder model parameters in resource availability mode |
| av1_set_resource_availability_parameters(&seq_params->op_params[0]); |
| } else { |
| seq_params->op_params[0].initial_display_delay = |
| 10; // Default value (not signaled) |
| } |
| |
| if (seq_params->monochrome) { |
| seq_params->subsampling_x = 1; |
| seq_params->subsampling_y = 1; |
| } else if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && |
| seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && |
| seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { |
| seq_params->subsampling_x = 0; |
| seq_params->subsampling_y = 0; |
| } else { |
| if (seq_params->profile == 0) { |
| seq_params->subsampling_x = 1; |
| seq_params->subsampling_y = 1; |
| } else if (seq_params->profile == 1) { |
| seq_params->subsampling_x = 0; |
| seq_params->subsampling_y = 0; |
| } else { |
| if (seq_params->bit_depth == AOM_BITS_12) { |
| seq_params->subsampling_x = oxcf->input_cfg.chroma_subsampling_x; |
| seq_params->subsampling_y = oxcf->input_cfg.chroma_subsampling_y; |
| } else { |
| seq_params->subsampling_x = 1; |
| seq_params->subsampling_y = 0; |
| } |
| } |
| } |
| av1_change_config_seq(ppi, oxcf, NULL); |
| } |
| |
| static void init_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) { |
| AV1_COMMON *const cm = &cpi->common; |
| ResizePendingParams *resize_pending_params = &cpi->resize_pending_params; |
| |
| cpi->oxcf = *oxcf; |
| cpi->framerate = oxcf->input_cfg.init_framerate; |
| |
| cm->width = oxcf->frm_dim_cfg.width; |
| cm->height = oxcf->frm_dim_cfg.height; |
| cpi->is_dropped_frame = false; |
| |
| alloc_compressor_data(cpi); |
| |
| // Single thread case: use counts in common. |
| cpi->td.counts = &cpi->counts; |
| |
| // Init SVC parameters. |
| cpi->svc.number_spatial_layers = 1; |
| cpi->svc.number_temporal_layers = 1; |
| cm->spatial_layer_id = 0; |
| cm->temporal_layer_id = 0; |
| // Init rtc_ref parameters. |
| cpi->ppi->rtc_ref.set_ref_frame_config = 0; |
| cpi->ppi->rtc_ref.non_reference_frame = 0; |
| cpi->ppi->rtc_ref.ref_frame_comp[0] = 0; |
| cpi->ppi->rtc_ref.ref_frame_comp[1] = 0; |
| cpi->ppi->rtc_ref.ref_frame_comp[2] = 0; |
| |
| // change includes all joint functionality |
| av1_change_config(cpi, oxcf, false); |
| |
| cpi->ref_frame_flags = 0; |
| |
| // Reset resize pending flags |
| resize_pending_params->width = 0; |
| resize_pending_params->height = 0; |
| |
| // Setup identity scale factor |
| av1_setup_scale_factors_for_frame(&cm->sf_identity, 1, 1, 1, 1); |
| |
| init_buffer_indices(&cpi->force_intpel_info, cm->remapped_ref_idx); |
| |
| av1_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height); |
| } |
| |
| void av1_change_config_seq(struct AV1_PRIMARY *ppi, |
| const AV1EncoderConfig *oxcf, |
| bool *is_sb_size_changed) { |
| SequenceHeader *const seq_params = &ppi->seq_params; |
| const FrameDimensionCfg *const frm_dim_cfg = &oxcf->frm_dim_cfg; |
| const DecoderModelCfg *const dec_model_cfg = &oxcf->dec_model_cfg; |
| const ColorCfg *const color_cfg = &oxcf->color_cfg; |
| |
| if (seq_params->profile != oxcf->profile) seq_params->profile = oxcf->profile; |
| seq_params->bit_depth = oxcf->tool_cfg.bit_depth; |
| seq_params->color_primaries = color_cfg->color_primaries; |
| seq_params->transfer_characteristics = color_cfg->transfer_characteristics; |
| seq_params->matrix_coefficients = color_cfg->matrix_coefficients; |
| seq_params->monochrome = oxcf->tool_cfg.enable_monochrome; |
| seq_params->chroma_sample_position = color_cfg->chroma_sample_position; |
| seq_params->color_range = color_cfg->color_range; |
| |
| assert(IMPLIES(seq_params->profile <= PROFILE_1, |
| seq_params->bit_depth <= AOM_BITS_10)); |
| |
| seq_params->timing_info_present = dec_model_cfg->timing_info_present; |
| seq_params->timing_info.num_units_in_display_tick = |
| dec_model_cfg->timing_info.num_units_in_display_tick; |
| seq_params->timing_info.time_scale = dec_model_cfg->timing_info.time_scale; |
| seq_params->timing_info.equal_picture_interval = |
| dec_model_cfg->timing_info.equal_picture_interval; |
| seq_params->timing_info.num_ticks_per_picture = |
| dec_model_cfg->timing_info.num_ticks_per_picture; |
| |
| seq_params->display_model_info_present_flag = |
| dec_model_cfg->display_model_info_present_flag; |
| seq_params->decoder_model_info_present_flag = |
| dec_model_cfg->decoder_model_info_present_flag; |
| if (dec_model_cfg->decoder_model_info_present_flag) { |
| // set the decoder model parameters in schedule mode |
| seq_params->decoder_model_info.num_units_in_decoding_tick = |
| dec_model_cfg->num_units_in_decoding_tick; |
| ppi->buffer_removal_time_present = 1; |
| av1_set_aom_dec_model_info(&seq_params->decoder_model_info); |
| av1_set_dec_model_op_parameters(&seq_params->op_params[0]); |
| } else if (seq_params->timing_info_present && |
| seq_params->timing_info.equal_picture_interval && |
| !seq_params->decoder_model_info_present_flag) { |
| // set the decoder model parameters in resource availability mode |
| av1_set_resource_availability_parameters(&seq_params->op_params[0]); |
| } else { |
| seq_params->op_params[0].initial_display_delay = |
| 10; // Default value (not signaled) |
| } |
| |
| av1_update_film_grain_parameters_seq(ppi, oxcf); |
| |
| int sb_size = seq_params->sb_size; |
| // Superblock size should not be updated after the first key frame. |
| if (!ppi->seq_params_locked) { |
| set_sb_size(seq_params, av1_select_sb_size(oxcf, frm_dim_cfg->width, |
| frm_dim_cfg->height, |
| ppi->number_spatial_layers)); |
| for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) |
| seq_params->tier[i] = (oxcf->tier_mask >> i) & 1; |
| } |
| if (is_sb_size_changed != NULL && sb_size != seq_params->sb_size) |
| *is_sb_size_changed = true; |
| |
| // Init sequence level coding tools |
| // This should not be called after the first key frame. |
| if (!ppi->seq_params_locked) { |
| seq_params->operating_points_cnt_minus_1 = |
| (ppi->number_spatial_layers > 1 || ppi->number_temporal_layers > 1) |
| ? ppi->number_spatial_layers * ppi->number_temporal_layers - 1 |
| : 0; |
| av1_init_seq_coding_tools( |
| ppi, oxcf, ppi->use_svc || ppi->rtc_ref.set_ref_frame_config); |
| } |
| seq_params->timing_info_present &= !seq_params->reduced_still_picture_hdr; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| highbd_set_var_fns(ppi); |
| #endif |
| |
| set_primary_rc_buffer_sizes(oxcf, ppi); |
| } |
| |
| void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf, |
| bool is_sb_size_changed) { |
| AV1_COMMON *const cm = &cpi->common; |
| SequenceHeader *const seq_params = cm->seq_params; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| MACROBLOCK *const x = &cpi->td.mb; |
| AV1LevelParams *const level_params = &cpi->ppi->level_params; |
| InitialDimensions *const initial_dimensions = &cpi->initial_dimensions; |
| RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| const FrameDimensionCfg *const frm_dim_cfg = &cpi->oxcf.frm_dim_cfg; |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| FeatureFlags *const features = &cm->features; |
| |
| // in case of LAP, lag in frames is set according to number of lap buffers |
| // calculated at init time. This stores and restores LAP's lag in frames to |
| // prevent override by new cfg. |
| int lap_lag_in_frames = -1; |
| if (cpi->ppi->lap_enabled && cpi->compressor_stage == LAP_STAGE) { |
| lap_lag_in_frames = cpi->oxcf.gf_cfg.lag_in_frames; |
| } |
| |
| cpi->oxcf = *oxcf; |
| |
| av1_update_film_grain_parameters(cpi, oxcf); |
| |
| // When user provides superres_mode = AOM_SUPERRES_AUTO, we still initialize |
| // superres mode for current encoding = AOM_SUPERRES_NONE. This is to ensure |
| // that any analysis (e.g. TPL) happening outside the main encoding loop still |
| // happens at full resolution. |
| // This value will later be set appropriately just before main encoding loop. |
| cpi->superres_mode = oxcf->superres_cfg.superres_mode == AOM_SUPERRES_AUTO |
| ? AOM_SUPERRES_NONE |
| : oxcf->superres_cfg.superres_mode; // default |
| x->e_mbd.bd = (int)seq_params->bit_depth; |
| x->e_mbd.global_motion = cm->global_motion; |
| |
| memcpy(level_params->target_seq_level_idx, cpi->oxcf.target_seq_level_idx, |
| sizeof(level_params->target_seq_level_idx)); |
| level_params->keep_level_stats = 0; |
| for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) { |
| if (level_params->target_seq_level_idx[i] < SEQ_LEVELS || |
| level_params->target_seq_level_idx[i] == SEQ_LEVEL_KEEP_STATS) { |
| level_params->keep_level_stats |= 1u << i; |
| if (!level_params->level_info[i]) { |
| CHECK_MEM_ERROR(cm, level_params->level_info[i], |
| aom_calloc(1, sizeof(*level_params->level_info[i]))); |
| } |
| } |
| } |
| |
| // TODO(huisu@): level targeting currently only works for the 0th operating |
| // point, so scalable coding is not supported yet. |
| if (level_params->target_seq_level_idx[0] < SEQ_LEVELS) { |
| // Adjust encoder config in order to meet target level. |
| config_target_level(cpi, level_params->target_seq_level_idx[0], |
| seq_params->tier[0]); |
| } |
| |
| if (has_no_stats_stage(cpi) && (rc_cfg->mode == AOM_Q)) { |
| p_rc->baseline_gf_interval = FIXED_GF_INTERVAL; |
| } else if (!is_one_pass_rt_params(cpi) || |
| cm->current_frame.frame_number == 0) { |
| // For rtc mode: logic for setting the baseline_gf_interval is done |
| // in av1_get_one_pass_rt_params(), and it should not be reset here in |
| // change_config(), unless after init_config (first frame). |
| p_rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2; |
| } |
| |
| refresh_frame->golden_frame = false; |
| refresh_frame->bwd_ref_frame = false; |
| |
| features->refresh_frame_context = |
| (oxcf->tool_cfg.frame_parallel_decoding_mode) |
| ? REFRESH_FRAME_CONTEXT_DISABLED |
| : REFRESH_FRAME_CONTEXT_BACKWARD; |
| if (oxcf->tile_cfg.enable_large_scale_tile) |
| features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; |
| |
| if (x->palette_buffer == NULL) { |
| CHECK_MEM_ERROR(cm, x->palette_buffer, |
| aom_memalign(16, sizeof(*x->palette_buffer))); |
| } |
| |
| if (x->tmp_conv_dst == NULL) { |
| CHECK_MEM_ERROR( |
| cm, x->tmp_conv_dst, |
| aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*x->tmp_conv_dst))); |
| x->e_mbd.tmp_conv_dst = x->tmp_conv_dst; |
| } |
| // The buffers 'tmp_pred_bufs[]' and 'comp_rd_buffer' are used in inter frames |
| // to store intermediate inter mode prediction results and are not required |
| // for allintra encoding mode. Hence, the memory allocations for these buffers |
| // are avoided for allintra encoding mode. |
| if (cpi->oxcf.kf_cfg.key_freq_max != 0) { |
| if (x->comp_rd_buffer.pred0 == NULL) |
| alloc_compound_type_rd_buffers(cm->error, &x->comp_rd_buffer); |
| |
| for (int i = 0; i < 2; ++i) { |
| if (x->tmp_pred_bufs[i] == NULL) { |
| CHECK_MEM_ERROR(cm, x->tmp_pred_bufs[i], |
| aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * |
| sizeof(*x->tmp_pred_bufs[i]))); |
| x->e_mbd.tmp_obmc_bufs[i] = x->tmp_pred_bufs[i]; |
| } |
| } |
| } |
| |
| av1_reset_segment_features(cm); |
| |
| av1_set_high_precision_mv(cpi, 1, 0); |
| |
| // Under a configuration change, where maximum_buffer_size may change, |
| // keep buffer level clipped to the maximum allowed buffer size. |
| p_rc->bits_off_target = |
| AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size); |
| p_rc->buffer_level = AOMMIN(p_rc->buffer_level, p_rc->maximum_buffer_size); |
| |
| // Set up frame rate and related parameters rate control values. |
| av1_new_framerate(cpi, cpi->framerate); |
| |
| // Set absolute upper and lower quality limits |
| rc->worst_quality = rc_cfg->worst_allowed_q; |
| rc->best_quality = rc_cfg->best_allowed_q; |
| |
| // If lossless has been requested make sure average Q accumulators are reset. |
| if (is_lossless_requested(&cpi->oxcf.rc_cfg)) { |
| int i; |
| for (i = 0; i < FRAME_TYPES; ++i) { |
| p_rc->avg_frame_qindex[i] = 0; |
| } |
| } |
| |
| features->interp_filter = |
| oxcf->tile_cfg.enable_large_scale_tile ? EIGHTTAP_REGULAR : SWITCHABLE; |
| features->switchable_motion_mode = is_switchable_motion_mode_allowed( |
| features->allow_warped_motion, oxcf->motion_mode_cfg.enable_obmc); |
| |
| if (frm_dim_cfg->render_width > 0 && frm_dim_cfg->render_height > 0) { |
| cm->render_width = frm_dim_cfg->render_width; |
| cm->render_height = frm_dim_cfg->render_height; |
| } else { |
| cm->render_width = frm_dim_cfg->width; |
| cm->render_height = frm_dim_cfg->height; |
| } |
| cm->width = frm_dim_cfg->width; |
| cm->height = frm_dim_cfg->height; |
| |
| if (cm->width > initial_dimensions->width || |
| cm->height > initial_dimensions->height || is_sb_size_changed) { |
| av1_free_context_buffers(cm); |
| av1_free_shared_coeff_buffer(&cpi->td.shared_coeff_buf); |
| av1_free_sms_tree(&cpi->td); |
| av1_free_pmc(cpi->td.firstpass_ctx, av1_num_planes(cm)); |
| cpi->td.firstpass_ctx = NULL; |
| alloc_compressor_data(cpi); |
| realloc_segmentation_maps(cpi); |
| initial_dimensions->width = initial_dimensions->height = 0; |
| } |
| av1_update_frame_size(cpi); |
| |
| rc->is_src_frame_alt_ref = 0; |
| |
| set_tile_info(cm, &cpi->oxcf.tile_cfg); |
| |
| if (!cpi->ppi->rtc_ref.set_ref_frame_config) |
| cpi->ext_flags.refresh_frame.update_pending = 0; |
| cpi->ext_flags.refresh_frame_context_pending = 0; |
| |
| if (cpi->ppi->use_svc) |
| av1_update_layer_context_change_config(cpi, rc_cfg->target_bandwidth); |
| |
| check_reset_rc_flag(cpi); |
| |
| // restore the value of lag_in_frame for LAP stage. |
| if (lap_lag_in_frames != -1) { |
| cpi->oxcf.gf_cfg.lag_in_frames = lap_lag_in_frames; |
| } |
| |
| #if CONFIG_REALTIME_ONLY |
| assert(!oxcf->tool_cfg.enable_global_motion); |
| cpi->image_pyramid_levels = 0; |
| #else |
| if (oxcf->tool_cfg.enable_global_motion) { |
| cpi->image_pyramid_levels = |
| global_motion_pyr_levels[default_global_motion_method]; |
| } else { |
| cpi->image_pyramid_levels = 0; |
| } |
| #endif // CONFIG_REALTIME_ONLY |
| } |
| |
| static INLINE void init_frame_info(FRAME_INFO *frame_info, |
| const AV1_COMMON *const cm) { |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| frame_info->frame_width = cm->width; |
| frame_info->frame_height = cm->height; |
| frame_info->mi_cols = mi_params->mi_cols; |
| frame_info->mi_rows = mi_params->mi_rows; |
| frame_info->mb_cols = mi_params->mb_cols; |
| frame_info->mb_rows = mi_params->mb_rows; |
| frame_info->num_mbs = mi_params->MBs; |
| frame_info->bit_depth = seq_params->bit_depth; |
| frame_info->subsampling_x = seq_params->subsampling_x; |
| frame_info->subsampling_y = seq_params->subsampling_y; |
| } |
| |
| static INLINE void init_frame_index_set(FRAME_INDEX_SET *frame_index_set) { |
| frame_index_set->show_frame_count = 0; |
| } |
| |
| static INLINE void update_counters_for_show_frame(AV1_COMP *const cpi) { |
| assert(cpi->common.show_frame); |
| cpi->frame_index_set.show_frame_count++; |
| cpi->common.current_frame.frame_number++; |
| } |
| |
| AV1_PRIMARY *av1_create_primary_compressor( |
| struct aom_codec_pkt_list *pkt_list_head, int num_lap_buffers, |
| const AV1EncoderConfig *oxcf) { |
| AV1_PRIMARY *volatile const ppi = aom_memalign(32, sizeof(AV1_PRIMARY)); |
| if (!ppi) return NULL; |
| av1_zero(*ppi); |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(ppi->error.jmp)) { |
| ppi->error.setjmp = 0; |
| av1_remove_primary_compressor(ppi); |
| return 0; |
| } |
| ppi->error.setjmp = 1; |
| |
| ppi->seq_params_locked = 0; |
| ppi->lap_enabled = num_lap_buffers > 0; |
| ppi->output_pkt_list = pkt_list_head; |
| ppi->b_calculate_psnr = CONFIG_INTERNAL_STATS; |
| ppi->frames_left = oxcf->input_cfg.limit; |
| ppi->num_fp_contexts = 1; |
| |
| init_config_sequence(ppi, oxcf); |
| |
| #if CONFIG_ENTROPY_STATS |
| av1_zero(ppi->aggregate_fc); |
| #endif // CONFIG_ENTROPY_STATS |
| |
| av1_primary_rc_init(oxcf, &ppi->p_rc); |
| |
| // For two pass and lag_in_frames > 33 in LAP. |
| ppi->p_rc.enable_scenecut_detection = ENABLE_SCENECUT_MODE_2; |
| if (ppi->lap_enabled) { |
| if ((num_lap_buffers < |
| (MAX_GF_LENGTH_LAP + SCENE_CUT_KEY_TEST_INTERVAL + 1)) && |
| num_lap_buffers >= (MAX_GF_LENGTH_LAP + 3)) { |
| /* |
| * For lag in frames >= 19 and <33, enable scenecut |
| * with limited future frame prediction. |
| */ |
| ppi->p_rc.enable_scenecut_detection = ENABLE_SCENECUT_MODE_1; |
| } else if (num_lap_buffers < (MAX_GF_LENGTH_LAP + 3)) { |
| // Disable scenecut when lag_in_frames < 19. |
| ppi->p_rc.enable_scenecut_detection = DISABLE_SCENECUT; |
| } |
| } |
| |
| #define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, SDX3DF, JSDAF, JSVAF) \ |
| ppi->fn_ptr[BT].sdf = SDF; \ |
| ppi->fn_ptr[BT].sdaf = SDAF; \ |
| ppi->fn_ptr[BT].vf = VF; \ |
| ppi->fn_ptr[BT].svf = SVF; \ |
| ppi->fn_ptr[BT].svaf = SVAF; \ |
| ppi->fn_ptr[BT].sdx4df = SDX4DF; \ |
| ppi->fn_ptr[BT].jsdaf = JSDAF; \ |
| ppi->fn_ptr[BT].jsvaf = JSVAF; \ |
| ppi->fn_ptr[BT].sdx3df = SDX3DF; |
| |
| // Realtime mode doesn't use 4x rectangular blocks. |
| #if !CONFIG_REALTIME_ONLY |
| BFP(BLOCK_4X16, aom_sad4x16, aom_sad4x16_avg, aom_variance4x16, |
| aom_sub_pixel_variance4x16, aom_sub_pixel_avg_variance4x16, |
| aom_sad4x16x4d, aom_sad4x16x3d, aom_dist_wtd_sad4x16_avg, |
| aom_dist_wtd_sub_pixel_avg_variance4x16) |
| |
| BFP(BLOCK_16X4, aom_sad16x4, aom_sad16x4_avg, aom_variance16x4, |
| aom_sub_pixel_variance16x4, aom_sub_pixel_avg_variance16x4, |
| aom_sad16x4x4d, aom_sad16x4x3d, aom_dist_wtd_sad16x4_avg, |
| aom_dist_wtd_sub_pixel_avg_variance16x4) |
| |
| BFP(BLOCK_8X32, aom_sad8x32, aom_sad8x32_avg, aom_variance8x32, |
| aom_sub_pixel_variance8x32, aom_sub_pixel_avg_variance8x32, |
| aom_sad8x32x4d, aom_sad8x32x3d, aom_dist_wtd_sad8x32_avg, |
| aom_dist_wtd_sub_pixel_avg_variance8x32) |
| |
| BFP(BLOCK_32X8, aom_sad32x8, aom_sad32x8_avg, aom_variance32x8, |
| aom_sub_pixel_variance32x8, aom_sub_pixel_avg_variance32x8, |
| aom_sad32x8x4d, aom_sad32x8x3d, aom_dist_wtd_sad32x8_avg, |
| aom_dist_wtd_sub_pixel_avg_variance32x8) |
| |
| BFP(BLOCK_16X64, aom_sad16x64, aom_sad16x64_avg, aom_variance16x64, |
| aom_sub_pixel_variance16x64, aom_sub_pixel_avg_variance16x64, |
| aom_sad16x64x4d, aom_sad16x64x3d, aom_dist_wtd_sad16x64_avg, |
| aom_dist_wtd_sub_pixel_avg_variance16x64) |
| |
| BFP(BLOCK_64X16, aom_sad64x16, aom_sad64x16_avg, aom_variance64x16, |
| aom_sub_pixel_variance64x16, aom_sub_pixel_avg_variance64x16, |
| aom_sad64x16x4d, aom_sad64x16x3d, aom_dist_wtd_sad64x16_avg, |
| aom_dist_wtd_sub_pixel_avg_variance64x16) |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| BFP(BLOCK_128X128, aom_sad128x128, aom_sad128x128_avg, aom_variance128x128, |
| aom_sub_pixel_variance128x128, aom_sub_pixel_avg_variance128x128, |
| aom_sad128x128x4d, aom_sad128x128x3d, aom_dist_wtd_sad128x128_avg, |
| aom_dist_wtd_sub_pixel_avg_variance128x128) |
| |
| BFP(BLOCK_128X64, aom_sad128x64, aom_sad128x64_avg, aom_variance128x64, |
| aom_sub_pixel_variance128x64, aom_sub_pixel_avg_variance128x64, |
| aom_sad128x64x4d, aom_sad128x64x3d, aom_dist_wtd_sad128x64_avg, |
| aom_dist_wtd_sub_pixel_avg_variance128x64) |
| |
| BFP(BLOCK_64X128, aom_sad64x128, aom_sad64x128_avg, aom_variance64x128, |
| aom_sub_pixel_variance64x128, aom_sub_pixel_avg_variance64x128, |
| aom_sad64x128x4d, aom_sad64x128x3d, aom_dist_wtd_sad64x128_avg, |
| aom_dist_wtd_sub_pixel_avg_variance64x128) |
| |
| BFP(BLOCK_32X16, aom_sad32x16, aom_sad32x16_avg, aom_variance32x16, |
| aom_sub_pixel_variance32x16, aom_sub_pixel_avg_variance32x16, |
| aom_sad32x16x4d, aom_sad32x16x3d, aom_dist_wtd_sad32x16_avg, |
| aom_dist_wtd_sub_pixel_avg_variance32x16) |
| |
| BFP(BLOCK_16X32, aom_sad16x32, aom_sad16x32_avg, aom_variance16x32, |
| aom_sub_pixel_variance16x32, aom_sub_pixel_avg_variance16x32, |
| aom_sad16x32x4d, aom_sad16x32x3d, aom_dist_wtd_sad16x32_avg, |
| aom_dist_wtd_sub_pixel_avg_variance16x32) |
| |
| BFP(BLOCK_64X32, aom_sad64x32, aom_sad64x32_avg, aom_variance64x32, |
| aom_sub_pixel_variance64x32, aom_sub_pixel_avg_variance64x32, |
| aom_sad64x32x4d, aom_sad64x32x3d, aom_dist_wtd_sad64x32_avg, |
| aom_dist_wtd_sub_pixel_avg_variance64x32) |
| |
| BFP(BLOCK_32X64, aom_sad32x64, aom_sad32x64_avg, aom_variance32x64, |
| aom_sub_pixel_variance32x64, aom_sub_pixel_avg_variance32x64, |
| aom_sad32x64x4d, aom_sad32x64x3d, aom_dist_wtd_sad32x64_avg, |
| aom_dist_wtd_sub_pixel_avg_variance32x64) |
| |
| BFP(BLOCK_32X32, aom_sad32x32, aom_sad32x32_avg, aom_variance32x32, |
| aom_sub_pixel_variance32x32, aom_sub_pixel_avg_variance32x32, |
| aom_sad32x32x4d, aom_sad32x32x3d, aom_dist_wtd_sad32x32_avg, |
| aom_dist_wtd_sub_pixel_avg_variance32x32) |
| |
| BFP(BLOCK_64X64, aom_sad64x64, aom_sad64x64_avg, aom_variance64x64, |
| aom_sub_pixel_variance64x64, aom_sub_pixel_avg_variance64x64, |
| aom_sad64x64x4d, aom_sad64x64x3d, aom_dist_wtd_sad64x64_avg, |
| aom_dist_wtd_sub_pixel_avg_variance64x64) |
| |
| BFP(BLOCK_16X16, aom_sad16x16, aom_sad16x16_avg, aom_variance16x16, |
| aom_sub_pixel_variance16x16, aom_sub_pixel_avg_variance16x16, |
| aom_sad16x16x4d, aom_sad16x16x3d, aom_dist_wtd_sad16x16_avg, |
| aom_dist_wtd_sub_pixel_avg_variance16x16) |
| |
| BFP(BLOCK_16X8, aom_sad16x8, aom_sad16x8_avg, aom_variance16x8, |
| aom_sub_pixel_variance16x8, aom_sub_pixel_avg_variance16x8, |
| aom_sad16x8x4d, aom_sad16x8x3d, aom_dist_wtd_sad16x8_avg, |
| aom_dist_wtd_sub_pixel_avg_variance16x8) |
| |
| BFP(BLOCK_8X16, aom_sad8x16, aom_sad8x16_avg, aom_variance8x16, |
| aom_sub_pixel_variance8x16, aom_sub_pixel_avg_variance8x16, |
| aom_sad8x16x4d, aom_sad8x16x3d, aom_dist_wtd_sad8x16_avg, |
| aom_dist_wtd_sub_pixel_avg_variance8x16) |
| |
| BFP(BLOCK_8X8, aom_sad8x8, aom_sad8x8_avg, aom_variance8x8, |
| aom_sub_pixel_variance8x8, aom_sub_pixel_avg_variance8x8, aom_sad8x8x4d, |
| aom_sad8x8x3d, aom_dist_wtd_sad8x8_avg, |
| aom_dist_wtd_sub_pixel_avg_variance8x8) |
| |
| BFP(BLOCK_8X4, aom_sad8x4, aom_sad8x4_avg, aom_variance8x4, |
| aom_sub_pixel_variance8x4, aom_sub_pixel_avg_variance8x4, aom_sad8x4x4d, |
| aom_sad8x4x3d, aom_dist_wtd_sad8x4_avg, |
| aom_dist_wtd_sub_pixel_avg_variance8x4) |
| |
| BFP(BLOCK_4X8, aom_sad4x8, aom_sad4x8_avg, aom_variance4x8, |
| aom_sub_pixel_variance4x8, aom_sub_pixel_avg_variance4x8, aom_sad4x8x4d, |
| aom_sad4x8x3d, aom_dist_wtd_sad4x8_avg, |
| aom_dist_wtd_sub_pixel_avg_variance4x8) |
| |
| BFP(BLOCK_4X4, aom_sad4x4, aom_sad4x4_avg, aom_variance4x4, |
| aom_sub_pixel_variance4x4, aom_sub_pixel_avg_variance4x4, aom_sad4x4x4d, |
| aom_sad4x4x3d, aom_dist_wtd_sad4x4_avg, |
| aom_dist_wtd_sub_pixel_avg_variance4x4) |
| |
| #if !CONFIG_REALTIME_ONLY |
| #define OBFP(BT, OSDF, OVF, OSVF) \ |
| ppi->fn_ptr[BT].osdf = OSDF; \ |
| ppi->fn_ptr[BT].ovf = OVF; \ |
| ppi->fn_ptr[BT].osvf = OSVF; |
| |
| OBFP(BLOCK_128X128, aom_obmc_sad128x128, aom_obmc_variance128x128, |
| aom_obmc_sub_pixel_variance128x128) |
| OBFP(BLOCK_128X64, aom_obmc_sad128x64, aom_obmc_variance128x64, |
| aom_obmc_sub_pixel_variance128x64) |
| OBFP(BLOCK_64X128, aom_obmc_sad64x128, aom_obmc_variance64x128, |
| aom_obmc_sub_pixel_variance64x128) |
| OBFP(BLOCK_64X64, aom_obmc_sad64x64, aom_obmc_variance64x64, |
| aom_obmc_sub_pixel_variance64x64) |
| OBFP(BLOCK_64X32, aom_obmc_sad64x32, aom_obmc_variance64x32, |
| aom_obmc_sub_pixel_variance64x32) |
| OBFP(BLOCK_32X64, aom_obmc_sad32x64, aom_obmc_variance32x64, |
| aom_obmc_sub_pixel_variance32x64) |
| OBFP(BLOCK_32X32, aom_obmc_sad32x32, aom_obmc_variance32x32, |
| aom_obmc_sub_pixel_variance32x32) |
| OBFP(BLOCK_32X16, aom_obmc_sad32x16, aom_obmc_variance32x16, |
| aom_obmc_sub_pixel_variance32x16) |
| OBFP(BLOCK_16X32, aom_obmc_sad16x32, aom_obmc_variance16x32, |
| aom_obmc_sub_pixel_variance16x32) |
| OBFP(BLOCK_16X16, aom_obmc_sad16x16, aom_obmc_variance16x16, |
| aom_obmc_sub_pixel_variance16x16) |
| OBFP(BLOCK_16X8, aom_obmc_sad16x8, aom_obmc_variance16x8, |
| aom_obmc_sub_pixel_variance16x8) |
| OBFP(BLOCK_8X16, aom_obmc_sad8x16, aom_obmc_variance8x16, |
| aom_obmc_sub_pixel_variance8x16) |
| OBFP(BLOCK_8X8, aom_obmc_sad8x8, aom_obmc_variance8x8, |
| aom_obmc_sub_pixel_variance8x8) |
| OBFP(BLOCK_4X8, aom_obmc_sad4x8, aom_obmc_variance4x8, |
| aom_obmc_sub_pixel_variance4x8) |
| OBFP(BLOCK_8X4, aom_obmc_sad8x4, aom_obmc_variance8x4, |
| aom_obmc_sub_pixel_variance8x4) |
| OBFP(BLOCK_4X4, aom_obmc_sad4x4, aom_obmc_variance4x4, |
| aom_obmc_sub_pixel_variance4x4) |
| OBFP(BLOCK_4X16, aom_obmc_sad4x16, aom_obmc_variance4x16, |
| aom_obmc_sub_pixel_variance4x16) |
| OBFP(BLOCK_16X4, aom_obmc_sad16x4, aom_obmc_variance16x4, |
| aom_obmc_sub_pixel_variance16x4) |
| OBFP(BLOCK_8X32, aom_obmc_sad8x32, aom_obmc_variance8x32, |
| aom_obmc_sub_pixel_variance8x32) |
| OBFP(BLOCK_32X8, aom_obmc_sad32x8, aom_obmc_variance32x8, |
| aom_obmc_sub_pixel_variance32x8) |
| OBFP(BLOCK_16X64, aom_obmc_sad16x64, aom_obmc_variance16x64, |
| aom_obmc_sub_pixel_variance16x64) |
| OBFP(BLOCK_64X16, aom_obmc_sad64x16, aom_obmc_variance64x16, |
| aom_obmc_sub_pixel_variance64x16) |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #define MBFP(BT, MCSDF, MCSVF) \ |
| ppi->fn_ptr[BT].msdf = MCSDF; \ |
| ppi->fn_ptr[BT].msvf = MCSVF; |
| |
| MBFP(BLOCK_128X128, aom_masked_sad128x128, |
| aom_masked_sub_pixel_variance128x128) |
| MBFP(BLOCK_128X64, aom_masked_sad128x64, aom_masked_sub_pixel_variance128x64) |
| MBFP(BLOCK_64X128, aom_masked_sad64x128, aom_masked_sub_pixel_variance64x128) |
| MBFP(BLOCK_64X64, aom_masked_sad64x64, aom_masked_sub_pixel_variance64x64) |
| MBFP(BLOCK_64X32, aom_masked_sad64x32, aom_masked_sub_pixel_variance64x32) |
| MBFP(BLOCK_32X64, aom_masked_sad32x64, aom_masked_sub_pixel_variance32x64) |
| MBFP(BLOCK_32X32, aom_masked_sad32x32, aom_masked_sub_pixel_variance32x32) |
| MBFP(BLOCK_32X16, aom_masked_sad32x16, aom_masked_sub_pixel_variance32x16) |
| MBFP(BLOCK_16X32, aom_masked_sad16x32, aom_masked_sub_pixel_variance16x32) |
| MBFP(BLOCK_16X16, aom_masked_sad16x16, aom_masked_sub_pixel_variance16x16) |
| MBFP(BLOCK_16X8, aom_masked_sad16x8, aom_masked_sub_pixel_variance16x8) |
| MBFP(BLOCK_8X16, aom_masked_sad8x16, aom_masked_sub_pixel_variance8x16) |
| MBFP(BLOCK_8X8, aom_masked_sad8x8, aom_masked_sub_pixel_variance8x8) |
| MBFP(BLOCK_4X8, aom_masked_sad4x8, aom_masked_sub_pixel_variance4x8) |
| MBFP(BLOCK_8X4, aom_masked_sad8x4, aom_masked_sub_pixel_variance8x4) |
| MBFP(BLOCK_4X4, aom_masked_sad4x4, aom_masked_sub_pixel_variance4x4) |
| |
| #if !CONFIG_REALTIME_ONLY |
| MBFP(BLOCK_4X16, aom_masked_sad4x16, aom_masked_sub_pixel_variance4x16) |
| MBFP(BLOCK_16X4, aom_masked_sad16x4, aom_masked_sub_pixel_variance16x4) |
| MBFP(BLOCK_8X32, aom_masked_sad8x32, aom_masked_sub_pixel_variance8x32) |
| MBFP(BLOCK_32X8, aom_masked_sad32x8, aom_masked_sub_pixel_variance32x8) |
| MBFP(BLOCK_16X64, aom_masked_sad16x64, aom_masked_sub_pixel_variance16x64) |
| MBFP(BLOCK_64X16, aom_masked_sad64x16, aom_masked_sub_pixel_variance64x16) |
| #endif |
| |
| #define SDSFP(BT, SDSF, SDSX4DF) \ |
| ppi->fn_ptr[BT].sdsf = SDSF; \ |
| ppi->fn_ptr[BT].sdsx4df = SDSX4DF; |
| |
| SDSFP(BLOCK_128X128, aom_sad_skip_128x128, aom_sad_skip_128x128x4d) |
| SDSFP(BLOCK_128X64, aom_sad_skip_128x64, aom_sad_skip_128x64x4d) |
| SDSFP(BLOCK_64X128, aom_sad_skip_64x128, aom_sad_skip_64x128x4d) |
| SDSFP(BLOCK_64X64, aom_sad_skip_64x64, aom_sad_skip_64x64x4d) |
| SDSFP(BLOCK_64X32, aom_sad_skip_64x32, aom_sad_skip_64x32x4d) |
| |
| SDSFP(BLOCK_32X64, aom_sad_skip_32x64, aom_sad_skip_32x64x4d) |
| SDSFP(BLOCK_32X32, aom_sad_skip_32x32, aom_sad_skip_32x32x4d) |
| SDSFP(BLOCK_32X16, aom_sad_skip_32x16, aom_sad_skip_32x16x4d) |
| |
| SDSFP(BLOCK_16X32, aom_sad_skip_16x32, aom_sad_skip_16x32x4d) |
| SDSFP(BLOCK_16X16, aom_sad_skip_16x16, aom_sad_skip_16x16x4d) |
| SDSFP(BLOCK_16X8, aom_sad_skip_16x8, aom_sad_skip_16x8x4d) |
| SDSFP(BLOCK_8X16, aom_sad_skip_8x16, aom_sad_skip_8x16x4d) |
| SDSFP(BLOCK_8X8, aom_sad_skip_8x8, aom_sad_skip_8x8x4d) |
| |
| SDSFP(BLOCK_4X8, aom_sad_skip_4x8, aom_sad_skip_4x8x4d) |
| |
| #if !CONFIG_REALTIME_ONLY |
| SDSFP(BLOCK_64X16, aom_sad_skip_64x16, aom_sad_skip_64x16x4d) |
| SDSFP(BLOCK_16X64, aom_sad_skip_16x64, aom_sad_skip_16x64x4d) |
| SDSFP(BLOCK_32X8, aom_sad_skip_32x8, aom_sad_skip_32x8x4d) |
| SDSFP(BLOCK_8X32, aom_sad_skip_8x32, aom_sad_skip_8x32x4d) |
| SDSFP(BLOCK_4X16, aom_sad_skip_4x16, aom_sad_skip_4x16x4d) |
| #endif |
| #undef SDSFP |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| highbd_set_var_fns(ppi); |
| #endif |
| |
| { |
| // As cm->mi_params is a part of the frame level context (cpi), it is |
| // unavailable at this point. mi_params is created as a local temporary |
| // variable, to be passed into the functions used for allocating tpl |
| // buffers. The values in this variable are populated according to initial |
| // width and height of the frame. |
| CommonModeInfoParams mi_params; |
| enc_set_mb_mi(&mi_params, oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, |
| BLOCK_4X4); |
| |
| const BLOCK_SIZE bsize = BLOCK_16X16; |
| const int w = mi_size_wide[bsize]; |
| const int h = mi_size_high[bsize]; |
| const int num_cols = (mi_params.mi_cols + w - 1) / w; |
| const int num_rows = (mi_params.mi_rows + h - 1) / h; |
| AOM_CHECK_MEM_ERROR( |
| &ppi->error, ppi->tpl_sb_rdmult_scaling_factors, |
| aom_calloc(num_rows * num_cols, |
| sizeof(*ppi->tpl_sb_rdmult_scaling_factors))); |
| |
| #if CONFIG_INTERNAL_STATS |
| ppi->b_calculate_blockiness = 1; |
| ppi->b_calculate_consistency = 1; |
| |
| for (int i = 0; i <= STAT_ALL; i++) { |
| ppi->psnr[0].stat[i] = 0; |
| ppi->psnr[1].stat[i] = 0; |
| |
| ppi->fastssim.stat[i] = 0; |
| ppi->psnrhvs.stat[i] = 0; |
| } |
| |
| ppi->psnr[0].worst = 100.0; |
| ppi->psnr[1].worst = 100.0; |
| ppi->worst_ssim = 100.0; |
| ppi->worst_ssim_hbd = 100.0; |
| |
| ppi->count[0] = 0; |
| ppi->count[1] = 0; |
| ppi->total_bytes = 0; |
| |
| if (ppi->b_calculate_psnr) { |
| ppi->total_sq_error[0] = 0; |
| ppi->total_samples[0] = 0; |
| ppi->total_sq_error[1] = 0; |
| ppi->total_samples[1] = 0; |
| ppi->total_recode_hits = 0; |
| ppi->summed_quality = 0; |
| ppi->summed_weights = 0; |
| ppi->summed_quality_hbd = 0; |
| ppi->summed_weights_hbd = 0; |
| } |
| |
| ppi->fastssim.worst = 100.0; |
| ppi->psnrhvs.worst = 100.0; |
| |
| if (ppi->b_calculate_blockiness) { |
| ppi->total_blockiness = 0; |
| ppi->worst_blockiness = 0.0; |
| } |
| |
| ppi->total_inconsistency = 0; |
| ppi->worst_consistency = 100.0; |
| if (ppi->b_calculate_consistency) { |
| AOM_CHECK_MEM_ERROR(&ppi->error, ppi->ssim_vars, |
| aom_malloc(sizeof(*ppi->ssim_vars) * 4 * |
| mi_params.mi_rows * mi_params.mi_cols)); |
| } |
| #endif |
| } |
| |
| ppi->error.setjmp = 0; |
| return ppi; |
| } |
| |
| AV1_COMP *av1_create_compressor(AV1_PRIMARY *ppi, const AV1EncoderConfig *oxcf, |
| BufferPool *const pool, COMPRESSOR_STAGE stage, |
| int lap_lag_in_frames) { |
| AV1_COMP *volatile const cpi = aom_memalign(32, sizeof(AV1_COMP)); |
| |
| if (!cpi) return NULL; |
| |
| av1_zero(*cpi); |
| |
| cpi->ppi = ppi; |
| |
| AV1_COMMON *volatile const cm = &cpi->common; |
| cm->seq_params = &ppi->seq_params; |
| cm->error = |
| (struct aom_internal_error_info *)aom_calloc(1, sizeof(*cm->error)); |
| if (!cm->error) { |
| aom_free(cpi); |
| return NULL; |
| } |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(cm->error->jmp)) { |
| cm->error->setjmp = 0; |
| av1_remove_compressor(cpi); |
| return NULL; |
| } |
| |
| cm->error->setjmp = 1; |
| cpi->compressor_stage = stage; |
| |
| cpi->do_frame_data_update = true; |
| |
| CommonModeInfoParams *const mi_params = &cm->mi_params; |
| mi_params->free_mi = enc_free_mi; |
| mi_params->setup_mi = enc_setup_mi; |
| mi_params->set_mb_mi = |
| (oxcf->pass == AOM_RC_FIRST_PASS || cpi->compressor_stage == LAP_STAGE) |
| ? stat_stage_set_mb_mi |
| : enc_set_mb_mi; |
| |
| mi_params->mi_alloc_bsize = BLOCK_4X4; |
| |
| CHECK_MEM_ERROR(cm, cm->fc, |
| (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc))); |
| CHECK_MEM_ERROR( |
| cm, cm->default_frame_context, |
| (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->default_frame_context))); |
| memset(cm->fc, 0, sizeof(*cm->fc)); |
| memset(cm->default_frame_context, 0, sizeof(*cm->default_frame_context)); |
| |
| cpi->common.buffer_pool = pool; |
| |
| init_config(cpi, oxcf); |
| if (cpi->compressor_stage == LAP_STAGE) { |
| cpi->oxcf.gf_cfg.lag_in_frames = lap_lag_in_frames; |
| } |
| |
| av1_rc_init(&cpi->oxcf, &cpi->rc); |
| |
| init_frame_info(&cpi->frame_info, cm); |
| init_frame_index_set(&cpi->frame_index_set); |
| |
| cm->current_frame.frame_number = 0; |
| cpi->rc.frame_number_encoded = 0; |
| cpi->rc.prev_frame_is_dropped = 0; |
| cpi->rc.max_consec_drop = INT_MAX; |
| cpi->rc.drop_count_consec = 0; |
| cm->current_frame_id = -1; |
| cpi->tile_data = NULL; |
| cpi->last_show_frame_buf = NULL; |
| realloc_segmentation_maps(cpi); |
| |
| cpi->refresh_frame.alt_ref_frame = false; |
| |
| #if CONFIG_SPEED_STATS |
| cpi->tx_search_count = 0; |
| #endif // CONFIG_SPEED_STATS |
| |
| cpi->time_stamps.first_ts_start = INT64_MAX; |
| |
| #ifdef OUTPUT_YUV_REC |
| yuv_rec_file = fopen("rec.yuv", "wb"); |
| #endif |
| #ifdef OUTPUT_YUV_DENOISED |
| yuv_denoised_file = fopen("denoised.yuv", "wb"); |
| #endif |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (is_stat_consumption_stage(cpi)) { |
| const size_t packet_sz = sizeof(FIRSTPASS_STATS); |
| const int packets = (int)(oxcf->twopass_stats_in.sz / packet_sz); |
| |
| if (!cpi->ppi->lap_enabled) { |
| /*Re-initialize to stats buffer, populated by application in the case of |
| * two pass*/ |
| cpi->ppi->twopass.stats_buf_ctx->stats_in_start = |
| oxcf->twopass_stats_in.buf; |
| cpi->twopass_frame.stats_in = |
| cpi->ppi->twopass.stats_buf_ctx->stats_in_start; |
| cpi->ppi->twopass.stats_buf_ctx->stats_in_end = |
| &cpi->ppi->twopass.stats_buf_ctx->stats_in_start[packets - 1]; |
| |
| // The buffer size is packets - 1 because the last packet is total_stats. |
| av1_firstpass_info_init(&cpi->ppi->twopass.firstpass_info, |
| oxcf->twopass_stats_in.buf, packets - 1); |
| av1_init_second_pass(cpi); |
| } else { |
| av1_firstpass_info_init(&cpi->ppi->twopass.firstpass_info, NULL, 0); |
| av1_init_single_pass_lap(cpi); |
| } |
| } |
| #endif |
| |
| // The buffer "obmc_buffer" is used in inter frames for fast obmc search. |
| // Hence, the memory allocation for the same is avoided for allintra encoding |
| // mode. |
| if (cpi->oxcf.kf_cfg.key_freq_max != 0) |
| alloc_obmc_buffers(&cpi->td.mb.obmc_buffer, cm->error); |
| |
| for (int x = 0; x < 2; x++) |
| for (int y = 0; y < 2; y++) |
| CHECK_MEM_ERROR( |
| cm, cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y], |
| (uint32_t *)aom_malloc( |
| AOM_BUFFER_SIZE_FOR_BLOCK_HASH * |
| sizeof(*cpi->td.mb.intrabc_hash_info.hash_value_buffer[0][0]))); |
| |
| cpi->td.mb.intrabc_hash_info.g_crc_initialized = 0; |
| |
| av1_set_speed_features_framesize_independent(cpi, oxcf->speed); |
| av1_set_speed_features_framesize_dependent(cpi, oxcf->speed); |
| |
| int max_mi_cols = mi_params->mi_cols; |
| int max_mi_rows = mi_params->mi_rows; |
| if (oxcf->frm_dim_cfg.forced_max_frame_width) { |
| max_mi_cols = size_in_mi(oxcf->frm_dim_cfg.forced_max_frame_width); |
| } |
| if (oxcf->frm_dim_cfg.forced_max_frame_height) { |
| max_mi_rows = size_in_mi(oxcf->frm_dim_cfg.forced_max_frame_height); |
| } |
| |
| const int consec_zero_mv_alloc_size = (max_mi_rows * max_mi_cols) >> 2; |
| CHECK_MEM_ERROR( |
| cm, cpi->consec_zero_mv, |
| aom_calloc(consec_zero_mv_alloc_size, sizeof(*cpi->consec_zero_mv))); |
| cpi->consec_zero_mv_alloc_size = consec_zero_mv_alloc_size; |
| |
| cpi->mb_weber_stats = NULL; |
| cpi->mb_delta_q = NULL; |
| cpi->palette_pixel_num = 0; |
| cpi->scaled_last_source_available = 0; |
| |
| { |
| const BLOCK_SIZE bsize = BLOCK_16X16; |
| const int w = mi_size_wide[bsize]; |
| const int h = mi_size_high[bsize]; |
| const int num_cols = (max_mi_cols + w - 1) / w; |
| const int num_rows = (max_mi_rows + h - 1) / h; |
| CHECK_MEM_ERROR(cm, cpi->ssim_rdmult_scaling_factors, |
| aom_calloc(num_rows * num_cols, |
| sizeof(*cpi->ssim_rdmult_scaling_factors))); |
| CHECK_MEM_ERROR(cm, cpi->tpl_rdmult_scaling_factors, |
| aom_calloc(num_rows * num_cols, |
| sizeof(*cpi->tpl_rdmult_scaling_factors))); |
| } |
| |
| #if CONFIG_TUNE_VMAF |
| { |
| const BLOCK_SIZE bsize = BLOCK_64X64; |
| const int w = mi_size_wide[bsize]; |
| const int h = mi_size_high[bsize]; |
| const int num_cols = (mi_params->mi_cols + w - 1) / w; |
| const int num_rows = (mi_params->mi_rows + h - 1) / h; |
| CHECK_MEM_ERROR(cm, cpi->vmaf_info.rdmult_scaling_factors, |
| aom_calloc(num_rows * num_cols, |
| sizeof(*cpi->vmaf_info.rdmult_scaling_factors))); |
| for (int i = 0; i < MAX_ARF_LAYERS; i++) { |
| cpi->vmaf_info.last_frame_unsharp_amount[i] = -1.0; |
| cpi->vmaf_info.last_frame_ysse[i] = -1.0; |
| cpi->vmaf_info.last_frame_vmaf[i] = -1.0; |
| } |
| cpi->vmaf_info.original_qindex = -1; |
| cpi->vmaf_info.vmaf_model = NULL; |
| } |
| #endif |
| |
| #if CONFIG_TUNE_BUTTERAUGLI |
| { |
| const int w = mi_size_wide[butteraugli_rdo_bsize]; |
| const int h = mi_size_high[butteraugli_rdo_bsize]; |
| const int num_cols = (mi_params->mi_cols + w - 1) / w; |
| const int num_rows = (mi_params->mi_rows + h - 1) / h; |
| CHECK_MEM_ERROR( |
| cm, cpi->butteraugli_info.rdmult_scaling_factors, |
| aom_malloc(num_rows * num_cols * |
| sizeof(*cpi->butteraugli_info.rdmult_scaling_factors))); |
| memset(&cpi->butteraugli_info.source, 0, |
| sizeof(cpi->butteraugli_info.source)); |
| memset(&cpi->butteraugli_info.resized_source, 0, |
| sizeof(cpi->butteraugli_info.resized_source)); |
| cpi->butteraugli_info.recon_set = false; |
| } |
| #endif |
| |
| #if CONFIG_SALIENCY_MAP |
| { |
| CHECK_MEM_ERROR(cm, cpi->saliency_map, |
| (uint8_t *)aom_calloc(cm->height * cm->width, |
| sizeof(*cpi->saliency_map))); |
| // Buffer initialization based on MIN_MIB_SIZE_LOG2 to ensure that |
| // cpi->sm_scaling_factor buffer is allocated big enough, since we have no |
| // idea of the actual superblock size we are going to use yet. |
| const int min_mi_w_sb = (1 << MIN_MIB_SIZE_LOG2); |
| const int min_mi_h_sb = (1 << MIN_MIB_SIZE_LOG2); |
| const int max_sb_cols = |
| (cm->mi_params.mi_cols + min_mi_w_sb - 1) / min_mi_w_sb; |
| const int max_sb_rows = |
| (cm->mi_params.mi_rows + min_mi_h_sb - 1) / min_mi_h_sb; |
| CHECK_MEM_ERROR(cm, cpi->sm_scaling_factor, |
| (double *)aom_calloc(max_sb_rows * max_sb_cols, |
| sizeof(*cpi->sm_scaling_factor))); |
| } |
| #endif |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| av1_zero(cpi->partition_stats); |
| #endif // CONFIG_COLLECT_PARTITION_STATS |
| |
| // Initialize the members of DeltaQuantParams with INT_MAX to ensure that |
| // the quantizer tables are correctly initialized using the default deltaq |
| // parameters when av1_init_quantizer is called for the first time. |
| DeltaQuantParams *const prev_deltaq_params = |
| &cpi->enc_quant_dequant_params.prev_deltaq_params; |
| prev_deltaq_params->y_dc_delta_q = INT_MAX; |
| prev_deltaq_params->u_dc_delta_q = INT_MAX; |
| prev_deltaq_params->v_dc_delta_q = INT_MAX; |
| prev_deltaq_params->u_ac_delta_q = INT_MAX; |
| prev_deltaq_params->v_ac_delta_q = INT_MAX; |
| |
| av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, |
| cm->seq_params->bit_depth); |
| av1_qm_init(&cm->quant_params, av1_num_planes(cm)); |
| |
| av1_loop_filter_init(cm); |
| cm->superres_scale_denominator = SCALE_NUMERATOR; |
| cm->superres_upscaled_width = oxcf->frm_dim_cfg.width; |
| cm->superres_upscaled_height = oxcf->frm_dim_cfg.height; |
| #if !CONFIG_REALTIME_ONLY |
| av1_loop_restoration_precal(); |
| #endif |
| |
| cpi->third_pass_ctx = NULL; |
| if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) { |
| av1_init_thirdpass_ctx(cm, &cpi->third_pass_ctx, NULL); |
| } |
| |
| cpi->second_pass_log_stream = NULL; |
| cpi->use_ducky_encode = 0; |
| |
| cm->error->setjmp = 0; |
| return cpi; |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| #define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T)) |
| |
| #define SNPRINT2(H, T, V) \ |
| snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V)) |
| #endif // CONFIG_INTERNAL_STATS |
| |
| // This function will change the state and free the mutex of corresponding |
| // workers and terminate the object. The object can not be re-used unless a call |
| // to reset() is made. |
| static AOM_INLINE void terminate_worker_data(AV1_PRIMARY *ppi) { |
| PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info; |
| for (int t = p_mt_info->num_workers - 1; t >= 0; --t) { |
| AVxWorker *const worker = &p_mt_info->workers[t]; |
| aom_get_worker_interface()->end(worker); |
| } |
| } |
| |
| void av1_remove_primary_compressor(AV1_PRIMARY *ppi) { |
| if (!ppi) return; |
| #if !CONFIG_REALTIME_ONLY |
| av1_tf_info_free(&ppi->tf_info); |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) { |
| aom_free(ppi->level_params.level_info[i]); |
| } |
| av1_lookahead_destroy(ppi->lookahead); |
| |
| aom_free(ppi->tpl_sb_rdmult_scaling_factors); |
| ppi->tpl_sb_rdmult_scaling_factors = NULL; |
| |
| TplParams *const tpl_data = &ppi->tpl_data; |
| aom_free(tpl_data->txfm_stats_list); |
| |
| for (int frame = 0; frame < MAX_LAG_BUFFERS; ++frame) { |
| aom_free(tpl_data->tpl_stats_pool[frame]); |
| aom_free_frame_buffer(&tpl_data->tpl_rec_pool[frame]); |
| tpl_data->tpl_stats_pool[frame] = NULL; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| av1_tpl_dealloc(&tpl_data->tpl_mt_sync); |
| #endif |
| |
| terminate_worker_data(ppi); |
| free_thread_data(ppi); |
| |
| aom_free(ppi->p_mt_info.tile_thr_data); |
| aom_free(ppi->p_mt_info.workers); |
| |
| aom_free(ppi); |
| } |
| |
| void av1_remove_compressor(AV1_COMP *cpi) { |
| if (!cpi) return; |
| #if CONFIG_RATECTRL_LOG |
| if (cpi->oxcf.pass == 3) { |
| rc_log_show(&cpi->rc_log); |
| } |
| #endif // CONFIG_RATECTRL_LOG |
| |
| AV1_COMMON *cm = &cpi->common; |
| if (cm->current_frame.frame_number > 0) { |
| #if CONFIG_SPEED_STATS |
| if (!is_stat_generation_stage(cpi)) { |
| fprintf(stdout, "tx_search_count = %d\n", cpi->tx_search_count); |
| } |
| #endif // CONFIG_SPEED_STATS |
| |
| #if CONFIG_COLLECT_PARTITION_STATS == 2 |
| if (!is_stat_generation_stage(cpi)) { |
| av1_print_fr_partition_timing_stats(&cpi->partition_stats, |
| "fr_part_timing_data.csv"); |
| } |
| #endif |
| } |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| av1_denoiser_free(&(cpi->denoiser)); |
| #endif |
| |
| if (cm->error) { |
| // Help detect use after free of the error detail string. |
| memset(cm->error->detail, 'A', sizeof(cm->error->detail) - 1); |
| cm->error->detail[sizeof(cm->error->detail) - 1] = '\0'; |
| aom_free(cm->error); |
| } |
| aom_free(cpi->td.tctx); |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *const enc_row_mt_mutex_ = mt_info->enc_row_mt.mutex_; |
| pthread_cond_t *const enc_row_mt_cond_ = mt_info->enc_row_mt.cond_; |
| pthread_mutex_t *const gm_mt_mutex_ = mt_info->gm_sync.mutex_; |
| pthread_mutex_t *const tpl_error_mutex_ = mt_info->tpl_row_mt.mutex_; |
| pthread_mutex_t *const pack_bs_mt_mutex_ = mt_info->pack_bs_sync.mutex_; |
| if (enc_row_mt_mutex_ != NULL) { |
| pthread_mutex_destroy(enc_row_mt_mutex_); |
| aom_free(enc_row_mt_mutex_); |
| } |
| if (enc_row_mt_cond_ != NULL) { |
| pthread_cond_destroy(enc_row_mt_cond_); |
| aom_free(enc_row_mt_cond_); |
| } |
| if (gm_mt_mutex_ != NULL) { |
| pthread_mutex_destroy(gm_mt_mutex_); |
| aom_free(gm_mt_mutex_); |
| } |
| if (tpl_error_mutex_ != NULL) { |
| pthread_mutex_destroy(tpl_error_mutex_); |
| aom_free(tpl_error_mutex_); |
| } |
| if (pack_bs_mt_mutex_ != NULL) { |
| pthread_mutex_destroy(pack_bs_mt_mutex_); |
| aom_free(pack_bs_mt_mutex_); |
| } |
| #endif |
| av1_row_mt_mem_dealloc(cpi); |
| |
| if (mt_info->num_workers > 1) { |
| av1_row_mt_sync_mem_dealloc(&cpi->ppi->intra_row_mt_sync); |
| av1_loop_filter_dealloc(&mt_info->lf_row_sync); |
| av1_cdef_mt_dealloc(&mt_info->cdef_sync); |
| #if !CONFIG_REALTIME_ONLY |
| av1_loop_restoration_dealloc(&mt_info->lr_row_sync); |
| av1_tf_mt_dealloc(&mt_info->tf_sync); |
| #endif |
| } |
| |
| av1_free_thirdpass_ctx(cpi->third_pass_ctx); |
| |
| av1_close_second_pass_log(cpi); |
| |
| dealloc_compressor_data(cpi); |
| |
| av1_ext_part_delete(&cpi->ext_part_controller); |
| |
| av1_remove_common(cm); |
| |
| aom_free(cpi); |
| |
| #ifdef OUTPUT_YUV_REC |
| fclose(yuv_rec_file); |
| #endif |
| |
| #ifdef OUTPUT_YUV_DENOISED |
| fclose(yuv_denoised_file); |
| #endif |
| } |
| |
| static void generate_psnr_packet(AV1_COMP *cpi) { |
| struct aom_codec_cx_pkt pkt; |
| int i; |
| PSNR_STATS psnr; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth; |
| const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; |
| aom_calc_highbd_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr, |
| bit_depth, in_bit_depth); |
| #else |
| aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr); |
| #endif |
| |
| for (i = 0; i < 4; ++i) { |
| pkt.data.psnr.samples[i] = psnr.samples[i]; |
| pkt.data.psnr.sse[i] = psnr.sse[i]; |
| pkt.data.psnr.psnr[i] = psnr.psnr[i]; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if ((cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) && |
| (in_bit_depth < bit_depth)) { |
| for (i = 0; i < 4; ++i) { |
| pkt.data.psnr.samples_hbd[i] = psnr.samples_hbd[i]; |
| pkt.data.psnr.sse_hbd[i] = psnr.sse_hbd[i]; |
| pkt.data.psnr.psnr_hbd[i] = psnr.psnr_hbd[i]; |
| } |
| } |
| #endif |
| |
| pkt.kind = AOM_CODEC_PSNR_PKT; |
| aom_codec_pkt_list_add(cpi->ppi->output_pkt_list, &pkt); |
| } |
| |
| int av1_use_as_reference(int *ext_ref_frame_flags, int ref_frame_flags) { |
| if (ref_frame_flags > ((1 << INTER_REFS_PER_FRAME) - 1)) return -1; |
| |
| *ext_ref_frame_flags = ref_frame_flags; |
| return 0; |
| } |
| |
| int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx); |
| if (cfg) { |
| aom_yv12_copy_frame(cfg, sd, num_planes); |
| return 0; |
| } else { |
| return -1; |
| } |
| } |
| |
| int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx); |
| if (cfg) { |
| aom_yv12_copy_frame(sd, cfg, num_planes); |
| return 0; |
| } else { |
| return -1; |
| } |
| } |
| |
| #ifdef OUTPUT_YUV_REC |
| void aom_write_one_yuv_frame(AV1_COMMON *cm, YV12_BUFFER_CONFIG *s) { |
| uint8_t *src = s->y_buffer; |
| int h = cm->height; |
| if (yuv_rec_file == NULL) return; |
| if (s->flags & YV12_FLAG_HIGHBITDEPTH) { |
| uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer); |
| |
| do { |
| fwrite(src16, s->y_width, 2, yuv_rec_file); |
| src16 += s->y_stride; |
| } while (--h); |
| |
| src16 = CONVERT_TO_SHORTPTR(s->u_buffer); |
| h = s->uv_height; |
| |
| do { |
| fwrite(src16, s->uv_width, 2, yuv_rec_file); |
| src16 += s->uv_stride; |
| } while (--h); |
| |
| src16 = CONVERT_TO_SHORTPTR(s->v_buffer); |
| h = s->uv_height; |
| |
| do { |
| fwrite(src16, s->uv_width, 2, yuv_rec_file); |
| src16 += s->uv_stride; |
| } while (--h); |
| |
| fflush(yuv_rec_file); |
| return; |
| } |
| |
| do { |
| fwrite(src, s->y_width, 1, yuv_rec_file); |
| src += s->y_stride; |
| } while (--h); |
| |
| src = s->u_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_rec_file); |
| src += s->uv_stride; |
| } while (--h); |
| |
| src = s->v_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_rec_file); |
| src += s->uv_stride; |
| } while (--h); |
| |
| fflush(yuv_rec_file); |
| } |
| #endif // OUTPUT_YUV_REC |
| |
| void av1_set_mv_search_params(AV1_COMP *cpi) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MotionVectorSearchParams *const mv_search_params = &cpi->mv_search_params; |
| const int max_mv_def = AOMMAX(cm->width, cm->height); |
| |
| // Default based on max resolution. |
| mv_search_params->mv_step_param = av1_init_search_range(max_mv_def); |
| |
| if (cpi->sf.mv_sf.auto_mv_step_size) { |
| if (frame_is_intra_only(cm)) { |
| // Initialize max_mv_magnitude for use in the first INTER frame |
| // after a key/intra-only frame. |
| mv_search_params->max_mv_magnitude = max_mv_def; |
| } else { |
| // Use adaptive mv steps based on previous frame stats for show frames and |
| // internal arfs. |
| FRAME_UPDATE_TYPE cur_update_type = |
| cpi->ppi->gf_group.update_type[cpi->gf_frame_index]; |
| int use_auto_mv_step = |
| (cm->show_frame || cur_update_type == INTNL_ARF_UPDATE) && |
| mv_search_params->max_mv_magnitude != -1 && |
| cpi->sf.mv_sf.auto_mv_step_size >= 2; |
| if (use_auto_mv_step) { |
| // Allow mv_steps to correspond to twice the max mv magnitude found |
| // in the previous frame, capped by the default max_mv_magnitude based |
| // on resolution. |
| mv_search_params->mv_step_param = av1_init_search_range( |
| AOMMIN(max_mv_def, 2 * mv_search_params->max_mv_magnitude)); |
| } |
| // Reset max_mv_magnitude based on update flag. |
| if (cpi->do_frame_data_update) mv_search_params->max_mv_magnitude = -1; |
| } |
| } |
| } |
| |
| void av1_set_screen_content_options(AV1_COMP *cpi, FeatureFlags *features) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| |
| if (cm->seq_params->force_screen_content_tools != 2) { |
| features->allow_screen_content_tools = features->allow_intrabc = |
| cm->seq_params->force_screen_content_tools; |
| return; |
| } |
| |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { |
| features->allow_screen_content_tools = 1; |
| features->allow_intrabc = cpi->oxcf.mode == REALTIME ? 0 : 1; |
| cpi->is_screen_content_type = 1; |
| cpi->use_screen_content_tools = 1; |
| return; |
| } |
| |
| if (cpi->oxcf.mode == REALTIME) { |
| features->allow_screen_content_tools = features->allow_intrabc = 0; |
| return; |
| } |
| |
| // Screen content tools are not evaluated in non-RD encoding mode unless |
| // content type is not set explicitly, i.e., when |
| // cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN, use_nonrd_pick_mode = 1 |
| // and hybrid_intra_pickmode = 0. Hence, screen content detection is |
| // disabled. |
| if (cpi->sf.rt_sf.use_nonrd_pick_mode && |
| !cpi->sf.rt_sf.hybrid_intra_pickmode) { |
| features->allow_screen_content_tools = features->allow_intrabc = 0; |
| return; |
| } |
| |
| // Estimate if the source frame is screen content, based on the portion of |
| // blocks that have few luma colors. |
| const uint8_t *src = cpi->unfiltered_source->y_buffer; |
| assert(src != NULL); |
| const int use_hbd = cpi->unfiltered_source->flags & YV12_FLAG_HIGHBITDEPTH; |
| const int stride = cpi->unfiltered_source->y_stride; |
| const int width = cpi->unfiltered_source->y_width; |
| const int height = cpi->unfiltered_source->y_height; |
| const int64_t area = (int64_t)width * height; |
| const int bd = cm->seq_params->bit_depth; |
| const int blk_w = 16; |
| const int blk_h = 16; |
| // These threshold values are selected experimentally. |
| const int color_thresh = 4; |
| const unsigned int var_thresh = 0; |
| // Counts of blocks with no more than color_thresh colors. |
| int64_t counts_1 = 0; |
| // Counts of blocks with no more than color_thresh colors and variance larger |
| // than var_thresh. |
| int64_t counts_2 = 0; |
| |
| for (int r = 0; r + blk_h <= height; r += blk_h) { |
| for (int c = 0; c + blk_w <= width; c += blk_w) { |
| int count_buf[1 << 8]; // Maximum (1 << 8) bins for hbd path. |
| const uint8_t *const this_src = src + r * stride + c; |
| int n_colors; |
| if (use_hbd) |
| av1_count_colors_highbd(this_src, stride, blk_w, blk_h, bd, NULL, |
| count_buf, &n_colors, NULL); |
| else |
| av1_count_colors(this_src, stride, blk_w, blk_h, count_buf, &n_colors); |
| if (n_colors > 1 && n_colors <= color_thresh) { |
| ++counts_1; |
| struct buf_2d buf; |
| buf.stride = stride; |
| buf.buf = (uint8_t *)this_src; |
| const unsigned int var = av1_get_perpixel_variance( |
| cpi, xd, &buf, BLOCK_16X16, AOM_PLANE_Y, use_hbd); |
| if (var > var_thresh) ++counts_2; |
| } |
| } |
| } |
| |
| // The threshold values are selected experimentally. |
| features->allow_screen_content_tools = counts_1 * blk_h * blk_w * 10 > area; |
| // IntraBC would force loop filters off, so we use more strict rules that also |
| // requires that the block has high variance. |
| features->allow_intrabc = features->allow_screen_content_tools && |
| counts_2 * blk_h * blk_w * 12 > area; |
| cpi->use_screen_content_tools = features->allow_screen_content_tools; |
| cpi->is_screen_content_type = |
| features->allow_intrabc || (counts_1 * blk_h * blk_w * 10 > area * 4 && |
| counts_2 * blk_h * blk_w * 30 > area); |
| } |
| |
| static void init_motion_estimation(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MotionVectorSearchParams *const mv_search_params = &cpi->mv_search_params; |
| const int aligned_width = (cm->width + 7) & ~7; |
| const int y_stride = |
| aom_calc_y_stride(aligned_width, cpi->oxcf.border_in_pixels); |
| const int y_stride_src = ((cpi->oxcf.frm_dim_cfg.width != cm->width || |
| cpi->oxcf.frm_dim_cfg.height != cm->height) || |
| av1_superres_scaled(cm)) |
| ? y_stride |
| : cpi->ppi->lookahead->buf->img.y_stride; |
| int fpf_y_stride = |
| cm->cur_frame != NULL ? cm->cur_frame->buf.y_stride : y_stride; |
| |
| // Update if search_site_cfg is uninitialized or the current frame has a new |
| // stride |
| const int should_update = |
| !mv_search_params->search_site_cfg[SS_CFG_SRC][DIAMOND].stride || |
| !mv_search_params->search_site_cfg[SS_CFG_LOOKAHEAD][DIAMOND].stride || |
| (y_stride != |
| mv_search_params->search_site_cfg[SS_CFG_SRC][DIAMOND].stride); |
| |
| if (!should_update) { |
| return; |
| } |
| |
| // Initialization of search_site_cfg for NUM_DISTINCT_SEARCH_METHODS. |
| for (SEARCH_METHODS i = DIAMOND; i < NUM_DISTINCT_SEARCH_METHODS; i++) { |
| const int level = ((i == NSTEP_8PT) || (i == CLAMPED_DIAMOND)) ? 1 : 0; |
| av1_init_motion_compensation[i]( |
| &mv_search_params->search_site_cfg[SS_CFG_SRC][i], y_stride, level); |
| av1_init_motion_compensation[i]( |
| &mv_search_params->search_site_cfg[SS_CFG_LOOKAHEAD][i], y_stride_src, |
| level); |
| } |
| |
| // First pass search site config initialization. |
| av1_init_motion_fpf(&mv_search_params->search_site_cfg[SS_CFG_FPF][DIAMOND], |
| fpf_y_stride); |
| for (SEARCH_METHODS i = NSTEP; i < NUM_DISTINCT_SEARCH_METHODS; i++) { |
| memcpy(&mv_search_params->search_site_cfg[SS_CFG_FPF][i], |
| &mv_search_params->search_site_cfg[SS_CFG_FPF][DIAMOND], |
| sizeof(search_site_config)); |
| } |
| } |
| |
| static void init_ref_frame_bufs(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| int i; |
| if (cm->cur_frame) { |
| cm->cur_frame->ref_count--; |
| cm->cur_frame = NULL; |
| } |
| for (i = 0; i < REF_FRAMES; ++i) { |
| if (cm->ref_frame_map[i]) { |
| cm->ref_frame_map[i]->ref_count--; |
| cm->ref_frame_map[i] = NULL; |
| } |
| } |
| #ifndef NDEBUG |
| BufferPool *const pool = cm->buffer_pool; |
| for (i = 0; i < pool->num_frame_bufs; ++i) { |
| assert(pool->frame_bufs[i].ref_count == 0); |
| } |
| #endif |
| } |
| |
| void av1_check_initial_width(AV1_COMP *cpi, int use_highbitdepth, |
| int subsampling_x, int subsampling_y) { |
| AV1_COMMON *const cm = &cpi->common; |
| SequenceHeader *const seq_params = cm->seq_params; |
| InitialDimensions *const initial_dimensions = &cpi->initial_dimensions; |
| |
| if (!initial_dimensions->width || |
| seq_params->use_highbitdepth != use_highbitdepth || |
| seq_params->subsampling_x != subsampling_x || |
| seq_params->subsampling_y != subsampling_y) { |
| seq_params->subsampling_x = subsampling_x; |
| seq_params->subsampling_y = subsampling_y; |
| seq_params->use_highbitdepth = use_highbitdepth; |
| |
| av1_set_speed_features_framesize_independent(cpi, cpi->oxcf.speed); |
| av1_set_speed_features_framesize_dependent(cpi, cpi->oxcf.speed); |
| |
| if (!is_stat_generation_stage(cpi)) { |
| #if !CONFIG_REALTIME_ONLY |
| av1_tf_info_alloc(&cpi->ppi->tf_info, cpi); |
| #endif // !CONFIG_REALTIME_ONLY |
| } |
| init_ref_frame_bufs(cpi); |
| |
| init_motion_estimation(cpi); // TODO(agrange) This can be removed. |
| |
| initial_dimensions->width = cm->width; |
| initial_dimensions->height = cm->height; |
| cpi->initial_mbs = cm->mi_params.MBs; |
| } |
| } |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| static void setup_denoiser_buffer(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| if (cpi->oxcf.noise_sensitivity > 0 && |
| !cpi->denoiser.frame_buffer_initialized) { |
| if (av1_denoiser_alloc( |
| cm, &cpi->svc, &cpi->denoiser, cpi->ppi->use_svc, |
| cpi->oxcf.noise_sensitivity, cm->width, cm->height, |
| cm->seq_params->subsampling_x, cm->seq_params->subsampling_y, |
| cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS)) |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate denoiser"); |
| } |
| } |
| #endif |
| |
| // Returns 1 if the assigned width or height was <= 0. |
| int av1_set_size_literal(AV1_COMP *cpi, int width, int height) { |
| AV1_COMMON *cm = &cpi->common; |
| InitialDimensions *const initial_dimensions = &cpi->initial_dimensions; |
| av1_check_initial_width(cpi, cm->seq_params->use_highbitdepth, |
| cm->seq_params->subsampling_x, |
| cm->seq_params->subsampling_y); |
| |
| if (width <= 0 || height <= 0) return 1; |
| |
| cm->width = width; |
| cm->height = height; |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| setup_denoiser_buffer(cpi); |
| #endif |
| |
| if (initial_dimensions->width && initial_dimensions->height && |
| (cm->width > initial_dimensions->width || |
| cm->height > initial_dimensions->height)) { |
| av1_free_context_buffers(cm); |
| av1_free_shared_coeff_buffer(&cpi->td.shared_coeff_buf); |
| av1_free_sms_tree(&cpi->td); |
| av1_free_pmc(cpi->td.firstpass_ctx, av1_num_planes(cm)); |
| cpi->td.firstpass_ctx = NULL; |
| alloc_mb_mode_info_buffers(cpi); |
| alloc_compressor_data(cpi); |
| realloc_segmentation_maps(cpi); |
| initial_dimensions->width = initial_dimensions->height = 0; |
| } |
| alloc_mb_mode_info_buffers(cpi); |
| av1_update_frame_size(cpi); |
| |
| return 0; |
| } |
| |
| void av1_set_frame_size(AV1_COMP *cpi, int width, int height) { |
| AV1_COMMON *const cm = &cpi->common; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| int ref_frame; |
| |
| if (width != cm->width || height != cm->height) { |
| // There has been a change in the encoded frame size |
| av1_set_size_literal(cpi, width, height); |
| // Recalculate 'all_lossless' in case super-resolution was (un)selected. |
| cm->features.all_lossless = |
| cm->features.coded_lossless && !av1_superres_scaled(cm); |
| |
| av1_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height); |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| // Reset the denoiser on the resized frame. |
| if (cpi->oxcf.noise_sensitivity > 0) { |
| av1_denoiser_free(&(cpi->denoiser)); |
| setup_denoiser_buffer(cpi); |
| } |
| #endif |
| } |
| if (is_stat_consumption_stage(cpi)) { |
| av1_set_target_rate(cpi, cm->width, cm->height); |
| } |
| |
| alloc_frame_mvs(cm, cm->cur_frame); |
| |
| // Allocate above context buffers |
| CommonContexts *const above_contexts = &cm->above_contexts; |
| if (above_contexts->num_planes < av1_num_planes(cm) || |
| above_contexts->num_mi_cols < cm->mi_params.mi_cols || |
| above_contexts->num_tile_rows < cm->tiles.rows) { |
| av1_free_above_context_buffers(above_contexts); |
| if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows, |
| cm->mi_params.mi_cols, |
| av1_num_planes(cm))) |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate context buffers"); |
| } |
| |
| AV1EncoderConfig *oxcf = &cpi->oxcf; |
| oxcf->border_in_pixels = av1_get_enc_border_size( |
| av1_is_resize_needed(oxcf), oxcf->kf_cfg.key_freq_max == 0, |
| cm->seq_params->sb_size); |
| |
| // Reset the frame pointers to the current frame size. |
| if (aom_realloc_frame_buffer( |
| &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x, |
| seq_params->subsampling_y, seq_params->use_highbitdepth, |
| cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL, |
| NULL, cpi->image_pyramid_levels, 0)) |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| |
| if (!is_stat_generation_stage(cpi)) av1_init_cdef_worker(cpi); |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (is_restoration_used(cm)) { |
| for (int i = 0; i < num_planes; ++i) |
| cm->rst_info[i].frame_restoration_type = RESTORE_NONE; |
| |
| const bool is_sgr_enabled = !cpi->sf.lpf_sf.disable_sgr_filter; |
| av1_alloc_restoration_buffers(cm, is_sgr_enabled); |
| // Store the allocated restoration buffers in MT object. |
| if (cpi->ppi->p_mt_info.num_workers > 1) { |
| av1_init_lr_mt_buffers(cpi); |
| } |
| } |
| #endif |
| |
| init_motion_estimation(cpi); |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); |
| if (buf != NULL) { |
| struct scale_factors *sf = get_ref_scale_factors(cm, ref_frame); |
| av1_setup_scale_factors_for_frame(sf, buf->buf.y_crop_width, |
| buf->buf.y_crop_height, cm->width, |
| cm->height); |
| if (av1_is_scaled(sf)) aom_extend_frame_borders(&buf->buf, num_planes); |
| } |
| } |
| |
| av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height, |
| cm->width, cm->height); |
| |
| set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME); |
| } |
| |
| static INLINE int extend_borders_mt(const AV1_COMP *cpi, |
| MULTI_THREADED_MODULES stage, int plane) { |
| const AV1_COMMON *const cm = &cpi->common; |
| if (cpi->mt_info.num_mod_workers[stage] < 2) return 0; |
| switch (stage) { |
| // TODO(deepa.kg@ittiam.com): When cdef and loop-restoration are disabled, |
| // multi-thread frame border extension along with loop filter frame. |
| // As loop-filtering of a superblock row modifies the pixels of the |
| // above superblock row, border extension requires that loop filtering |
| // of the current and above superblock row is complete. |
| case MOD_LPF: return 0; |
| case MOD_CDEF: |
| return is_cdef_used(cm) && !cpi->ppi->rtc_ref.non_reference_frame && |
| !is_restoration_used(cm) && !av1_superres_scaled(cm); |
| case MOD_LR: |
| return is_restoration_used(cm) && |
| (cm->rst_info[plane].frame_restoration_type != RESTORE_NONE); |
| default: assert(0); |
| } |
| return 0; |
| } |
| |
| /*!\brief Select and apply cdef filters and switchable restoration filters |
| * |
| * \ingroup high_level_algo |
| */ |
| static void cdef_restoration_frame(AV1_COMP *cpi, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int use_restoration, |
| int use_cdef, |
| unsigned int skip_apply_postproc_filters) { |
| #if !CONFIG_REALTIME_ONLY |
| if (use_restoration) |
| av1_loop_restoration_save_boundary_lines(&cm->cur_frame->buf, cm, 0); |
| #else |
| (void)use_restoration; |
| #endif |
| |
| if (use_cdef) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, cdef_time); |
| #endif |
| const int num_workers = cpi->mt_info.num_mod_workers[MOD_CDEF]; |
| // Find CDEF parameters |
| av1_cdef_search(cpi); |
| |
| // Apply the filter |
| if ((skip_apply_postproc_filters & SKIP_APPLY_CDEF) == 0) { |
| assert(!cpi->ppi->rtc_ref.non_reference_frame); |
| if (num_workers > 1) { |
| // Extension of frame borders is multi-threaded along with cdef. |
| const int do_extend_border = |
| extend_borders_mt(cpi, MOD_CDEF, /* plane */ 0); |
| av1_cdef_frame_mt(cm, xd, cpi->mt_info.cdef_worker, |
| cpi->mt_info.workers, &cpi->mt_info.cdef_sync, |
| num_workers, av1_cdef_init_fb_row_mt, |
| do_extend_border); |
| } else { |
| av1_cdef_frame(&cm->cur_frame->buf, cm, xd, av1_cdef_init_fb_row); |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, cdef_time); |
| #endif |
| } |
| |
| const int use_superres = av1_superres_scaled(cm); |
| if (use_superres) { |
| if ((skip_apply_postproc_filters & SKIP_APPLY_SUPERRES) == 0) { |
| av1_superres_post_encode(cpi); |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, loop_restoration_time); |
| #endif |
| if (use_restoration) { |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| const int num_workers = mt_info->num_mod_workers[MOD_LR]; |
| av1_loop_restoration_save_boundary_lines(&cm->cur_frame->buf, cm, 1); |
| av1_pick_filter_restoration(cpi->source, cpi); |
| if ((skip_apply_postproc_filters & SKIP_APPLY_RESTORATION) == 0 && |
| (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[1].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[2].frame_restoration_type != RESTORE_NONE)) { |
| if (num_workers > 1) { |
| // Extension of frame borders is multi-threaded along with loop |
| // restoration filter. |
| const int do_extend_border = 1; |
| av1_loop_restoration_filter_frame_mt( |
| &cm->cur_frame->buf, cm, 0, mt_info->workers, num_workers, |
| &mt_info->lr_row_sync, &cpi->lr_ctxt, do_extend_border); |
| } else { |
| av1_loop_restoration_filter_frame(&cm->cur_frame->buf, cm, 0, |
| &cpi->lr_ctxt); |
| } |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, loop_restoration_time); |
| #endif |
| #endif // !CONFIG_REALTIME_ONLY |
| } |
| |
| static void extend_frame_borders(AV1_COMP *cpi) { |
| const AV1_COMMON *const cm = &cpi->common; |
| // TODO(debargha): Fix mv search range on encoder side |
| for (int plane = 0; plane < av1_num_planes(cm); ++plane) { |
| const bool extend_border_done = extend_borders_mt(cpi, MOD_CDEF, plane) || |
| extend_borders_mt(cpi, MOD_LR, plane); |
| if (!extend_border_done) { |
| const YV12_BUFFER_CONFIG *const ybf = &cm->cur_frame->buf; |
| aom_extend_frame_borders_plane_row(ybf, plane, 0, |
| ybf->crop_heights[plane > 0]); |
| } |
| } |
| } |
| |
| /*!\brief Select and apply deblocking filters, cdef filters, and restoration |
| * filters. |
| * |
| * \ingroup high_level_algo |
| */ |
| static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) { |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| const int num_workers = mt_info->num_mod_workers[MOD_LPF]; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *xd = &cpi->td.mb.e_mbd; |
| cpi->td.mb.rdmult = cpi->rd.RDMULT; |
| |
| assert(IMPLIES(is_lossless_requested(&cpi->oxcf.rc_cfg), |
| cm->features.coded_lossless && cm->features.all_lossless)); |
| |
| const int use_loopfilter = |
| is_loopfilter_used(cm) && !cpi->mt_info.pipeline_lpf_mt_with_enc; |
| const int use_cdef = is_cdef_used(cm); |
| const int use_superres = av1_superres_scaled(cm); |
| const int use_restoration = is_restoration_used(cm); |
| |
| const unsigned int skip_apply_postproc_filters = |
| derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef, |
| use_superres, use_restoration); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, loop_filter_time); |
| #endif |
| if (use_loopfilter) { |
| av1_pick_filter_level(cpi->source, cpi, cpi->sf.lpf_sf.lpf_pick); |
| struct loopfilter *lf = &cm->lf; |
| if ((lf->filter_level[0] || lf->filter_level[1]) && |
| (skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0) { |
| assert(!cpi->ppi->rtc_ref.non_reference_frame); |
| // lpf_opt_level = 1 : Enables dual/quad loop-filtering. |
| // lpf_opt_level is set to 1 if transform size search depth in inter |
| // blocks is limited to one as quad loop filtering assumes that all the |
| // transform blocks within a 16x8/8x16/16x16 prediction block are of the |
| // same size. lpf_opt_level = 2 : Filters both chroma planes together, in |
| // addition to enabling dual/quad loop-filtering. This is enabled when lpf |
| // pick method is LPF_PICK_FROM_Q as u and v plane filter levels are |
| // equal. |
| int lpf_opt_level = get_lpf_opt_level(&cpi->sf); |
| av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, xd, 0, num_planes, 0, |
| mt_info->workers, num_workers, |
| &mt_info->lf_row_sync, lpf_opt_level); |
| } |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, loop_filter_time); |
| #endif |
| |
| cdef_restoration_frame(cpi, cm, xd, use_restoration, use_cdef, |
| skip_apply_postproc_filters); |
| } |
| |
| static void update_motion_stat(AV1_COMP *const cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| RATE_CONTROL *const rc = &cpi->rc; |
| SVC *const svc = &cpi->svc; |
| const int avg_cnt_zeromv = |
| 100 * cpi->rc.cnt_zeromv / (mi_params->mi_rows * mi_params->mi_cols); |
| if (!cpi->ppi->use_svc || |
| (cpi->ppi->use_svc && |
| !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)) { |
| rc->avg_frame_low_motion = |
| (rc->avg_frame_low_motion == 0) |
| ? avg_cnt_zeromv |
| : (3 * rc->avg_frame_low_motion + avg_cnt_zeromv) / 4; |
| // For SVC: set avg_frame_low_motion (only computed on top spatial layer) |
| // to all lower spatial layers. |
| if (cpi->ppi->use_svc && |
| svc->spatial_layer_id == svc->number_spatial_layers - 1) { |
| for (int i = 0; i < svc->number_spatial_layers - 1; ++i) { |
| const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id, |
| svc->number_temporal_layers); |
| LAYER_CONTEXT *const lc = &svc->layer_context[layer]; |
| RATE_CONTROL *const lrc = &lc->rc; |
| lrc->avg_frame_low_motion = rc->avg_frame_low_motion; |
| } |
| } |
| } |
| } |
| |
| /*!\brief Encode a frame without the recode loop, usually used in one-pass |
| * encoding and realtime coding. |
| * |
| * \ingroup high_level_algo |
| * |
| * \param[in] cpi Top-level encoder structure |
| * |
| * \return Returns a value to indicate if the encoding is done successfully. |
| * \retval #AOM_CODEC_OK |
| * \retval #AOM_CODEC_ERROR |
| */ |
| static int encode_without_recode(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const QuantizationCfg *const q_cfg = &cpi->oxcf.q_cfg; |
| SVC *const svc = &cpi->svc; |
| const int resize_pending = is_frame_resize_pending(cpi); |
| int top_index = 0, bottom_index = 0, q = 0; |
| YV12_BUFFER_CONFIG *unscaled = cpi->unscaled_source; |
| InterpFilter filter_scaler = |
| cpi->ppi->use_svc ? svc->downsample_filter_type[svc->spatial_layer_id] |
| : EIGHTTAP_SMOOTH; |
| int phase_scaler = cpi->ppi->use_svc |
| ? svc->downsample_filter_phase[svc->spatial_layer_id] |
| : 0; |
| |
| set_size_independent_vars(cpi); |
| av1_setup_frame_size(cpi); |
| cm->prev_frame = get_primary_ref_frame_buf(cm); |
| av1_set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); |
| av1_set_mv_search_params(cpi); |
| |
| if (cm->current_frame.frame_number == 0 && |
| (cpi->ppi->use_svc || cpi->oxcf.rc_cfg.drop_frames_water_mark > 0) && |
| cpi->svc.temporal_layer_id == 0) { |
| const SequenceHeader *seq_params = cm->seq_params; |
| if (aom_alloc_frame_buffer( |
| &cpi->svc.source_last_TL0, cpi->oxcf.frm_dim_cfg.width, |
| cpi->oxcf.frm_dim_cfg.height, seq_params->subsampling_x, |
| seq_params->subsampling_y, seq_params->use_highbitdepth, |
| cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0)) { |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate buffer for source_last_TL0"); |
| } |
| } |
| |
| if (!cpi->ppi->use_svc) { |
| phase_scaler = 8; |
| // 2:1 scaling. |
| if ((cm->width << 1) == unscaled->y_crop_width && |
| (cm->height << 1) == unscaled->y_crop_height) { |
| filter_scaler = BILINEAR; |
| // For lower resolutions use eighttap_smooth. |
| if (cm->width * cm->height <= 320 * 180) filter_scaler = EIGHTTAP_SMOOTH; |
| } else if ((cm->width << 2) == unscaled->y_crop_width && |
| (cm->height << 2) == unscaled->y_crop_height) { |
| // 4:1 scaling. |
| filter_scaler = EIGHTTAP_SMOOTH; |
| } else if ((cm->width << 2) == 3 * unscaled->y_crop_width && |
| (cm->height << 2) == 3 * unscaled->y_crop_height) { |
| // 4:3 scaling. |
| filter_scaler = EIGHTTAP_REGULAR; |
| } |
| } |
| |
| allocate_gradient_info_for_hog(cpi); |
| |
| allocate_src_var_of_4x4_sub_block_buf(cpi); |
| |
| const SPEED_FEATURES *sf = &cpi->sf; |
| if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) |
| variance_partition_alloc(cpi); |
| |
| if (cm->current_frame.frame_type == KEY_FRAME || |
| ((sf->inter_sf.extra_prune_warped && cpi->refresh_frame.golden_frame))) |
| copy_frame_prob_info(cpi); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| printf("\n Encoding a frame: \n"); |
| #endif |
| |
| #if CONFIG_TUNE_BUTTERAUGLI |
| if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) { |
| av1_setup_butteraugli_rdmult(cpi); |
| } |
| #endif |
| |
| cpi->source = av1_realloc_and_scale_if_required( |
| cm, unscaled, &cpi->scaled_source, filter_scaler, phase_scaler, true, |
| false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels); |
| if (frame_is_intra_only(cm) || resize_pending != 0) { |
| const int current_size = |
| (cm->mi_params.mi_rows * cm->mi_params.mi_cols) >> 2; |
| if (cpi->consec_zero_mv && |
| (cpi->consec_zero_mv_alloc_size < current_size)) { |
| aom_free(cpi->consec_zero_mv); |
| cpi->consec_zero_mv_alloc_size = 0; |
| CHECK_MEM_ERROR(cm, cpi->consec_zero_mv, |
| aom_malloc(current_size * sizeof(*cpi->consec_zero_mv))); |
| cpi->consec_zero_mv_alloc_size = current_size; |
| } |
| assert(cpi->consec_zero_mv != NULL); |
| memset(cpi->consec_zero_mv, 0, current_size * sizeof(*cpi->consec_zero_mv)); |
| } |
| |
| if (cpi->scaled_last_source_available) { |
| cpi->last_source = &cpi->scaled_last_source; |
| cpi->scaled_last_source_available = 0; |
| } else if (cpi->unscaled_last_source != NULL) { |
| cpi->last_source = av1_realloc_and_scale_if_required( |
| cm, cpi->unscaled_last_source, &cpi->scaled_last_source, filter_scaler, |
| phase_scaler, true, false, cpi->oxcf.border_in_pixels, |
| cpi->image_pyramid_levels); |
| } |
| |
| if (cpi->sf.rt_sf.use_temporal_noise_estimate) { |
| av1_update_noise_estimate(cpi); |
| } |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && cpi->ppi->use_svc) |
| av1_denoiser_reset_on_first_frame(cpi); |
| #endif |
| |
| // For 1 spatial layer encoding: if the (non-LAST) reference has different |
| // resolution from the source then disable that reference. This is to avoid |
| // significant increase in encode time from scaling the references in |
| // av1_scale_references. Note GOLDEN is forced to update on the (first/tigger) |
| // resized frame and ALTREF will be refreshed ~4 frames later, so both |
| // references become available again after few frames. |
| // For superres: don't disable golden reference. |
| if (svc->number_spatial_layers == 1) { |
| if (!cpi->oxcf.superres_cfg.enable_superres) { |
| if (cpi->ref_frame_flags & av1_ref_frame_flag_list[GOLDEN_FRAME]) { |
| const YV12_BUFFER_CONFIG *const ref = |
| get_ref_frame_yv12_buf(cm, GOLDEN_FRAME); |
| if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) |
| cpi->ref_frame_flags ^= AOM_GOLD_FLAG; |
| } |
| } |
| if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]) { |
| const YV12_BUFFER_CONFIG *const ref = |
| get_ref_frame_yv12_buf(cm, ALTREF_FRAME); |
| if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) |
| cpi->ref_frame_flags ^= AOM_ALT_FLAG; |
| } |
| } |
| |
| int scale_references = 0; |
| #if CONFIG_FPMT_TEST |
| scale_references = |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE ? 1 : 0; |
| #endif // CONFIG_FPMT_TEST |
| if (scale_references || |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { |
| if (!frame_is_intra_only(cm)) { |
| av1_scale_references(cpi, filter_scaler, phase_scaler, 1); |
| } |
| } |
| |
| av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q, |
| q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq); |
| av1_set_speed_features_qindex_dependent(cpi, cpi->oxcf.speed); |
| av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, |
| cm->seq_params->bit_depth); |
| av1_set_variance_partition_thresholds(cpi, q, 0); |
| av1_setup_frame(cpi); |
| |
| // Check if this high_source_sad (scene/slide change) frame should be |
| // encoded at high/max QP, and if so, set the q and adjust some rate |
| // control parameters. |
| if (cpi->sf.rt_sf.overshoot_detection_cbr == FAST_DETECTION_MAXQ && |
| cpi->rc.high_source_sad) { |
| if (av1_encodedframe_overshoot_cbr(cpi, &q)) { |
| av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q, |
| q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq); |
| av1_set_speed_features_qindex_dependent(cpi, cpi->oxcf.speed); |
| av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, |
| cm->seq_params->bit_depth); |
| av1_set_variance_partition_thresholds(cpi, q, 0); |
| if (frame_is_intra_only(cm) || cm->features.error_resilient_mode || |
| cm->features.primary_ref_frame == PRIMARY_REF_NONE) |
| av1_setup_frame(cpi); |
| } |
| } |
| |
| if (q_cfg->aq_mode == CYCLIC_REFRESH_AQ) { |
| suppress_active_map(cpi); |
| av1_cyclic_refresh_setup(cpi); |
| } |
| av1_apply_active_map(cpi); |
| if (cm->seg.enabled) { |
| if (!cm->seg.update_data && cm->prev_frame) { |
| segfeatures_copy(&cm->seg, &cm->prev_frame->seg); |
| cm->seg.enabled = cm->prev_frame->seg.enabled; |
| } else { |
| av1_calculate_segdata(&cm->seg); |
| } |
| } else { |
| memset(&cm->seg, 0, sizeof(cm->seg)); |
| } |
| segfeatures_copy(&cm->cur_frame->seg, &cm->seg); |
| cm->cur_frame->seg.enabled = cm->seg.enabled; |
| |
| // This is for rtc temporal filtering case. |
| if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf && |
| cm->current_frame.frame_type != KEY_FRAME) { |
| const SequenceHeader *seq_params = cm->seq_params; |
| |
| if (cpi->orig_source.buffer_alloc_sz == 0 || |
| cpi->last_source->y_width != cpi->source->y_width || |
| cpi->last_source->y_height != cpi->source->y_height) { |
| // Allocate a source buffer to store the true source for psnr calculation. |
| if (aom_alloc_frame_buffer( |
| &cpi->orig_source, cpi->oxcf.frm_dim_cfg.width, |
| cpi->oxcf.frm_dim_cfg.height, seq_params->subsampling_x, |
| seq_params->subsampling_y, seq_params->use_highbitdepth, |
| cpi->oxcf.border_in_pixels, cm->features.byte_alignment, 0, 0)) |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate scaled buffer"); |
| } |
| |
| aom_yv12_copy_y(cpi->source, &cpi->orig_source); |
| aom_yv12_copy_u(cpi->source, &cpi->orig_source); |
| aom_yv12_copy_v(cpi->source, &cpi->orig_source); |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_encode_frame_time); |
| #endif |
| |
| // Set the motion vector precision based on mv stats from the last coded |
| // frame. |
| if (!frame_is_intra_only(cm)) av1_pick_and_set_high_precision_mv(cpi, q); |
| |
| // transform / motion compensation build reconstruction frame |
| av1_encode_frame(cpi); |
| |
| if (!cpi->rc.rtc_external_ratectrl && !frame_is_intra_only(cm)) |
| update_motion_stat(cpi); |
| |
| // Adjust the refresh of the golden (longer-term) reference based on QP |
| // selected for this frame. This is for CBR with 1 layer/non-svc RTC mode. |
| if (!frame_is_intra_only(cm) && cpi->oxcf.rc_cfg.mode == AOM_CBR && |
| cpi->oxcf.mode == REALTIME && svc->number_spatial_layers == 1 && |
| svc->number_temporal_layers == 1 && !cpi->rc.rtc_external_ratectrl && |
| sf->rt_sf.gf_refresh_based_on_qp) |
| av1_adjust_gf_refresh_qp_one_pass_rt(cpi); |
| |
| // For non-svc: if scaling is required, copy scaled_source |
| // into scaled_last_source. |
| if (cm->current_frame.frame_number > 1 && !cpi->ppi->use_svc && |
| cpi->scaled_source.y_buffer != NULL && |
| cpi->scaled_last_source.y_buffer != NULL && |
| cpi->scaled_source.y_crop_width == cpi->scaled_last_source.y_crop_width && |
| cpi->scaled_source.y_crop_height == |
| cpi->scaled_last_source.y_crop_height && |
| (cm->width != cpi->unscaled_source->y_crop_width || |
| cm->height != cpi->unscaled_source->y_crop_height)) { |
| cpi->scaled_last_source_available = 1; |
| aom_yv12_copy_y(&cpi->scaled_source, &cpi->scaled_last_source); |
| aom_yv12_copy_u(&cpi->scaled_source, &cpi->scaled_last_source); |
| aom_yv12_copy_v(&cpi->scaled_source, &cpi->scaled_last_source); |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_encode_frame_time); |
| #endif |
| #if CONFIG_INTERNAL_STATS |
| ++cpi->frame_recode_hits; |
| #endif |
| |
| return AOM_CODEC_OK; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| |
| /*!\brief Recode loop for encoding one frame. the purpose of encoding one frame |
| * for multiple times can be approaching a target bitrate or adjusting the usage |
| * of global motions. |
| * |
| * \ingroup high_level_algo |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] size Bitstream size |
| * \param[in] dest Bitstream output |
| * |
| * \return Returns a value to indicate if the encoding is done successfully. |
| * \retval #AOM_CODEC_OK |
| * \retval -1 |
| * \retval #AOM_CODEC_ERROR |
| */ |
| static int encode_with_recode_loop(AV1_COMP *cpi, size_t *size, uint8_t *dest) { |
| AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| GlobalMotionInfo *const gm_info = &cpi->gm_info; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const QuantizationCfg *const q_cfg = &oxcf->q_cfg; |
| const int allow_recode = (cpi->sf.hl_sf.recode_loop != DISALLOW_RECODE); |
| // Must allow recode if minimum compression ratio is set. |
| assert(IMPLIES(oxcf->rc_cfg.min_cr > 0, allow_recode)); |
| |
| set_size_independent_vars(cpi); |
| if (is_stat_consumption_stage_twopass(cpi) && |
| cpi->sf.interp_sf.adaptive_interp_filter_search) |
| cpi->interp_search_flags.interp_filter_search_mask = |
| av1_setup_interp_filter_search_mask(cpi); |
| |
| av1_setup_frame_size(cpi); |
| |
| if (av1_superres_in_recode_allowed(cpi) && |
| cpi->superres_mode != AOM_SUPERRES_NONE && |
| cm->superres_scale_denominator == SCALE_NUMERATOR) { |
| // Superres mode is currently enabled, but the denominator selected will |
| // disable superres. So no need to continue, as we will go through another |
| // recode loop for full-resolution after this anyway. |
| return -1; |
| } |
| |
| int top_index = 0, bottom_index = 0; |
| int q = 0, q_low = 0, q_high = 0; |
| av1_set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); |
| q_low = bottom_index; |
| q_high = top_index; |
| |
| av1_set_mv_search_params(cpi); |
| |
| allocate_gradient_info_for_hog(cpi); |
| |
| allocate_src_var_of_4x4_sub_block_buf(cpi); |
| |
| if (cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) |
| variance_partition_alloc(cpi); |
| |
| if (cm->current_frame.frame_type == KEY_FRAME) copy_frame_prob_info(cpi); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| printf("\n Encoding a frame: \n"); |
| #endif |
| |
| #if !CONFIG_RD_COMMAND |
| // Determine whether to use screen content tools using two fast encoding. |
| if (!cpi->sf.hl_sf.disable_extra_sc_testing && !cpi->use_ducky_encode) |
| av1_determine_sc_tools_with_encoding(cpi, q); |
| #endif // !CONFIG_RD_COMMAND |
| |
| #if CONFIG_TUNE_VMAF |
| if (oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { |
| av1_vmaf_neg_preprocessing(cpi, cpi->unscaled_source); |
| } |
| #endif |
| |
| #if CONFIG_TUNE_BUTTERAUGLI |
| cpi->butteraugli_info.recon_set = false; |
| int original_q = 0; |
| #endif |
| |
| cpi->num_frame_recode = 0; |
| |
| // Loop variables |
| int loop = 0; |
| int loop_count = 0; |
| int overshoot_seen = 0; |
| int undershoot_seen = 0; |
| int low_cr_seen = 0; |
| int last_loop_allow_hp = 0; |
| |
| do { |
| loop = 0; |
| int do_mv_stats_collection = 1; |
| |
| // if frame was scaled calculate global_motion_search again if already |
| // done |
| if (loop_count > 0 && cpi->source && gm_info->search_done) { |
| if (cpi->source->y_crop_width != cm->width || |
| cpi->source->y_crop_height != cm->height) { |
| gm_info->search_done = 0; |
| } |
| } |
| cpi->source = av1_realloc_and_scale_if_required( |
| cm, cpi->unscaled_source, &cpi->scaled_source, EIGHTTAP_REGULAR, 0, |
| false, false, cpi->oxcf.border_in_pixels, cpi->image_pyramid_levels); |
| |
| #if CONFIG_TUNE_BUTTERAUGLI |
| if (oxcf->tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) { |
| if (loop_count == 0) { |
| original_q = q; |
| // TODO(sdeng): different q here does not make big difference. Use a |
| // faster pass instead. |
| q = 96; |
| av1_setup_butteraugli_source(cpi); |
| } else { |
| q = original_q; |
| } |
| } |
| #endif |
| |
| if (cpi->unscaled_last_source != NULL) { |
| cpi->last_source = av1_realloc_and_scale_if_required( |
| cm, cpi->unscaled_last_source, &cpi->scaled_last_source, |
| EIGHTTAP_REGULAR, 0, false, false, cpi->oxcf.border_in_pixels, |
| cpi->image_pyramid_levels); |
| } |
| |
| int scale_references = 0; |
| #if CONFIG_FPMT_TEST |
| scale_references = |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE ? 1 : 0; |
| #endif // CONFIG_FPMT_TEST |
| if (scale_references || |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { |
| if (!frame_is_intra_only(cm)) { |
| if (loop_count > 0) { |
| release_scaled_references(cpi); |
| } |
| av1_scale_references(cpi, EIGHTTAP_REGULAR, 0, 0); |
| } |
| } |
| |
| #if CONFIG_TUNE_VMAF |
| if (oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING && |
| oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN) { |
| cpi->vmaf_info.original_qindex = q; |
| q = av1_get_vmaf_base_qindex(cpi, q); |
| } |
| #endif |
| |
| #if CONFIG_RD_COMMAND |
| RD_COMMAND *rd_command = &cpi->rd_command; |
| RD_OPTION option = rd_command->option_ls[rd_command->frame_index]; |
| if (option == RD_OPTION_SET_Q || option == RD_OPTION_SET_Q_RDMULT) { |
| q = rd_command->q_index_ls[rd_command->frame_index]; |
| } |
| #endif // CONFIG_RD_COMMAND |
| |
| #if CONFIG_BITRATE_ACCURACY |
| #if CONFIG_THREE_PASS |
| if (oxcf->pass == AOM_RC_THIRD_PASS && cpi->vbr_rc_info.ready == 1) { |
| int frame_coding_idx = |
| av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index); |
| if (frame_coding_idx < cpi->vbr_rc_info.total_frame_count) { |
| q = cpi->vbr_rc_info.q_index_list[frame_coding_idx]; |
| } else { |
| // TODO(angiebird): Investigate why sometimes there is an extra frame |
| // after the last GOP. |
| q = cpi->vbr_rc_info.base_q_index; |
| } |
| } |
| #else |
| if (cpi->vbr_rc_info.q_index_list_ready) { |
| q = cpi->vbr_rc_info.q_index_list[cpi->gf_frame_index]; |
| } |
| #endif // CONFIG_THREE_PASS |
| #endif // CONFIG_BITRATE_ACCURACY |
| |
| #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY |
| // TODO(angiebird): Move this into a function. |
| if (oxcf->pass == AOM_RC_THIRD_PASS) { |
| int frame_coding_idx = |
| av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index); |
| double qstep_ratio = cpi->vbr_rc_info.qstep_ratio_list[frame_coding_idx]; |
| FRAME_UPDATE_TYPE update_type = |
| cpi->vbr_rc_info.update_type_list[frame_coding_idx]; |
| rc_log_frame_encode_param(&cpi->rc_log, frame_coding_idx, qstep_ratio, q, |
| update_type); |
| } |
| #endif // CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY |
| |
| if (cpi->use_ducky_encode) { |
| const DuckyEncodeFrameInfo *frame_info = |
| &cpi->ducky_encode_info.frame_info; |
| if (frame_info->qp_mode == DUCKY_ENCODE_FRAME_MODE_QINDEX) { |
| q = frame_info->q_index; |
| cm->delta_q_info.delta_q_present_flag = frame_info->delta_q_enabled; |
| } |
| } |
| |
| av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q, |
| q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq); |
| av1_set_speed_features_qindex_dependent(cpi, oxcf->speed); |
| av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, |
| cm->seq_params->bit_depth); |
| |
| av1_set_variance_partition_thresholds(cpi, q, 0); |
| |
| // printf("Frame %d/%d: q = %d, frame_type = %d superres_denom = %d\n", |
| // cm->current_frame.frame_number, cm->show_frame, q, |
| // cm->current_frame.frame_type, cm->superres_scale_denominator); |
| |
| if (loop_count == 0) { |
| av1_setup_frame(cpi); |
| } else if (get_primary_ref_frame_buf(cm) == NULL) { |
| // Base q-index may have changed, so we need to assign proper default coef |
| // probs before every iteration. |
| av1_default_coef_probs(cm); |
| av1_setup_frame_contexts(cm); |
| } |
| |
| if (q_cfg->aq_mode == VARIANCE_AQ) { |
| av1_vaq_frame_setup(cpi); |
| } else if (q_cfg->aq_mode == COMPLEXITY_AQ) { |
| av1_setup_in_frame_q_adj(cpi); |
| } |
| |
| if (cm->seg.enabled) { |
| if (!cm->seg.update_data && cm->prev_frame) { |
| segfeatures_copy(&cm->seg, &cm->prev_frame->seg); |
| cm->seg.enabled = cm->prev_frame->seg.enabled; |
| } else { |
| av1_calculate_segdata(&cm->seg); |
| } |
| } else { |
| memset(&cm->seg, 0, sizeof(cm->seg)); |
| } |
| segfeatures_copy(&cm->cur_frame->seg, &cm->seg); |
| cm->cur_frame->seg.enabled = cm->seg.enabled; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_encode_frame_time); |
| #endif |
| // Set the motion vector precision based on mv stats from the last coded |
| // frame. |
| if (!frame_is_intra_only(cm)) { |
| av1_pick_and_set_high_precision_mv(cpi, q); |
| |
| // If the precision has changed during different iteration of the loop, |
| // then we need to reset the global motion vectors |
| if (loop_count > 0 && |
| cm->features.allow_high_precision_mv != last_loop_allow_hp) { |
| gm_info->search_done = 0; |
| } |
| last_loop_allow_hp = cm->features.allow_high_precision_mv; |
| } |
| |
| // transform / motion compensation build reconstruction frame |
| av1_encode_frame(cpi); |
| |
| // Disable mv_stats collection for parallel frames based on update flag. |
| if (!cpi->do_frame_data_update) do_mv_stats_collection = 0; |
| |
| // Reset the mv_stats in case we are interrupted by an intraframe or an |
| // overlay frame. |
| if (cpi->mv_stats.valid && do_mv_stats_collection) av1_zero(cpi->mv_stats); |
| |
| // Gather the mv_stats for the next frame |
| if (cpi->sf.hl_sf.high_precision_mv_usage == LAST_MV_DATA && |
| av1_frame_allows_smart_mv(cpi) && do_mv_stats_collection) { |
| av1_collect_mv_stats(cpi, q); |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_encode_frame_time); |
| #endif |
| |
| #if CONFIG_BITRATE_ACCURACY || CONFIG_RD_COMMAND |
| const int do_dummy_pack = 1; |
| #else // CONFIG_BITRATE_ACCURACY |
| // Dummy pack of the bitstream using up to date stats to get an |
| // accurate estimate of output frame size to determine if we need |
| // to recode. |
| const int do_dummy_pack = |
| (cpi->sf.hl_sf.recode_loop >= ALLOW_RECODE_KFARFGF && |
| oxcf->rc_cfg.mode != AOM_Q) || |
| oxcf->rc_cfg.min_cr > 0; |
| #endif // CONFIG_BITRATE_ACCURACY |
| if (do_dummy_pack) { |
| av1_finalize_encoded_frame(cpi); |
| int largest_tile_id = 0; // Output from bitstream: unused here |
| rc->coefficient_size = 0; |
| if (av1_pack_bitstream(cpi, dest, size, &largest_tile_id) != |
| AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| // bits used for this frame |
| rc->projected_frame_size = (int)(*size) << 3; |
| #if CONFIG_RD_COMMAND |
| PSNR_STATS psnr; |
| aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr); |
| printf("q %d rdmult %d rate %d dist %" PRIu64 "\n", q, cpi->rd.RDMULT, |
| rc->projected_frame_size, psnr.sse[0]); |
| ++rd_command->frame_index; |
| if (rd_command->frame_index == rd_command->frame_count) { |
| return AOM_CODEC_ERROR; |
| } |
| #endif // CONFIG_RD_COMMAND |
| |
| #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY |
| if (oxcf->pass == AOM_RC_THIRD_PASS) { |
| int frame_coding_idx = |
| av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index); |
| rc_log_frame_entropy(&cpi->rc_log, frame_coding_idx, |
| rc->projected_frame_size, rc->coefficient_size); |
| } |
| #endif // CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY |
| } |
| |
| #if CONFIG_TUNE_VMAF |
| if (oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING && |
| oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN) { |
| q = cpi->vmaf_info.original_qindex; |
| } |
| #endif |
| if (allow_recode) { |
| // Update q and decide whether to do a recode loop |
| recode_loop_update_q(cpi, &loop, &q, &q_low, &q_high, top_index, |
| bottom_index, &undershoot_seen, &overshoot_seen, |
| &low_cr_seen, loop_count); |
| } |
| |
| #if CONFIG_TUNE_BUTTERAUGLI |
| if (loop_count == 0 && oxcf->tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) { |
| loop = 1; |
| av1_setup_butteraugli_rdmult_and_restore_source(cpi, 0.4); |
| } |
| #endif |
| |
| if (cpi->use_ducky_encode) { |
| // Ducky encode currently does not support recode loop. |
| loop = 0; |
| } |
| #if CONFIG_BITRATE_ACCURACY || CONFIG_RD_COMMAND |
| loop = 0; // turn off recode loop when CONFIG_BITRATE_ACCURACY is on |
| #endif // CONFIG_BITRATE_ACCURACY || CONFIG_RD_COMMAND |
| |
| if (loop) { |
| ++loop_count; |
| cpi->num_frame_recode = |
| (cpi->num_frame_recode < (NUM_RECODES_PER_FRAME - 1)) |
| ? (cpi->num_frame_recode + 1) |
| : (NUM_RECODES_PER_FRAME - 1); |
| #if CONFIG_INTERNAL_STATS |
| ++cpi->frame_recode_hits; |
| #endif |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| if (loop) printf("\n Recoding:"); |
| #endif |
| } while (loop); |
| |
| return AOM_CODEC_OK; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // TODO(jingning, paulwilkins): Set up high grain level to test |
| // hardware decoders. Need to adapt the actual noise variance |
| // according to the difference between reconstructed frame and the |
| // source signal. |
| static void set_grain_syn_params(AV1_COMMON *cm) { |
| aom_film_grain_t *film_grain_params = &cm->film_grain_params; |
| film_grain_params->apply_grain = 1; |
| film_grain_params->update_parameters = 1; |
| film_grain_params->random_seed = rand() & 0xffff; |
| |
| film_grain_params->num_y_points = 1; |
| film_grain_params->scaling_points_y[0][0] = 128; |
| film_grain_params->scaling_points_y[0][1] = 100; |
| |
| if (!cm->seq_params->monochrome) { |
| film_grain_params->num_cb_points = 1; |
| film_grain_params->scaling_points_cb[0][0] = 128; |
| film_grain_params->scaling_points_cb[0][1] = 100; |
| |
| film_grain_params->num_cr_points = 1; |
| film_grain_params->scaling_points_cr[0][0] = 128; |
| film_grain_params->scaling_points_cr[0][1] = 100; |
| } else { |
| film_grain_params->num_cb_points = 0; |
| film_grain_params->num_cr_points = 0; |
| } |
| |
| film_grain_params->chroma_scaling_from_luma = 0; |
| |
| film_grain_params->scaling_shift = 1; |
| film_grain_params->ar_coeff_lag = 0; |
| film_grain_params->ar_coeff_shift = 1; |
| film_grain_params->overlap_flag = 1; |
| film_grain_params->grain_scale_shift = 0; |
| } |
| |
| /*!\brief Recode loop or a single loop for encoding one frame, followed by |
| * in-loop deblocking filters, CDEF filters, and restoration filters. |
| * |
| * \ingroup high_level_algo |
| * \callgraph |
| * \callergraph |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] size Bitstream size |
| * \param[in] dest Bitstream output |
| * \param[in] sse Total distortion of the frame |
| * \param[in] rate Total rate of the frame |
| * \param[in] largest_tile_id Tile id of the last tile |
| * |
| * \return Returns a value to indicate if the encoding is done successfully. |
| * \retval #AOM_CODEC_OK |
| * \retval #AOM_CODEC_ERROR |
| */ |
| static int encode_with_recode_loop_and_filter(AV1_COMP *cpi, size_t *size, |
| uint8_t *dest, int64_t *sse, |
| int64_t *rate, |
| int *largest_tile_id) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, encode_with_or_without_recode_time); |
| #endif |
| for (int i = 0; i < NUM_RECODES_PER_FRAME; i++) { |
| cpi->do_update_frame_probs_txtype[i] = 0; |
| cpi->do_update_frame_probs_obmc[i] = 0; |
| cpi->do_update_frame_probs_warp[i] = 0; |
| cpi->do_update_frame_probs_interpfilter[i] = 0; |
| } |
| |
| cpi->do_update_vbr_bits_off_target_fast = 0; |
| int err; |
| #if CONFIG_REALTIME_ONLY |
| err = encode_without_recode(cpi); |
| #else |
| if (cpi->sf.hl_sf.recode_loop == DISALLOW_RECODE) |
| err = encode_without_recode(cpi); |
| else |
| err = encode_with_recode_loop(cpi, size, dest); |
| #endif |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, encode_with_or_without_recode_time); |
| #endif |
| if (err != AOM_CODEC_OK) { |
| if (err == -1) { |
| // special case as described in encode_with_recode_loop(). |
| // Encoding was skipped. |
| err = AOM_CODEC_OK; |
| if (sse != NULL) *sse = INT64_MAX; |
| if (rate != NULL) *rate = INT64_MAX; |
| *largest_tile_id = 0; |
| } |
| return err; |
| } |
| |
| #ifdef OUTPUT_YUV_DENOISED |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| if (oxcf->noise_sensitivity > 0 && denoise_svc(cpi)) { |
| aom_write_yuv_frame(yuv_denoised_file, |
| &cpi->denoiser.running_avg_y[INTRA_FRAME]); |
| } |
| #endif |
| |
| AV1_COMMON *const cm = &cpi->common; |
| SequenceHeader *const seq_params = cm->seq_params; |
| |
| // Special case code to reduce pulsing when key frames are forced at a |
| // fixed interval. Note the reconstruction error if it is the frame before |
| // the force key frame |
| if (cpi->ppi->p_rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (seq_params->use_highbitdepth) { |
| cpi->ambient_err = aom_highbd_get_y_sse(cpi->source, &cm->cur_frame->buf); |
| } else { |
| cpi->ambient_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); |
| } |
| #else |
| cpi->ambient_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); |
| #endif |
| } |
| |
| cm->cur_frame->buf.color_primaries = seq_params->color_primaries; |
| cm->cur_frame->buf.transfer_characteristics = |
| seq_params->transfer_characteristics; |
| cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; |
| cm->cur_frame->buf.monochrome = seq_params->monochrome; |
| cm->cur_frame->buf.chroma_sample_position = |
| seq_params->chroma_sample_position; |
| cm->cur_frame->buf.color_range = seq_params->color_range; |
| cm->cur_frame->buf.render_width = cm->render_width; |
| cm->cur_frame->buf.render_height = cm->render_height; |
| |
| if (!cpi->mt_info.pipeline_lpf_mt_with_enc) |
| set_postproc_filter_default_params(&cpi->common); |
| |
| if (!cm->features.allow_intrabc) { |
| loopfilter_frame(cpi, cm); |
| } |
| |
| if (cpi->oxcf.mode != ALLINTRA && !cpi->ppi->rtc_ref.non_reference_frame) { |
| extend_frame_borders(cpi); |
| } |
| |
| #ifdef OUTPUT_YUV_REC |
| aom_write_one_yuv_frame(cm, &cm->cur_frame->buf); |
| #endif |
| |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_FILM) { |
| set_grain_syn_params(cm); |
| } |
| |
| av1_finalize_encoded_frame(cpi); |
| // Build the bitstream |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_pack_bitstream_final_time); |
| #endif |
| cpi->rc.coefficient_size = 0; |
| if (av1_pack_bitstream(cpi, dest, size, largest_tile_id) != AOM_CODEC_OK) |
| return AOM_CODEC_ERROR; |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_pack_bitstream_final_time); |
| #endif |
| |
| // Compute sse and rate. |
| if (sse != NULL) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| *sse = (seq_params->use_highbitdepth) |
| ? aom_highbd_get_y_sse(cpi->source, &cm->cur_frame->buf) |
| : aom_get_y_sse(cpi->source, &cm->cur_frame->buf); |
| #else |
| *sse = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); |
| #endif |
| } |
| if (rate != NULL) { |
| const int64_t bits = (*size << 3); |
| *rate = (bits << 5); // To match scale. |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->use_ducky_encode) { |
| PSNR_STATS psnr; |
| aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr); |
| DuckyEncodeFrameResult *frame_result = &cpi->ducky_encode_info.frame_result; |
| frame_result->global_order_idx = cm->cur_frame->display_order_hint; |
| frame_result->q_index = cm->quant_params.base_qindex; |
| frame_result->rdmult = cpi->rd.RDMULT; |
| frame_result->rate = (int)(*size) * 8; |
| frame_result->dist = psnr.sse[0]; |
| frame_result->psnr = psnr.psnr[0]; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| return AOM_CODEC_OK; |
| } |
| |
| static int encode_with_and_without_superres(AV1_COMP *cpi, size_t *size, |
| uint8_t *dest, |
| int *largest_tile_id) { |
| const AV1_COMMON *const cm = &cpi->common; |
| assert(cm->seq_params->enable_superres); |
| assert(av1_superres_in_recode_allowed(cpi)); |
| aom_codec_err_t err = AOM_CODEC_OK; |
| av1_save_all_coding_context(cpi); |
| |
| int64_t sse1 = INT64_MAX; |
| int64_t rate1 = INT64_MAX; |
| int largest_tile_id1 = 0; |
| int64_t sse2 = INT64_MAX; |
| int64_t rate2 = INT64_MAX; |
| int largest_tile_id2; |
| double proj_rdcost1 = DBL_MAX; |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| const FRAME_UPDATE_TYPE update_type = |
| gf_group->update_type[cpi->gf_frame_index]; |
| const aom_bit_depth_t bit_depth = cm->seq_params->bit_depth; |
| |
| // Encode with superres. |
| if (cpi->sf.hl_sf.superres_auto_search_type == SUPERRES_AUTO_ALL) { |
| SuperResCfg *const superres_cfg = &cpi->oxcf.superres_cfg; |
| int64_t superres_sses[SCALE_NUMERATOR]; |
| int64_t superres_rates[SCALE_NUMERATOR]; |
| int superres_largest_tile_ids[SCALE_NUMERATOR]; |
| // Use superres for Key-frames and Alt-ref frames only. |
| if (update_type != OVERLAY_UPDATE && update_type != INTNL_OVERLAY_UPDATE) { |
| for (int denom = SCALE_NUMERATOR + 1; denom <= 2 * SCALE_NUMERATOR; |
| ++denom) { |
| superres_cfg->superres_scale_denominator = denom; |
| superres_cfg->superres_kf_scale_denominator = denom; |
| const int this_index = denom - (SCALE_NUMERATOR + 1); |
| |
| cpi->superres_mode = AOM_SUPERRES_AUTO; // Super-res on for this loop. |
| err = encode_with_recode_loop_and_filter( |
| cpi, size, dest, &superres_sses[this_index], |
| &superres_rates[this_index], |
| &superres_largest_tile_ids[this_index]); |
| cpi->superres_mode = AOM_SUPERRES_NONE; // Reset to default (full-res). |
| if (err != AOM_CODEC_OK) return err; |
| restore_all_coding_context(cpi); |
| } |
| // Reset. |
| superres_cfg->superres_scale_denominator = SCALE_NUMERATOR; |
| superres_cfg->superres_kf_scale_denominator = SCALE_NUMERATOR; |
| } else { |
| for (int denom = SCALE_NUMERATOR + 1; denom <= 2 * SCALE_NUMERATOR; |
| ++denom) { |
| const int this_index = denom - (SCALE_NUMERATOR + 1); |
| superres_sses[this_index] = INT64_MAX; |
| superres_rates[this_index] = INT64_MAX; |
| } |
| } |
| // Encode without superres. |
| assert(cpi->superres_mode == AOM_SUPERRES_NONE); |
| err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse2, &rate2, |
| &largest_tile_id2); |
| if (err != AOM_CODEC_OK) return err; |
| |
| // Note: Both use common rdmult based on base qindex of fullres. |
| const int64_t rdmult = av1_compute_rd_mult_based_on_qindex( |
| bit_depth, update_type, cm->quant_params.base_qindex); |
| |
| // Find the best rdcost among all superres denoms. |
| int best_denom = -1; |
| for (int denom = SCALE_NUMERATOR + 1; denom <= 2 * SCALE_NUMERATOR; |
| ++denom) { |
| const int this_index = denom - (SCALE_NUMERATOR + 1); |
| const int64_t this_sse = superres_sses[this_index]; |
| const int64_t this_rate = superres_rates[this_index]; |
| const int this_largest_tile_id = superres_largest_tile_ids[this_index]; |
| const double this_rdcost = RDCOST_DBL_WITH_NATIVE_BD_DIST( |
| rdmult, this_rate, this_sse, bit_depth); |
| if (this_rdcost < proj_rdcost1) { |
| sse1 = this_sse; |
| rate1 = this_rate; |
| largest_tile_id1 = this_largest_tile_id; |
| proj_rdcost1 = this_rdcost; |
| best_denom = denom; |
| } |
| } |
| const double proj_rdcost2 = |
| RDCOST_DBL_WITH_NATIVE_BD_DIST(rdmult, rate2, sse2, bit_depth); |
| // Re-encode with superres if it's better. |
| if (proj_rdcost1 < proj_rdcost2) { |
| restore_all_coding_context(cpi); |
| // TODO(urvang): We should avoid rerunning the recode loop by saving |
| // previous output+state, or running encode only for the selected 'q' in |
| // previous step. |
| // Again, temporarily force the best denom. |
| superres_cfg->superres_scale_denominator = best_denom; |
| superres_cfg->superres_kf_scale_denominator = best_denom; |
| int64_t sse3 = INT64_MAX; |
| int64_t rate3 = INT64_MAX; |
| cpi->superres_mode = |
| AOM_SUPERRES_AUTO; // Super-res on for this recode loop. |
| err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse3, &rate3, |
| largest_tile_id); |
| cpi->superres_mode = AOM_SUPERRES_NONE; // Reset to default (full-res). |
| assert(sse1 == sse3); |
| assert(rate1 == rate3); |
| assert(largest_tile_id1 == *largest_tile_id); |
| // Reset. |
| superres_cfg->superres_scale_denominator = SCALE_NUMERATOR; |
| superres_cfg->superres_kf_scale_denominator = SCALE_NUMERATOR; |
| } else { |
| *largest_tile_id = largest_tile_id2; |
| } |
| } else { |
| assert(cpi->sf.hl_sf.superres_auto_search_type == SUPERRES_AUTO_DUAL); |
| cpi->superres_mode = |
| AOM_SUPERRES_AUTO; // Super-res on for this recode loop. |
| err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse1, &rate1, |
| &largest_tile_id1); |
| cpi->superres_mode = AOM_SUPERRES_NONE; // Reset to default (full-res). |
| if (err != AOM_CODEC_OK) return err; |
| restore_all_coding_context(cpi); |
| // Encode without superres. |
| assert(cpi->superres_mode == AOM_SUPERRES_NONE); |
| err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse2, &rate2, |
| &largest_tile_id2); |
| if (err != AOM_CODEC_OK) return err; |
| |
| // Note: Both use common rdmult based on base qindex of fullres. |
| const int64_t rdmult = av1_compute_rd_mult_based_on_qindex( |
| bit_depth, update_type, cm->quant_params.base_qindex); |
| proj_rdcost1 = |
| RDCOST_DBL_WITH_NATIVE_BD_DIST(rdmult, rate1, sse1, bit_depth); |
| const double proj_rdcost2 = |
| RDCOST_DBL_WITH_NATIVE_BD_DIST(rdmult, rate2, sse2, bit_depth); |
| // Re-encode with superres if it's better. |
| if (proj_rdcost1 < proj_rdcost2) { |
| restore_all_coding_context(cpi); |
| // TODO(urvang): We should avoid rerunning the recode loop by saving |
| // previous output+state, or running encode only for the selected 'q' in |
| // previous step. |
| int64_t sse3 = INT64_MAX; |
| int64_t rate3 = INT64_MAX; |
| cpi->superres_mode = |
| AOM_SUPERRES_AUTO; // Super-res on for this recode loop. |
| err = encode_with_recode_loop_and_filter(cpi, size, dest, &sse3, &rate3, |
| largest_tile_id); |
| cpi->superres_mode = AOM_SUPERRES_NONE; // Reset to default (full-res). |
| assert(sse1 == sse3); |
| assert(rate1 == rate3); |
| assert(largest_tile_id1 == *largest_tile_id); |
| } else { |
| *largest_tile_id = largest_tile_id2; |
| } |
| } |
| |
| return err; |
| } |
| |
| // Conditions to disable cdf_update mode in selective mode for real-time. |
| // Handle case for layers, scene change, and resizing. |
| static AOM_INLINE int selective_disable_cdf_rtc(const AV1_COMP *cpi) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| // For single layer. |
| if (cpi->svc.number_spatial_layers == 1 && |
| cpi->svc.number_temporal_layers == 1) { |
| // Don't disable on intra_only, scene change (high_source_sad = 1), |
| // or resized frame. To avoid quality loss force enable at |
| // for ~30 frames after key or scene/slide change, and |
| // after 8 frames since last update if frame_source_sad > 0. |
| if (frame_is_intra_only(cm) || is_frame_resize_pending(cpi) || |
| rc->high_source_sad || rc->frames_since_key < 30 || |
| (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
| cpi->cyclic_refresh->counter_encode_maxq_scene_change < 30) || |
| (cpi->frames_since_last_update > 8 && cpi->rc.frame_source_sad > 0)) |
| return 0; |
| else |
| return 1; |
| } else if (cpi->svc.number_temporal_layers > 1) { |
| // Disable only on top temporal enhancement layer for now. |
| return cpi->svc.temporal_layer_id == cpi->svc.number_temporal_layers - 1; |
| } |
| return 1; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void subtract_stats(FIRSTPASS_STATS *section, |
| const FIRSTPASS_STATS *frame) { |
| section->frame -= frame->frame; |
| section->weight -= frame->weight; |
| section->intra_error -= frame->intra_error; |
| section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy; |
| section->coded_error -= frame->coded_error; |
| section->sr_coded_error -= frame->sr_coded_error; |
| section->pcnt_inter -= frame->pcnt_inter; |
| section->pcnt_motion -= frame->pcnt_motion; |
| section->pcnt_second_ref -= frame->pcnt_second_ref; |
| section->pcnt_neutral -= frame->pcnt_neutral; |
| section->intra_skip_pct -= frame->intra_skip_pct; |
| section->inactive_zone_rows -= frame->inactive_zone_rows; |
| section->inactive_zone_cols -= frame->inactive_zone_cols; |
| section->MVr -= frame->MVr; |
| section->mvr_abs -= frame->mvr_abs; |
| section->MVc -= frame->MVc; |
| section->mvc_abs -= frame->mvc_abs; |
| section->MVrv -= frame->MVrv; |
| section->MVcv -= frame->MVcv; |
| section->mv_in_out_count -= frame->mv_in_out_count; |
| section->new_mv_count -= frame->new_mv_count; |
| section->count -= frame->count; |
| section->duration -= frame->duration; |
| } |
| |
| static void calculate_frame_avg_haar_energy(AV1_COMP *cpi) { |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| const FIRSTPASS_STATS *const total_stats = |
| twopass->stats_buf_ctx->total_stats; |
| |
| if (is_one_pass_rt_params(cpi) || |
| (cpi->oxcf.q_cfg.deltaq_mode != DELTA_Q_PERCEPTUAL) || |
| (is_fp_wavelet_energy_invalid(total_stats) == 0)) |
| return; |
| |
| const int num_mbs = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cpi->common.mi_params.MBs; |
| const YV12_BUFFER_CONFIG *const unfiltered_source = cpi->unfiltered_source; |
| const uint8_t *const src = unfiltered_source->y_buffer; |
| const int hbd = unfiltered_source->flags & YV12_FLAG_HIGHBITDEPTH; |
| const int stride = unfiltered_source->y_stride; |
| const BLOCK_SIZE fp_block_size = |
| get_fp_block_size(cpi->is_screen_content_type); |
| const int fp_block_size_width = block_size_wide[fp_block_size]; |
| const int fp_block_size_height = block_size_high[fp_block_size]; |
| const int num_unit_cols = |
| get_num_blocks(unfiltered_source->y_crop_width, fp_block_size_width); |
| const int num_unit_rows = |
| get_num_blocks(unfiltered_source->y_crop_height, fp_block_size_height); |
| const int num_8x8_cols = num_unit_cols * (fp_block_size_width / 8); |
| const int num_8x8_rows = num_unit_rows * (fp_block_size_height / 8); |
| int64_t frame_avg_wavelet_energy = av1_haar_ac_sad_mxn_uint8_input( |
| src, stride, hbd, num_8x8_rows, num_8x8_cols); |
| |
| cpi->twopass_frame.frame_avg_haar_energy = |
| log1p((double)frame_avg_wavelet_energy / num_mbs); |
| } |
| #endif |
| |
| extern void av1_print_frame_contexts(const FRAME_CONTEXT *fc, |
| const char *filename); |
| |
| /*!\brief Run the final pass encoding for 1-pass/2-pass encoding mode, and pack |
| * the bitstream |
| * |
| * \ingroup high_level_algo |
| * \callgraph |
| * \callergraph |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] size Bitstream size |
| * \param[in] dest Bitstream output |
| * |
| * \return Returns a value to indicate if the encoding is done successfully. |
| * \retval #AOM_CODEC_OK |
| * \retval #AOM_CODEC_ERROR |
| */ |
| static int encode_frame_to_data_rate(AV1_COMP *cpi, size_t *size, |
| uint8_t *dest) { |
| AV1_COMMON *const cm = &cpi->common; |
| SequenceHeader *const seq_params = cm->seq_params; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| struct segmentation *const seg = &cm->seg; |
| FeatureFlags *const features = &cm->features; |
| const TileConfig *const tile_cfg = &oxcf->tile_cfg; |
| assert(cpi->source != NULL); |
| cpi->td.mb.e_mbd.cur_buf = cpi->source; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, encode_frame_to_data_rate_time); |
| #endif |
| |
| #if !CONFIG_REALTIME_ONLY |
| calculate_frame_avg_haar_energy(cpi); |
| #endif |
| |
| // frame type has been decided outside of this function call |
| cm->cur_frame->frame_type = current_frame->frame_type; |
| |
| cm->tiles.large_scale = tile_cfg->enable_large_scale_tile; |
| cm->tiles.single_tile_decoding = tile_cfg->enable_single_tile_decoding; |
| |
| features->allow_ref_frame_mvs &= frame_might_allow_ref_frame_mvs(cm); |
| // features->allow_ref_frame_mvs needs to be written into the frame header |
| // while cm->tiles.large_scale is 1, therefore, "cm->tiles.large_scale=1" case |
| // is separated from frame_might_allow_ref_frame_mvs(). |
| features->allow_ref_frame_mvs &= !cm->tiles.large_scale; |
| |
| features->allow_warped_motion = oxcf->motion_mode_cfg.allow_warped_motion && |
| frame_might_allow_warped_motion(cm); |
| |
| cpi->last_frame_type = current_frame->frame_type; |
| |
| if (frame_is_intra_only(cm)) { |
| cpi->frames_since_last_update = 0; |
| } |
| |
| if (frame_is_sframe(cm)) { |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| // S frame will wipe out any previously encoded altref so we cannot place |
| // an overlay frame |
| gf_group->update_type[gf_group->size] = GF_UPDATE; |
| } |
| |
| if (encode_show_existing_frame(cm)) { |
| #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY |
| // TODO(angiebird): Move this into a function. |
| if (oxcf->pass == AOM_RC_THIRD_PASS) { |
| int frame_coding_idx = |
| av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, cpi->gf_frame_index); |
| rc_log_frame_encode_param( |
| &cpi->rc_log, frame_coding_idx, 1, 255, |
| cpi->ppi->gf_group.update_type[cpi->gf_frame_index]); |
| } |
| #endif |
| av1_finalize_encoded_frame(cpi); |
| // Build the bitstream |
| int largest_tile_id = 0; // Output from bitstream: unused here |
| cpi->rc.coefficient_size = 0; |
| if (av1_pack_bitstream(cpi, dest, size, &largest_tile_id) != AOM_CODEC_OK) |
| return AOM_CODEC_ERROR; |
| |
| if (seq_params->frame_id_numbers_present_flag && |
| current_frame->frame_type == KEY_FRAME) { |
| // Displaying a forward key-frame, so reset the ref buffer IDs |
| int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; |
| for (int i = 0; i < REF_FRAMES; i++) |
| cm->ref_frame_id[i] = display_frame_id; |
| } |
| |
| #if DUMP_RECON_FRAMES == 1 |
| // NOTE(zoeliu): For debug - Output the filtered reconstructed video. |
| av1_dump_filtered_recon_frames(cpi); |
| #endif // DUMP_RECON_FRAMES |
| |
| // NOTE: Save the new show frame buffer index for --test-code=warn, i.e., |
| // for the purpose to verify no mismatch between encoder and decoder. |
| if (cm->show_frame) cpi->last_show_frame_buf = cm->cur_frame; |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| av1_denoiser_update_ref_frame(cpi); |
| #endif |
| |
| // Since we allocate a spot for the OVERLAY frame in the gf group, we need |
| // to do post-encoding update accordingly. |
| av1_set_target_rate(cpi, cm->width, cm->height); |
| |
| if (is_psnr_calc_enabled(cpi)) { |
| cpi->source = |
| realloc_and_scale_source(cpi, cm->cur_frame->buf.y_crop_width, |
| cm->cur_frame->buf.y_crop_height); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->use_ducky_encode) { |
| PSNR_STATS psnr; |
| aom_calc_psnr(cpi->source, &cpi->common.cur_frame->buf, &psnr); |
| DuckyEncodeFrameResult *frame_result = |
| &cpi->ducky_encode_info.frame_result; |
| frame_result->global_order_idx = cm->cur_frame->display_order_hint; |
| frame_result->q_index = cm->quant_params.base_qindex; |
| frame_result->rdmult = cpi->rd.RDMULT; |
| frame_result->rate = (int)(*size) * 8; |
| frame_result->dist = psnr.sse[0]; |
| frame_result->psnr = psnr.psnr[0]; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| update_counters_for_show_frame(cpi); |
| return AOM_CODEC_OK; |
| } |
| |
| // Work out whether to force_integer_mv this frame |
| if (!is_stat_generation_stage(cpi) && |
| cpi->common.features.allow_screen_content_tools && |
| !frame_is_intra_only(cm) && !cpi->sf.rt_sf.use_nonrd_pick_mode) { |
| if (cpi->common.seq_params->force_integer_mv == 2) { |
| // Adaptive mode: see what previous frame encoded did |
| if (cpi->unscaled_last_source != NULL) { |
| features->cur_frame_force_integer_mv = av1_is_integer_mv( |
| cpi->source, cpi->unscaled_last_source, &cpi->force_intpel_info); |
| } else { |
| cpi->common.features.cur_frame_force_integer_mv = 0; |
| } |
| } else { |
| cpi->common.features.cur_frame_force_integer_mv = |
| cpi->common.seq_params->force_integer_mv; |
| } |
| } else { |
| cpi->common.features.cur_frame_force_integer_mv = 0; |
| } |
| |
| // This is used by av1_pack_bitstream. So this needs to be set in case of |
| // row-mt where the encoding code will use a temporary structure. |
| cpi->td.mb.e_mbd.cur_frame_force_integer_mv = |
| cpi->common.features.cur_frame_force_integer_mv; |
| |
| // Set default state for segment based loop filter update flags. |
| cm->lf.mode_ref_delta_update = 0; |
| |
| // Set various flags etc to special state if it is a key frame. |
| if (frame_is_intra_only(cm) || frame_is_sframe(cm)) { |
| // Reset the loop filter deltas and segmentation map. |
| av1_reset_segment_features(cm); |
| |
| // If segmentation is enabled force a map update for key frames. |
| if (seg->enabled) { |
| seg->update_map = 1; |
| seg->update_data = 1; |
| } |
| } |
| if (tile_cfg->mtu == 0) { |
| cpi->num_tg = tile_cfg->num_tile_groups; |
| } else { |
| // Use a default value for the purposes of weighting costs in probability |
| // updates |
| cpi->num_tg = DEFAULT_MAX_NUM_TG; |
| } |
| |
| // For 1 pass CBR mode: check if we are dropping this frame. |
| if (has_no_stats_stage(cpi) && oxcf->rc_cfg.mode == AOM_CBR) { |
| // Always drop for spatial enhancement layer if layer bandwidth is 0. |
| // Otherwise check for frame-dropping based on buffer level in |
| // av1_rc_drop_frame(). |
| if ((cpi->svc.spatial_layer_id > 0 && |
| cpi->oxcf.rc_cfg.target_bandwidth == 0) || |
| av1_rc_drop_frame(cpi)) { |
| cpi->is_dropped_frame = true; |
| } |
| if (cpi->is_dropped_frame) { |
| av1_setup_frame_size(cpi); |
| av1_set_mv_search_params(cpi); |
| av1_rc_postencode_update_drop_frame(cpi); |
| release_scaled_references(cpi); |
| cpi->ppi->gf_group.is_frame_dropped[cpi->gf_frame_index] = true; |
| // A dropped frame might not be shown but it always takes a slot in the gf |
| // group. Therefore, even when it is not shown, we still need to update |
| // the relevant frame counters. |
| if (cm->show_frame) { |
| update_counters_for_show_frame(cpi); |
| } |
| return AOM_CODEC_OK; |
| } |
| } |
| |
| if (oxcf->tune_cfg.tuning == AOM_TUNE_SSIM) { |
| av1_set_mb_ssim_rdmult_scaling(cpi); |
| } |
| #if CONFIG_SALIENCY_MAP |
| else if (oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_SALIENCY_MAP && |
| !(cpi->source->flags & YV12_FLAG_HIGHBITDEPTH)) { |
| if (av1_set_saliency_map(cpi) == 0) { |
| return AOM_CODEC_MEM_ERROR; |
| } |
| #if !CONFIG_REALTIME_ONLY |
| double motion_ratio = av1_setup_motion_ratio(cpi); |
| #else |
| double motion_ratio = 1.0; |
| #endif |
| if (av1_setup_sm_rdmult_scaling_factor(cpi, motion_ratio) == 0) { |
| return AOM_CODEC_MEM_ERROR; |
| } |
| } |
| #endif |
| #if CONFIG_TUNE_VMAF |
| else if (oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING || |
| oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN || |
| oxcf->tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { |
| av1_set_mb_vmaf_rdmult_scaling(cpi); |
| } |
| #endif |
| |
| if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI && |
| cpi->sf.rt_sf.use_nonrd_pick_mode == 0) { |
| av1_init_mb_wiener_var_buffer(cpi); |
| av1_set_mb_wiener_variance(cpi); |
| } |
| |
| if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) { |
| av1_init_mb_ur_var_buffer(cpi); |
| av1_set_mb_ur_variance(cpi); |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| memset(cpi->mode_chosen_counts, 0, |
| MAX_MODES * sizeof(*cpi->mode_chosen_counts)); |
| #endif |
| |
| if (seq_params->frame_id_numbers_present_flag) { |
| /* Non-normative definition of current_frame_id ("frame counter" with |
| * wraparound) */ |
| if (cm->current_frame_id == -1) { |
| int lsb, msb; |
| /* quasi-random initialization of current_frame_id for a key frame */ |
| if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) { |
| lsb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[0] & 0xff; |
| msb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[1] & 0xff; |
| } else { |
| lsb = cpi->source->y_buffer[0] & 0xff; |
| msb = cpi->source->y_buffer[1] & 0xff; |
| } |
| cm->current_frame_id = |
| ((msb << 8) + lsb) % (1 << seq_params->frame_id_length); |
| |
| // S_frame is meant for stitching different streams of different |
| // resolutions together, so current_frame_id must be the |
| // same across different streams of the same content current_frame_id |
| // should be the same and not random. 0x37 is a chosen number as start |
| // point |
| if (oxcf->kf_cfg.sframe_dist != 0) cm->current_frame_id = 0x37; |
| } else { |
| cm->current_frame_id = |
| (cm->current_frame_id + 1 + (1 << seq_params->frame_id_length)) % |
| (1 << seq_params->frame_id_length); |
| } |
| } |
| |
| switch (oxcf->algo_cfg.cdf_update_mode) { |
| case 0: // No CDF update for any frames(4~6% compression loss). |
| features->disable_cdf_update = 1; |
| break; |
| case 1: // Enable CDF update for all frames. |
| if (cpi->sf.rt_sf.disable_cdf_update_non_reference_frame && |
| cpi->ppi->rtc_ref.non_reference_frame && cpi->rc.frames_since_key > 2) |
| features->disable_cdf_update = 1; |
| else |
| features->disable_cdf_update = 0; |
| break; |
| case 2: |
| // Strategically determine at which frames to do CDF update. |
| // Currently only enable CDF update for all-intra and no-show frames(1.5% |
| // compression loss) for good qualiy or allintra mode. |
| if (oxcf->mode == GOOD || oxcf->mode == ALLINTRA) { |
| features->disable_cdf_update = |
| (frame_is_intra_only(cm) || !cm->show_frame) ? 0 : 1; |
| } else { |
| features->disable_cdf_update = selective_disable_cdf_rtc(cpi); |
| } |
| break; |
| } |
| |
| // Disable cdf update for the INTNL_ARF_UPDATE frame with |
| // frame_parallel_level 1. |
| if (!cpi->do_frame_data_update && |
| cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) { |
| assert(cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 1); |
| features->disable_cdf_update = 1; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->oxcf.tool_cfg.enable_global_motion && !frame_is_intra_only(cm)) { |
| // Flush any stale global motion information, which may be left over |
| // from a previous frame |
| aom_invalidate_pyramid(cpi->source->y_pyramid); |
| av1_invalidate_corner_list(cpi->source->corners); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| int largest_tile_id = 0; |
| if (av1_superres_in_recode_allowed(cpi)) { |
| if (encode_with_and_without_superres(cpi, size, dest, &largest_tile_id) != |
| AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| } else { |
| const aom_superres_mode orig_superres_mode = cpi->superres_mode; // save |
| cpi->superres_mode = cpi->oxcf.superres_cfg.superres_mode; |
| if (encode_with_recode_loop_and_filter(cpi, size, dest, NULL, NULL, |
| &largest_tile_id) != AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| cpi->superres_mode = orig_superres_mode; // restore |
| } |
| |
| // Update reference frame ids for reference frames this frame will overwrite |
| if (seq_params->frame_id_numbers_present_flag) { |
| for (int i = 0; i < REF_FRAMES; i++) { |
| if ((current_frame->refresh_frame_flags >> i) & 1) { |
| cm->ref_frame_id[i] = cm->current_frame_id; |
| } |
| } |
| } |
| |
| if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) |
| cpi->svc.num_encoded_top_layer++; |
| |
| #if DUMP_RECON_FRAMES == 1 |
| // NOTE(zoeliu): For debug - Output the filtered reconstructed video. |
| av1_dump_filtered_recon_frames(cpi); |
| #endif // DUMP_RECON_FRAMES |
| |
| if (cm->seg.enabled) { |
| if (cm->seg.update_map == 0 && cm->last_frame_seg_map) { |
| memcpy(cm->cur_frame->seg_map, cm->last_frame_seg_map, |
| cm->cur_frame->mi_cols * cm->cur_frame->mi_rows * |
| sizeof(*cm->cur_frame->seg_map)); |
| } |
| } |
| |
| int release_scaled_refs = 0; |
| #if CONFIG_FPMT_TEST |
| release_scaled_refs = |
| (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 1 : 0; |
| #endif // CONFIG_FPMT_TEST |
| if (release_scaled_refs || |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { |
| if (frame_is_intra_only(cm) == 0) { |
| release_scaled_references(cpi); |
| } |
| } |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| av1_denoiser_update_ref_frame(cpi); |
| #endif |
| |
| // NOTE: Save the new show frame buffer index for --test-code=warn, i.e., |
| // for the purpose to verify no mismatch between encoder and decoder. |
| if (cm->show_frame) cpi->last_show_frame_buf = cm->cur_frame; |
| |
| if (features->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| *cm->fc = cpi->tile_data[largest_tile_id].tctx; |
| av1_reset_cdf_symbol_counters(cm->fc); |
| } |
| if (!cm->tiles.large_scale) { |
| cm->cur_frame->frame_context = *cm->fc; |
| } |
| |
| if (tile_cfg->enable_ext_tile_debug) { |
| // (yunqing) This test ensures the correctness of large scale tile coding. |
| if (cm->tiles.large_scale && is_stat_consumption_stage(cpi)) { |
| char fn[20] = "./fc"; |
| fn[4] = current_frame->frame_number / 100 + '0'; |
| fn[5] = (current_frame->frame_number % 100) / 10 + '0'; |
| fn[6] = (current_frame->frame_number % 10) + '0'; |
| fn[7] = '\0'; |
| av1_print_frame_contexts(cm->fc, fn); |
| } |
| } |
| |
| cpi->last_frame_type = current_frame->frame_type; |
| |
| if (cm->features.disable_cdf_update) { |
| cpi->frames_since_last_update++; |
| } else { |
| cpi->frames_since_last_update = 1; |
| } |
| |
| if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) |
| cpi->svc.prev_number_spatial_layers = cpi->svc.number_spatial_layers; |
| |
| // Clear the one shot update flags for segmentation map and mode/ref loop |
| // filter deltas. |
| cm->seg.update_map = 0; |
| cm->seg.update_data = 0; |
| cm->lf.mode_ref_delta_update = 0; |
| |
| if (cm->show_frame) { |
| update_counters_for_show_frame(cpi); |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, encode_frame_to_data_rate_time); |
| #endif |
| |
| return AOM_CODEC_OK; |
| } |
| |
| int av1_encode(AV1_COMP *const cpi, uint8_t *const dest, |
| const EncodeFrameInput *const frame_input, |
| const EncodeFrameParams *const frame_params, |
| EncodeFrameResults *const frame_results) { |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| |
| cpi->unscaled_source = frame_input->source; |
| cpi->source = frame_input->source; |
| cpi->unscaled_last_source = frame_input->last_source; |
| |
| current_frame->refresh_frame_flags = frame_params->refresh_frame_flags; |
| cm->features.error_resilient_mode = frame_params->error_resilient_mode; |
| cm->features.primary_ref_frame = frame_params->primary_ref_frame; |
| cm->current_frame.frame_type = frame_params->frame_type; |
| cm->show_frame = frame_params->show_frame; |
| cpi->ref_frame_flags = frame_params->ref_frame_flags; |
| cpi->speed = frame_params->speed; |
| cm->show_existing_frame = frame_params->show_existing_frame; |
| cpi->existing_fb_idx_to_show = frame_params->existing_fb_idx_to_show; |
| |
| memcpy(cm->remapped_ref_idx, frame_params->remapped_ref_idx, |
| REF_FRAMES * sizeof(*cm->remapped_ref_idx)); |
| |
| memcpy(&cpi->refresh_frame, &frame_params->refresh_frame, |
| sizeof(cpi->refresh_frame)); |
| |
| if (current_frame->frame_type == KEY_FRAME && |
| cpi->ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) { |
| current_frame->frame_number = 0; |
| } |
| |
| current_frame->order_hint = |
| current_frame->frame_number + frame_params->order_offset; |
| |
| current_frame->display_order_hint = current_frame->order_hint; |
| current_frame->order_hint %= |
| (1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1)); |
| |
| current_frame->pyramid_level = get_true_pyr_level( |
| cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index], |
| current_frame->display_order_hint, cpi->ppi->gf_group.max_layer_depth); |
| |
| if (is_stat_generation_stage(cpi)) { |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->oxcf.q_cfg.use_fixed_qp_offsets) |
| av1_noop_first_pass_frame(cpi, frame_input->ts_duration); |
| else |
| av1_first_pass(cpi, frame_input->ts_duration); |
| #endif |
| } else if (cpi->oxcf.pass == AOM_RC_ONE_PASS || |
| cpi->oxcf.pass >= AOM_RC_SECOND_PASS) { |
| if (encode_frame_to_data_rate(cpi, &frame_results->size, dest) != |
| AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| } else { |
| return AOM_CODEC_ERROR; |
| } |
| |
| return AOM_CODEC_OK; |
| } |
| |
| #if CONFIG_DENOISE |
| static int apply_denoise_2d(AV1_COMP *cpi, YV12_BUFFER_CONFIG *sd, |
| int block_size, float noise_level, |
| int64_t time_stamp, int64_t end_time) { |
| AV1_COMMON *const cm = &cpi->common; |
| if (!cpi->denoise_and_model) { |
| cpi->denoise_and_model = aom_denoise_and_model_alloc( |
| cm->seq_params->bit_depth, block_size, noise_level); |
| if (!cpi->denoise_and_model) { |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Error allocating denoise and model"); |
| return -1; |
| } |
| } |
| if (!cpi->film_grain_table) { |
| cpi->film_grain_table = aom_malloc(sizeof(*cpi->film_grain_table)); |
| if (!cpi->film_grain_table) { |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Error allocating grain table"); |
| return -1; |
| } |
| memset(cpi->film_grain_table, 0, sizeof(*cpi->film_grain_table)); |
| } |
| if (aom_denoise_and_model_run(cpi->denoise_and_model, sd, |
| &cm->film_grain_params, |
| cpi->oxcf.enable_dnl_denoising)) { |
| if (cm->film_grain_params.apply_grain) { |
| aom_film_grain_table_append(cpi->film_grain_table, time_stamp, end_time, |
| &cm->film_grain_params); |
| } |
| } |
| return 0; |
| } |
| #endif |
| |
| int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags, |
| YV12_BUFFER_CONFIG *sd, int64_t time_stamp, |
| int64_t end_time) { |
| AV1_COMMON *const cm = &cpi->common; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| int res = 0; |
| const int subsampling_x = sd->subsampling_x; |
| const int subsampling_y = sd->subsampling_y; |
| const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0; |
| |
| #if CONFIG_TUNE_VMAF |
| if (!is_stat_generation_stage(cpi) && |
| cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITH_PREPROCESSING) { |
| av1_vmaf_frame_preprocessing(cpi, sd); |
| } |
| if (!is_stat_generation_stage(cpi) && |
| cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN) { |
| av1_vmaf_blk_preprocessing(cpi, sd); |
| } |
| #endif |
| |
| #if CONFIG_INTERNAL_STATS |
| struct aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| #endif |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| setup_denoiser_buffer(cpi); |
| #endif |
| |
| #if CONFIG_DENOISE |
| // even if denoise_noise_level is > 0, we don't need need to denoise on pass |
| // 1 of 2 if enable_dnl_denoising is disabled since the 2nd pass will be |
| // encoding the original (non-denoised) frame |
| if (cpi->oxcf.noise_level > 0 && !(cpi->oxcf.pass == AOM_RC_FIRST_PASS && |
| !cpi->oxcf.enable_dnl_denoising)) { |
| #if !CONFIG_REALTIME_ONLY |
| // Choose a synthetic noise level for still images for enhanced perceptual |
| // quality based on an estimated noise level in the source, but only if |
| // the noise level is set on the command line to > 0. |
| if (cpi->oxcf.mode == ALLINTRA) { |
| // No noise synthesis if source is very clean. |
| // Uses a low edge threshold to focus on smooth areas. |
| // Increase output noise setting a little compared to measured value. |
| double y_noise_level = 0.0; |
| av1_estimate_noise_level(sd, &y_noise_level, AOM_PLANE_Y, AOM_PLANE_Y, |
| cm->seq_params->bit_depth, 16); |
| cpi->oxcf.noise_level = (float)(y_noise_level - 0.1); |
| cpi->oxcf.noise_level = (float)AOMMAX(0.0, cpi->oxcf.noise_level); |
| if (cpi->oxcf.noise_level > 0.0) { |
| cpi->oxcf.noise_level += (float)0.5; |
| } |
| cpi->oxcf.noise_level = (float)AOMMIN(5.0, cpi->oxcf.noise_level); |
| } |
| #endif |
| |
| if (apply_denoise_2d(cpi, sd, cpi->oxcf.noise_block_size, |
| cpi->oxcf.noise_level, time_stamp, end_time) < 0) |
| res = -1; |
| } |
| #endif // CONFIG_DENOISE |
| |
| if (av1_lookahead_push(cpi->ppi->lookahead, sd, time_stamp, end_time, |
| use_highbitdepth, cpi->image_pyramid_levels, |
| frame_flags)) { |
| aom_internal_error(cm->error, AOM_CODEC_ERROR, |
| "av1_lookahead_push() failed"); |
| res = -1; |
| } |
| #if CONFIG_INTERNAL_STATS |
| aom_usec_timer_mark(&timer); |
| cpi->ppi->total_time_receive_data += aom_usec_timer_elapsed(&timer); |
| #endif |
| |
| // Note: Regarding profile setting, the following checks are added to help |
| // choose a proper profile for the input video. The criterion is that all |
| // bitstreams must be designated as the lowest profile that match its content. |
| // E.G. A bitstream that contains 4:4:4 video must be designated as High |
| // Profile in the seq header, and likewise a bitstream that contains 4:2:2 |
| // bitstream must be designated as Professional Profile in the sequence |
| // header. |
| if ((seq_params->profile == PROFILE_0) && !seq_params->monochrome && |
| (subsampling_x != 1 || subsampling_y != 1)) { |
| aom_internal_error(cm->error, AOM_CODEC_INVALID_PARAM, |
| "Non-4:2:0 color format requires profile 1 or 2"); |
| res = -1; |
| } |
| if ((seq_params->profile == PROFILE_1) && |
| !(subsampling_x == 0 && subsampling_y == 0)) { |
| aom_internal_error(cm->error, AOM_CODEC_INVALID_PARAM, |
| "Profile 1 requires 4:4:4 color format"); |
| res = -1; |
| } |
| if ((seq_params->profile == PROFILE_2) && |
| (seq_params->bit_depth <= AOM_BITS_10) && |
| !(subsampling_x == 1 && subsampling_y == 0)) { |
| aom_internal_error(cm->error, AOM_CODEC_INVALID_PARAM, |
| "Profile 2 bit-depth <= 10 requires 4:2:2 color format"); |
| res = -1; |
| } |
| |
| return res; |
| } |
| |
| #if CONFIG_ENTROPY_STATS |
| void print_entropy_stats(AV1_PRIMARY *const ppi) { |
| if (!ppi->cpi) return; |
| |
| if (ppi->cpi->oxcf.pass != 1 && |
| ppi->cpi->common.current_frame.frame_number > 0) { |
| fprintf(stderr, "Writing counts.stt\n"); |
| FILE *f = fopen("counts.stt", "wb"); |
| fwrite(&ppi->aggregate_fc, sizeof(ppi->aggregate_fc), 1, f); |
| fclose(f); |
| } |
| } |
| #endif // CONFIG_ENTROPY_STATS |
| |
| #if CONFIG_INTERNAL_STATS |
| extern double av1_get_blockiness(const unsigned char *img1, int img1_pitch, |
| const unsigned char *img2, int img2_pitch, |
| int width, int height); |
| |
| static void adjust_image_stat(double y, double u, double v, double all, |
| ImageStat *s) { |
| s->stat[STAT_Y] += y; |
| s->stat[STAT_U] += u; |
| s->stat[STAT_V] += v; |
| s->stat[STAT_ALL] += all; |
| s->worst = AOMMIN(s->worst, all); |
| } |
| |
| static void compute_internal_stats(AV1_COMP *cpi, int frame_bytes) { |
| AV1_PRIMARY *const ppi = cpi->ppi; |
| AV1_COMMON *const cm = &cpi->common; |
| double samples = 0.0; |
| const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth; |
| const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; |
| |
| if (cpi->ppi->use_svc && |
| cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1) |
| return; |
| |
| #if CONFIG_INTER_STATS_ONLY |
| if (cm->current_frame.frame_type == KEY_FRAME) return; // skip key frame |
| #endif |
| cpi->bytes += frame_bytes; |
| if (cm->show_frame) { |
| const YV12_BUFFER_CONFIG *orig = cpi->source; |
| const YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf; |
| double y, u, v, frame_all; |
| |
| ppi->count[0]++; |
| ppi->count[1]++; |
| if (cpi->ppi->b_calculate_psnr) { |
| PSNR_STATS psnr; |
| double weight[2] = { 0.0, 0.0 }; |
| double frame_ssim2[2] = { 0.0, 0.0 }; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth); |
| #else |
| aom_calc_psnr(orig, recon, &psnr); |
| #endif |
| adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], psnr.psnr[0], |
| &(ppi->psnr[0])); |
| ppi->total_sq_error[0] += psnr.sse[0]; |
| ppi->total_samples[0] += psnr.samples[0]; |
| samples = psnr.samples[0]; |
| |
| aom_calc_ssim(orig, recon, bit_depth, in_bit_depth, |
| cm->seq_params->use_highbitdepth, weight, frame_ssim2); |
| |
| ppi->worst_ssim = AOMMIN(ppi->worst_ssim, frame_ssim2[0]); |
| ppi->summed_quality += frame_ssim2[0] * weight[0]; |
| ppi->summed_weights += weight[0]; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| // Compute PSNR based on stream bit depth |
| if ((cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) && |
| (in_bit_depth < bit_depth)) { |
| adjust_image_stat(psnr.psnr_hbd[1], psnr.psnr_hbd[2], psnr.psnr_hbd[3], |
| psnr.psnr_hbd[0], &ppi->psnr[1]); |
| ppi->total_sq_error[1] += psnr.sse_hbd[0]; |
| ppi->total_samples[1] += psnr.samples_hbd[0]; |
| |
| ppi->worst_ssim_hbd = AOMMIN(ppi->worst_ssim_hbd, frame_ssim2[1]); |
| ppi->summed_quality_hbd += frame_ssim2[1] * weight[1]; |
| ppi->summed_weights_hbd += weight[1]; |
| } |
| #endif |
| |
| #if 0 |
| { |
| FILE *f = fopen("q_used.stt", "a"); |
| double y2 = psnr.psnr[1]; |
| double u2 = psnr.psnr[2]; |
| double v2 = psnr.psnr[3]; |
| double frame_psnr2 = psnr.psnr[0]; |
| fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", |
| cm->current_frame.frame_number, y2, u2, v2, |
| frame_psnr2, frame_ssim2); |
| fclose(f); |
| } |
| #endif |
| } |
| if (ppi->b_calculate_blockiness) { |
| if (!cm->seq_params->use_highbitdepth) { |
| const double frame_blockiness = |
| av1_get_blockiness(orig->y_buffer, orig->y_stride, recon->y_buffer, |
| recon->y_stride, orig->y_width, orig->y_height); |
| ppi->worst_blockiness = AOMMAX(ppi->worst_blockiness, frame_blockiness); |
| ppi->total_blockiness += frame_blockiness; |
| } |
| |
| if (ppi->b_calculate_consistency) { |
| if (!cm->seq_params->use_highbitdepth) { |
| const double this_inconsistency = aom_get_ssim_metrics( |
| orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, |
| orig->y_width, orig->y_height, ppi->ssim_vars, &ppi->metrics, 1); |
| |
| const double peak = (double)((1 << in_bit_depth) - 1); |
| const double consistency = |
| aom_sse_to_psnr(samples, peak, ppi->total_inconsistency); |
| if (consistency > 0.0) |
| ppi->worst_consistency = |
| AOMMIN(ppi->worst_consistency, consistency); |
| ppi->total_inconsistency += this_inconsistency; |
| } |
| } |
| } |
| |
| frame_all = |
| aom_calc_fastssim(orig, recon, &y, &u, &v, bit_depth, in_bit_depth); |
| adjust_image_stat(y, u, v, frame_all, &ppi->fastssim); |
| frame_all = aom_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth); |
| adjust_image_stat(y, u, v, frame_all, &ppi->psnrhvs); |
| } |
| } |
| |
| void print_internal_stats(AV1_PRIMARY *ppi) { |
| if (!ppi->cpi) return; |
| AV1_COMP *const cpi = ppi->cpi; |
| |
| if (ppi->cpi->oxcf.pass != 1 && |
| ppi->cpi->common.current_frame.frame_number > 0) { |
| char headings[512] = { 0 }; |
| char results[512] = { 0 }; |
| FILE *f = fopen("opsnr.stt", "a"); |
| double time_encoded = |
| (cpi->time_stamps.prev_ts_end - cpi->time_stamps.first_ts_start) / |
| 10000000.000; |
| double total_encode_time = |
| (ppi->total_time_receive_data + ppi->total_time_compress_data) / |
| 1000.000; |
| const double dr = |
| (double)ppi->total_bytes * (double)8 / (double)1000 / time_encoded; |
| const double peak = |
| (double)((1 << ppi->cpi->oxcf.input_cfg.input_bit_depth) - 1); |
| const double target_rate = |
| (double)ppi->cpi->oxcf.rc_cfg.target_bandwidth / 1000; |
| const double rate_err = ((100.0 * (dr - target_rate)) / target_rate); |
| |
| if (ppi->b_calculate_psnr) { |
| const double total_psnr = aom_sse_to_psnr( |
| (double)ppi->total_samples[0], peak, (double)ppi->total_sq_error[0]); |
| const double total_ssim = |
| 100 * pow(ppi->summed_quality / ppi->summed_weights, 8.0); |
| snprintf(headings, sizeof(headings), |
| "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" |
| "AOMSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t" |
| "WstPsnr\tWstSsim\tWstFast\tWstHVS\t" |
| "AVPsrnY\tAPsnrCb\tAPsnrCr"); |
| snprintf(results, sizeof(results), |
| "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" |
| "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" |
| "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" |
| "%7.3f\t%7.3f\t%7.3f", |
| dr, ppi->psnr[0].stat[STAT_ALL] / ppi->count[0], total_psnr, |
| ppi->psnr[0].stat[STAT_ALL] / ppi->count[0], total_psnr, |
| total_ssim, total_ssim, |
| ppi->fastssim.stat[STAT_ALL] / ppi->count[0], |
| ppi->psnrhvs.stat[STAT_ALL] / ppi->count[0], ppi->psnr[0].worst, |
| ppi->worst_ssim, ppi->fastssim.worst, ppi->psnrhvs.worst, |
| ppi->psnr[0].stat[STAT_Y] / ppi->count[0], |
| ppi->psnr[0].stat[STAT_U] / ppi->count[0], |
| ppi->psnr[0].stat[STAT_V] / ppi->count[0]); |
| |
| if (ppi->b_calculate_blockiness) { |
| SNPRINT(headings, "\t Block\tWstBlck"); |
| SNPRINT2(results, "\t%7.3f", ppi->total_blockiness / ppi->count[0]); |
| SNPRINT2(results, "\t%7.3f", ppi->worst_blockiness); |
| } |
| |
| if (ppi->b_calculate_consistency) { |
| double consistency = |
| aom_sse_to_psnr((double)ppi->total_samples[0], peak, |
| (double)ppi->total_inconsistency); |
| |
| SNPRINT(headings, "\tConsist\tWstCons"); |
| SNPRINT2(results, "\t%7.3f", consistency); |
| SNPRINT2(results, "\t%7.3f", ppi->worst_consistency); |
| } |
| |
| SNPRINT(headings, "\t Time\tRcErr\tAbsErr"); |
| SNPRINT2(results, "\t%8.0f", total_encode_time); |
| SNPRINT2(results, " %7.2f", rate_err); |
| SNPRINT2(results, " %7.2f", fabs(rate_err)); |
| |
| SNPRINT(headings, "\tAPsnr611"); |
| SNPRINT2(results, " %7.3f", |
| (6 * ppi->psnr[0].stat[STAT_Y] + ppi->psnr[0].stat[STAT_U] + |
| ppi->psnr[0].stat[STAT_V]) / |
| (ppi->count[0] * 8)); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const uint32_t in_bit_depth = ppi->cpi->oxcf.input_cfg.input_bit_depth; |
| const uint32_t bit_depth = ppi->seq_params.bit_depth; |
| // Since cpi->source->flags is not available here, but total_samples[1] |
| // will be non-zero if cpi->source->flags & YV12_FLAG_HIGHBITDEPTH was |
| // true in compute_internal_stats |
| if ((ppi->total_samples[1] > 0) && (in_bit_depth < bit_depth)) { |
| const double peak_hbd = (double)((1 << bit_depth) - 1); |
| const double total_psnr_hbd = |
| aom_sse_to_psnr((double)ppi->total_samples[1], peak_hbd, |
| (double)ppi->total_sq_error[1]); |
| const double total_ssim_hbd = |
| 100 * pow(ppi->summed_quality_hbd / ppi->summed_weights_hbd, 8.0); |
| SNPRINT(headings, |
| "\t AVGPsnrH GLBPsnrH AVPsnrPH GLPsnrPH" |
| " AVPsnrYH APsnrCbH APsnrCrH WstPsnrH" |
| " AOMSSIMH VPSSIMPH WstSsimH"); |
| SNPRINT2(results, "\t%7.3f", |
| ppi->psnr[1].stat[STAT_ALL] / ppi->count[1]); |
| SNPRINT2(results, " %7.3f", total_psnr_hbd); |
| SNPRINT2(results, " %7.3f", |
| ppi->psnr[1].stat[STAT_ALL] / ppi->count[1]); |
| SNPRINT2(results, " %7.3f", total_psnr_hbd); |
| SNPRINT2(results, " %7.3f", ppi->psnr[1].stat[STAT_Y] / ppi->count[1]); |
| SNPRINT2(results, " %7.3f", ppi->psnr[1].stat[STAT_U] / ppi->count[1]); |
| SNPRINT2(results, " %7.3f", ppi->psnr[1].stat[STAT_V] / ppi->count[1]); |
| SNPRINT2(results, " %7.3f", ppi->psnr[1].worst); |
| SNPRINT2(results, " %7.3f", total_ssim_hbd); |
| SNPRINT2(results, " %7.3f", total_ssim_hbd); |
| SNPRINT2(results, " %7.3f", ppi->worst_ssim_hbd); |
| } |
| #endif |
| fprintf(f, "%s\n", headings); |
| fprintf(f, "%s\n", results); |
| } |
| |
| fclose(f); |
| |
| aom_free(ppi->ssim_vars); |
| ppi->ssim_vars = NULL; |
| } |
| } |
| #endif // CONFIG_INTERNAL_STATS |
| |
| static AOM_INLINE void update_keyframe_counters(AV1_COMP *cpi) { |
| if (cpi->common.show_frame && cpi->rc.frames_to_key) { |
| #if !CONFIG_REALTIME_ONLY |
| FIRSTPASS_INFO *firstpass_info = &cpi->ppi->twopass.firstpass_info; |
| if (firstpass_info->past_stats_count > FIRSTPASS_INFO_STATS_PAST_MIN) { |
| av1_firstpass_info_move_cur_index_and_pop(firstpass_info); |
| } else { |
| // When there is not enough past stats, we move the current |
| // index without popping the past stats |
| av1_firstpass_info_move_cur_index(firstpass_info); |
| } |
| #endif |
| if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { |
| cpi->rc.frames_since_key++; |
| cpi->rc.frames_to_key--; |
| cpi->rc.frames_to_fwd_kf--; |
| } |
| } |
| } |
| |
| static AOM_INLINE void update_frames_till_gf_update(AV1_COMP *cpi) { |
| // TODO(weitinglin): Updating this counter for is_frame_droppable |
| // is a work-around to handle the condition when a frame is drop. |
| // We should fix the cpi->common.show_frame flag |
| // instead of checking the other condition to update the counter properly. |
| if (cpi->common.show_frame || |
| is_frame_droppable(&cpi->ppi->rtc_ref, &cpi->ext_flags.refresh_frame)) { |
| // Decrement count down till next gf |
| if (cpi->rc.frames_till_gf_update_due > 0) |
| cpi->rc.frames_till_gf_update_due--; |
| } |
| } |
| |
| static AOM_INLINE void update_gf_group_index(AV1_COMP *cpi) { |
| // Increment the gf group index ready for the next frame. |
| if (is_one_pass_rt_params(cpi) && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { |
| ++cpi->gf_frame_index; |
| // Reset gf_frame_index in case it reaches MAX_STATIC_GF_GROUP_LENGTH |
| // for real time encoding. |
| if (cpi->gf_frame_index == MAX_STATIC_GF_GROUP_LENGTH) |
| cpi->gf_frame_index = 0; |
| } else { |
| ++cpi->gf_frame_index; |
| } |
| } |
| |
| static void update_fb_of_context_type(const AV1_COMP *const cpi, |
| int *const fb_of_context_type) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int current_frame_ref_type = get_current_frame_ref_type(cpi); |
| |
| if (frame_is_intra_only(cm) || cm->features.error_resilient_mode || |
| cpi->ext_flags.use_primary_ref_none) { |
| for (int i = 0; i < REF_FRAMES; i++) { |
| fb_of_context_type[i] = -1; |
| } |
| fb_of_context_type[current_frame_ref_type] = |
| cm->show_frame ? get_ref_frame_map_idx(cm, GOLDEN_FRAME) |
| : get_ref_frame_map_idx(cm, ALTREF_FRAME); |
| } |
| |
| if (!encode_show_existing_frame(cm)) { |
| // Refresh fb_of_context_type[]: see encoder.h for explanation |
| if (cm->current_frame.frame_type == KEY_FRAME) { |
| // All ref frames are refreshed, pick one that will live long enough |
| fb_of_context_type[current_frame_ref_type] = 0; |
| } else { |
| // If more than one frame is refreshed, it doesn't matter which one we |
| // pick so pick the first. LST sometimes doesn't refresh any: this is ok |
| |
| for (int i = 0; i < REF_FRAMES; i++) { |
| if (cm->current_frame.refresh_frame_flags & (1 << i)) { |
| fb_of_context_type[current_frame_ref_type] = i; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| static void update_rc_counts(AV1_COMP *cpi) { |
| update_keyframe_counters(cpi); |
| update_frames_till_gf_update(cpi); |
| update_gf_group_index(cpi); |
| } |
| |
| static void update_end_of_frame_stats(AV1_COMP *cpi) { |
| if (cpi->do_frame_data_update) { |
| // Store current frame loopfilter levels in ppi, if update flag is set. |
| if (!cpi->common.show_existing_frame) { |
| AV1_COMMON *const cm = &cpi->common; |
| struct loopfilter *const lf = &cm->lf; |
| cpi->ppi->filter_level[0] = lf->filter_level[0]; |
| cpi->ppi->filter_level[1] = lf->filter_level[1]; |
| cpi->ppi->filter_level_u = lf->filter_level_u; |
| cpi->ppi->filter_level_v = lf->filter_level_v; |
| } |
| } |
| // Store frame level mv_stats from cpi to ppi. |
| cpi->ppi->mv_stats = cpi->mv_stats; |
| } |
| |
| // Updates frame level stats related to global motion |
| static AOM_INLINE void update_gm_stats(AV1_COMP *cpi) { |
| FRAME_UPDATE_TYPE update_type = |
| cpi->ppi->gf_group.update_type[cpi->gf_frame_index]; |
| int i, is_gm_present = 0; |
| |
| // Check if the current frame has any valid global motion model across its |
| // reference frames |
| for (i = 0; i < REF_FRAMES; i++) { |
| if (cpi->common.global_motion[i].wmtype != IDENTITY) { |
| is_gm_present = 1; |
| break; |
| } |
| } |
| int update_actual_stats = 1; |
| #if CONFIG_FPMT_TEST |
| update_actual_stats = |
| (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1; |
| if (!update_actual_stats) { |
| if (cpi->ppi->temp_valid_gm_model_found[update_type] == INT32_MAX) { |
| cpi->ppi->temp_valid_gm_model_found[update_type] = is_gm_present; |
| } else { |
| cpi->ppi->temp_valid_gm_model_found[update_type] |= is_gm_present; |
| } |
| int show_existing_between_parallel_frames = |
| (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == |
| INTNL_OVERLAY_UPDATE && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); |
| if (cpi->do_frame_data_update == 1 && |
| !show_existing_between_parallel_frames) { |
| for (i = 0; i < FRAME_UPDATE_TYPES; i++) { |
| cpi->ppi->valid_gm_model_found[i] = |
| cpi->ppi->temp_valid_gm_model_found[i]; |
| } |
| } |
| } |
| #endif |
| if (update_actual_stats) { |
| if (cpi->ppi->valid_gm_model_found[update_type] == INT32_MAX) { |
| cpi->ppi->valid_gm_model_found[update_type] = is_gm_present; |
| } else { |
| cpi->ppi->valid_gm_model_found[update_type] |= is_gm_present; |
| } |
| } |
| } |
| |
| void av1_post_encode_updates(AV1_COMP *const cpi, |
| const AV1_COMP_DATA *const cpi_data) { |
| AV1_PRIMARY *const ppi = cpi->ppi; |
| AV1_COMMON *const cm = &cpi->common; |
| |
| update_gm_stats(cpi); |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Update the total stats remaining structure. |
| if (cpi->twopass_frame.this_frame != NULL && |
| ppi->twopass.stats_buf_ctx->total_left_stats) { |
| subtract_stats(ppi->twopass.stats_buf_ctx->total_left_stats, |
| cpi->twopass_frame.this_frame); |
| } |
| #endif |
| |
| #if CONFIG_OUTPUT_FRAME_SIZE |
| FILE *f = fopen("frame_sizes.csv", "a"); |
| fprintf(f, "%d,", 8 * (int)cpi_data->frame_size); |
| fprintf(f, "%d\n", cm->quant_params.base_qindex); |
| fclose(f); |
| #endif // CONFIG_OUTPUT_FRAME_SIZE |
| |
| if (!is_stat_generation_stage(cpi) && !cpi->is_dropped_frame) { |
| // Before calling refresh_reference_frames(), copy ppi->ref_frame_map_copy |
| // to cm->ref_frame_map for frame_parallel_level 2 frame in a parallel |
| // encode set of lower layer frames. |
| // TODO(Remya): Move ref_frame_map from AV1_COMMON to AV1_PRIMARY to avoid |
| // copy. |
| if (ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 2 && |
| ppi->gf_group.frame_parallel_level[cpi->gf_frame_index - 1] == 1 && |
| ppi->gf_group.update_type[cpi->gf_frame_index - 1] == |
| INTNL_ARF_UPDATE) { |
| memcpy(cm->ref_frame_map, ppi->ref_frame_map_copy, |
| sizeof(cm->ref_frame_map)); |
| } |
| refresh_reference_frames(cpi); |
| // For frame_parallel_level 1 frame in a parallel encode set of lower layer |
| // frames, store the updated cm->ref_frame_map in ppi->ref_frame_map_copy. |
| if (ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 1 && |
| ppi->gf_group.update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) { |
| memcpy(ppi->ref_frame_map_copy, cm->ref_frame_map, |
| sizeof(cm->ref_frame_map)); |
| } |
| av1_rc_postencode_update(cpi, cpi_data->frame_size); |
| } |
| |
| if (cpi_data->pop_lookahead == 1) { |
| av1_lookahead_pop(cpi->ppi->lookahead, cpi_data->flush, |
| cpi->compressor_stage); |
| } |
| if (cpi->common.show_frame) { |
| cpi->ppi->ts_start_last_show_frame = cpi_data->ts_frame_start; |
| cpi->ppi->ts_end_last_show_frame = cpi_data->ts_frame_end; |
| } |
| if (ppi->level_params.keep_level_stats && !is_stat_generation_stage(cpi)) { |
| // Initialize level info. at the beginning of each sequence. |
| if (cm->current_frame.frame_type == KEY_FRAME && |
| ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) { |
| av1_init_level_info(cpi); |
| } |
| av1_update_level_info(cpi, cpi_data->frame_size, cpi_data->ts_frame_start, |
| cpi_data->ts_frame_end); |
| } |
| |
| if (!is_stat_generation_stage(cpi)) { |
| #if !CONFIG_REALTIME_ONLY |
| if (!has_no_stats_stage(cpi)) av1_twopass_postencode_update(cpi); |
| #endif |
| update_fb_of_context_type(cpi, ppi->fb_of_context_type); |
| update_rc_counts(cpi); |
| update_end_of_frame_stats(cpi); |
| } |
| |
| if (cpi->oxcf.pass == AOM_RC_THIRD_PASS && cpi->third_pass_ctx) { |
| av1_pop_third_pass_info(cpi->third_pass_ctx); |
| } |
| |
| if (ppi->rtc_ref.set_ref_frame_config) { |
| av1_svc_update_buffer_slot_refreshed(cpi); |
| av1_svc_set_reference_was_previous(cpi); |
| } |
| |
| if (ppi->use_svc) av1_save_layer_context(cpi); |
| |
| // Note *size = 0 indicates a dropped frame for which psnr is not calculated |
| if (ppi->b_calculate_psnr && cpi_data->frame_size > 0) { |
| if (cm->show_existing_frame || |
| (!is_stat_generation_stage(cpi) && cm->show_frame)) { |
| generate_psnr_packet(cpi); |
| } |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| if (!is_stat_generation_stage(cpi)) { |
| compute_internal_stats(cpi, (int)cpi_data->frame_size); |
| } |
| #endif // CONFIG_INTERNAL_STATS |
| |
| // Write frame info. Subtract 1 from frame index since if was incremented in |
| // update_rc_counts. |
| av1_write_second_pass_per_frame_info(cpi, cpi->gf_frame_index - 1); |
| } |
| |
| int av1_get_compressed_data(AV1_COMP *cpi, AV1_COMP_DATA *const cpi_data) { |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| AV1_COMMON *const cm = &cpi->common; |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(cm->error->jmp)) { |
| cm->error->setjmp = 0; |
| return cm->error->error_code; |
| } |
| cm->error->setjmp = 1; |
| |
| #if CONFIG_INTERNAL_STATS |
| cpi->frame_recode_hits = 0; |
| cpi->time_compress_data = 0; |
| cpi->bytes = 0; |
| #endif |
| #if CONFIG_ENTROPY_STATS |
| if (cpi->compressor_stage == ENCODE_STAGE) { |
| av1_zero(cpi->counts); |
| } |
| #endif |
| |
| #if CONFIG_BITSTREAM_DEBUG |
| assert(cpi->oxcf.max_threads <= 1 && |
| "bitstream debug tool does not support multithreading"); |
| bitstream_queue_record_write(); |
| |
| if (cm->seq_params->order_hint_info.enable_order_hint) { |
| aom_bitstream_queue_set_frame_write(cm->current_frame.order_hint * 2 + |
| cm->show_frame); |
| } else { |
| // This is currently used in RTC encoding. cm->show_frame is always 1. |
| aom_bitstream_queue_set_frame_write(cm->current_frame.frame_number); |
| } |
| #endif |
| if (cpi->ppi->use_svc && cpi->ppi->number_spatial_layers > 1) { |
| av1_one_pass_cbr_svc_start_layer(cpi); |
| } |
| |
| cpi->is_dropped_frame = false; |
| cm->showable_frame = 0; |
| cpi_data->frame_size = 0; |
| cpi->available_bs_size = cpi_data->cx_data_sz; |
| #if CONFIG_INTERNAL_STATS |
| struct aom_usec_timer cmptimer; |
| aom_usec_timer_start(&cmptimer); |
| #endif |
| av1_set_high_precision_mv(cpi, 1, 0); |
| |
| // Normal defaults |
| cm->features.refresh_frame_context = |
| oxcf->tool_cfg.frame_parallel_decoding_mode |
| ? REFRESH_FRAME_CONTEXT_DISABLED |
| : REFRESH_FRAME_CONTEXT_BACKWARD; |
| if (oxcf->tile_cfg.enable_large_scale_tile) |
| cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; |
| |
| if (assign_cur_frame_new_fb(cm) == NULL) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
| "Failed to allocate new cur_frame"); |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| // Accumulate 2nd pass time in 2-pass case or 1 pass time in 1-pass case. |
| if (cpi->oxcf.pass == 2 || cpi->oxcf.pass == 0) |
| start_timing(cpi, av1_encode_strategy_time); |
| #endif |
| |
| const int result = av1_encode_strategy( |
| cpi, &cpi_data->frame_size, cpi_data->cx_data, &cpi_data->lib_flags, |
| &cpi_data->ts_frame_start, &cpi_data->ts_frame_end, |
| cpi_data->timestamp_ratio, &cpi_data->pop_lookahead, cpi_data->flush); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| if (cpi->oxcf.pass == 2 || cpi->oxcf.pass == 0) |
| end_timing(cpi, av1_encode_strategy_time); |
| |
| // Print out timing information. |
| // Note: Use "cpi->frame_component_time[0] > 100 us" to avoid showing of |
| // show_existing_frame and lag-in-frames. |
| if ((cpi->oxcf.pass == 2 || cpi->oxcf.pass == 0) && |
| cpi->frame_component_time[0] > 100) { |
| int i; |
| uint64_t frame_total = 0, total = 0; |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| FRAME_UPDATE_TYPE frame_update_type = |
| get_frame_update_type(gf_group, cpi->gf_frame_index); |
| |
| fprintf(stderr, |
| "\n Frame number: %d, Frame type: %s, Show Frame: %d, Frame Update " |
| "Type: %d, Q: %d\n", |
| cm->current_frame.frame_number, |
| get_frame_type_enum(cm->current_frame.frame_type), cm->show_frame, |
| frame_update_type, cm->quant_params.base_qindex); |
| for (i = 0; i < kTimingComponents; i++) { |
| cpi->component_time[i] += cpi->frame_component_time[i]; |
| // Use av1_encode_strategy_time (i = 0) as the total time. |
| if (i == 0) { |
| frame_total = cpi->frame_component_time[0]; |
| total = cpi->component_time[0]; |
| } |
| fprintf(stderr, |
| " %50s: %15" PRId64 " us [%6.2f%%] (total: %15" PRId64 |
| " us [%6.2f%%])\n", |
| get_component_name(i), cpi->frame_component_time[i], |
| (float)((float)cpi->frame_component_time[i] * 100.0 / |
| (float)frame_total), |
| cpi->component_time[i], |
| (float)((float)cpi->component_time[i] * 100.0 / (float)total)); |
| cpi->frame_component_time[i] = 0; |
| } |
| } |
| #endif |
| |
| // Reset the flag to 0 afer encoding. |
| cpi->rc.use_external_qp_one_pass = 0; |
| |
| if (result == -1) { |
| cm->error->setjmp = 0; |
| // Returning -1 indicates no frame encoded; more input is required |
| return -1; |
| } |
| if (result != AOM_CODEC_OK) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
| "Failed to encode frame"); |
| } |
| #if CONFIG_INTERNAL_STATS |
| aom_usec_timer_mark(&cmptimer); |
| cpi->time_compress_data += aom_usec_timer_elapsed(&cmptimer); |
| #endif // CONFIG_INTERNAL_STATS |
| |
| #if CONFIG_SPEED_STATS |
| if (!is_stat_generation_stage(cpi) && !cm->show_existing_frame) { |
| cpi->tx_search_count += cpi->td.mb.txfm_search_info.tx_search_count; |
| cpi->td.mb.txfm_search_info.tx_search_count = 0; |
| } |
| #endif // CONFIG_SPEED_STATS |
| |
| cm->error->setjmp = 0; |
| return AOM_CODEC_OK; |
| } |
| |
| // Populates cpi->scaled_ref_buf corresponding to frames in a parallel encode |
| // set. Also sets the bitmask 'ref_buffers_used_map'. |
| void av1_scale_references_fpmt(AV1_COMP *cpi, int *ref_buffers_used_map) { |
| AV1_COMMON *cm = &cpi->common; |
| MV_REFERENCE_FRAME ref_frame; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| // Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1). |
| if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { |
| const YV12_BUFFER_CONFIG *const ref = |
| get_ref_frame_yv12_buf(cm, ref_frame); |
| |
| if (ref == NULL) { |
| cpi->scaled_ref_buf[ref_frame - 1] = NULL; |
| continue; |
| } |
| |
| // FPMT does not support scaling yet. |
| assert(ref->y_crop_width == cm->width && |
| ref->y_crop_height == cm->height); |
| |
| RefCntBuffer *buf = get_ref_frame_buf(cm, ref_frame); |
| cpi->scaled_ref_buf[ref_frame - 1] = buf; |
| for (int i = 0; i < cm->buffer_pool->num_frame_bufs; ++i) { |
| if (&cm->buffer_pool->frame_bufs[i] == buf) { |
| *ref_buffers_used_map |= (1 << i); |
| } |
| } |
| } else { |
| if (!has_no_stats_stage(cpi)) cpi->scaled_ref_buf[ref_frame - 1] = NULL; |
| } |
| } |
| } |
| |
| // Increments the ref_count of frame buffers referenced by cpi->scaled_ref_buf |
| // corresponding to frames in a parallel encode set. |
| void av1_increment_scaled_ref_counts_fpmt(BufferPool *buffer_pool, |
| int ref_buffers_used_map) { |
| for (int i = 0; i < buffer_pool->num_frame_bufs; ++i) { |
| if (ref_buffers_used_map & (1 << i)) { |
| ++buffer_pool->frame_bufs[i].ref_count; |
| } |
| } |
| } |
| |
| // Releases cpi->scaled_ref_buf corresponding to frames in a parallel encode |
| // set. |
| void av1_release_scaled_references_fpmt(AV1_COMP *cpi) { |
| // TODO(isbs): only refresh the necessary frames, rather than all of them |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| RefCntBuffer *const buf = cpi->scaled_ref_buf[i]; |
| if (buf != NULL) { |
| cpi->scaled_ref_buf[i] = NULL; |
| } |
| } |
| } |
| |
| // Decrements the ref_count of frame buffers referenced by cpi->scaled_ref_buf |
| // corresponding to frames in a parallel encode set. |
| void av1_decrement_ref_counts_fpmt(BufferPool *buffer_pool, |
| int ref_buffers_used_map) { |
| for (int i = 0; i < buffer_pool->num_frame_bufs; ++i) { |
| if (ref_buffers_used_map & (1 << i)) { |
| --buffer_pool->frame_bufs[i].ref_count; |
| } |
| } |
| } |
| |
| // Initialize parallel frame contexts with screen content decisions. |
| void av1_init_sc_decisions(AV1_PRIMARY *const ppi) { |
| AV1_COMP *const first_cpi = ppi->cpi; |
| for (int i = 1; i < ppi->num_fp_contexts; ++i) { |
| AV1_COMP *cur_cpi = ppi->parallel_cpi[i]; |
| cur_cpi->common.features.allow_screen_content_tools = |
| first_cpi->common.features.allow_screen_content_tools; |
| cur_cpi->common.features.allow_intrabc = |
| first_cpi->common.features.allow_intrabc; |
| cur_cpi->use_screen_content_tools = first_cpi->use_screen_content_tools; |
| cur_cpi->is_screen_content_type = first_cpi->is_screen_content_type; |
| } |
| } |
| |
| AV1_COMP *av1_get_parallel_frame_enc_data(AV1_PRIMARY *const ppi, |
| AV1_COMP_DATA *const first_cpi_data) { |
| int cpi_idx = 0; |
| |
| // Loop over parallel_cpi to find the cpi that processed the current |
| // gf_frame_index ahead of time. |
| for (int i = 1; i < ppi->num_fp_contexts; i++) { |
| if (ppi->cpi->gf_frame_index == ppi->parallel_cpi[i]->gf_frame_index) { |
| cpi_idx = i; |
| break; |
| } |
| } |
| |
| assert(cpi_idx > 0); |
| assert(!ppi->parallel_cpi[cpi_idx]->common.show_existing_frame); |
| |
| // Release the previously-used frame-buffer. |
| if (ppi->cpi->common.cur_frame != NULL) { |
| --ppi->cpi->common.cur_frame->ref_count; |
| ppi->cpi->common.cur_frame = NULL; |
| } |
| |
| // Swap the appropriate parallel_cpi with the parallel_cpi[0]. |
| ppi->cpi = ppi->parallel_cpi[cpi_idx]; |
| ppi->parallel_cpi[cpi_idx] = ppi->parallel_cpi[0]; |
| ppi->parallel_cpi[0] = ppi->cpi; |
| |
| // Copy appropriate parallel_frames_data to local data. |
| { |
| AV1_COMP_DATA *data = &ppi->parallel_frames_data[cpi_idx - 1]; |
| assert(data->frame_size > 0); |
| assert(first_cpi_data->cx_data_sz > data->frame_size); |
| |
| first_cpi_data->lib_flags = data->lib_flags; |
| first_cpi_data->ts_frame_start = data->ts_frame_start; |
| first_cpi_data->ts_frame_end = data->ts_frame_end; |
| memcpy(first_cpi_data->cx_data, data->cx_data, data->frame_size); |
| first_cpi_data->frame_size = data->frame_size; |
| if (ppi->cpi->common.show_frame) { |
| first_cpi_data->pop_lookahead = 1; |
| } |
| } |
| |
| return ppi->cpi; |
| } |
| |
| // Initialises frames belonging to a parallel encode set. |
| int av1_init_parallel_frame_context(const AV1_COMP_DATA *const first_cpi_data, |
| AV1_PRIMARY *const ppi, |
| int *ref_buffers_used_map) { |
| AV1_COMP *const first_cpi = ppi->cpi; |
| GF_GROUP *const gf_group = &ppi->gf_group; |
| int gf_index_start = first_cpi->gf_frame_index; |
| assert(gf_group->frame_parallel_level[gf_index_start] == 1); |
| int parallel_frame_count = 0; |
| int cur_frame_num = first_cpi->common.current_frame.frame_number; |
| int show_frame_count = first_cpi->frame_index_set.show_frame_count; |
| int frames_since_key = first_cpi->rc.frames_since_key; |
| int frames_to_key = first_cpi->rc.frames_to_key; |
| int frames_to_fwd_kf = first_cpi->rc.frames_to_fwd_kf; |
| int cur_frame_disp = cur_frame_num + gf_group->arf_src_offset[gf_index_start]; |
| const FIRSTPASS_STATS *stats_in = first_cpi->twopass_frame.stats_in; |
| |
| assert(*ref_buffers_used_map == 0); |
| |
| // Release the previously used frame-buffer by a frame_parallel_level 1 frame. |
| if (first_cpi->common.cur_frame != NULL) { |
| --first_cpi->common.cur_frame->ref_count; |
| first_cpi->common.cur_frame = NULL; |
| } |
| |
| RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]; |
| RefFrameMapPair first_ref_frame_map_pairs[REF_FRAMES]; |
| init_ref_map_pair(first_cpi, first_ref_frame_map_pairs); |
| memcpy(ref_frame_map_pairs, first_ref_frame_map_pairs, |
| sizeof(RefFrameMapPair) * REF_FRAMES); |
| |
| // Store the reference refresh index of frame_parallel_level 1 frame in a |
| // parallel encode set of lower layer frames. |
| if (gf_group->update_type[gf_index_start] == INTNL_ARF_UPDATE) { |
| first_cpi->ref_refresh_index = av1_calc_refresh_idx_for_intnl_arf( |
| first_cpi, ref_frame_map_pairs, gf_index_start); |
| assert(first_cpi->ref_refresh_index != INVALID_IDX && |
| first_cpi->ref_refresh_index < REF_FRAMES); |
| first_cpi->refresh_idx_available = true; |
| // Update ref_frame_map_pairs. |
| ref_frame_map_pairs[first_cpi->ref_refresh_index].disp_order = |
| gf_group->display_idx[gf_index_start]; |
| ref_frame_map_pairs[first_cpi->ref_refresh_index].pyr_level = |
| gf_group->layer_depth[gf_index_start]; |
| } |
| |
| // Set do_frame_data_update flag as false for frame_parallel_level 1 frame. |
| first_cpi->do_frame_data_update = false; |
| if (gf_group->arf_src_offset[gf_index_start] == 0) { |
| first_cpi->time_stamps.prev_ts_start = ppi->ts_start_last_show_frame; |
| first_cpi->time_stamps.prev_ts_end = ppi->ts_end_last_show_frame; |
| } |
| |
| av1_get_ref_frames(first_ref_frame_map_pairs, cur_frame_disp, first_cpi, |
| gf_index_start, 1, first_cpi->common.remapped_ref_idx); |
| |
| av1_scale_references_fpmt(first_cpi, ref_buffers_used_map); |
| parallel_frame_count++; |
| |
| // Iterate through the GF_GROUP to find the remaining frame_parallel_level 2 |
| // frames which are part of the current parallel encode set and initialize the |
| // required cpi elements. |
| for (int i = gf_index_start + 1; i < gf_group->size; i++) { |
| // Update frame counters if previous frame was show frame or show existing |
| // frame. |
| if (gf_group->arf_src_offset[i - 1] == 0) { |
| cur_frame_num++; |
| show_frame_count++; |
| if (frames_to_fwd_kf <= 0) |
| frames_to_fwd_kf = first_cpi->oxcf.kf_cfg.fwd_kf_dist; |
| if (frames_to_key) { |
| frames_since_key++; |
| frames_to_key--; |
| frames_to_fwd_kf--; |
| } |
| stats_in++; |
| } |
| cur_frame_disp = cur_frame_num + gf_group->arf_src_offset[i]; |
| if (gf_group->frame_parallel_level[i] == 2) { |
| AV1_COMP *cur_cpi = ppi->parallel_cpi[parallel_frame_count]; |
| AV1_COMP_DATA *cur_cpi_data = |
| &ppi->parallel_frames_data[parallel_frame_count - 1]; |
| cur_cpi->gf_frame_index = i; |
| cur_cpi->framerate = first_cpi->framerate; |
| cur_cpi->common.current_frame.frame_number = cur_frame_num; |
| cur_cpi->common.current_frame.frame_type = gf_group->frame_type[i]; |
| cur_cpi->frame_index_set.show_frame_count = show_frame_count; |
| cur_cpi->rc.frames_since_key = frames_since_key; |
| cur_cpi->rc.frames_to_key = frames_to_key; |
| cur_cpi->rc.frames_to_fwd_kf = frames_to_fwd_kf; |
| cur_cpi->rc.active_worst_quality = first_cpi->rc.active_worst_quality; |
| cur_cpi->rc.avg_frame_bandwidth = first_cpi->rc.avg_frame_bandwidth; |
| cur_cpi->rc.max_frame_bandwidth = first_cpi->rc.max_frame_bandwidth; |
| cur_cpi->rc.min_frame_bandwidth = first_cpi->rc.min_frame_bandwidth; |
| cur_cpi->rc.intervals_till_gf_calculate_due = |
| first_cpi->rc.intervals_till_gf_calculate_due; |
| cur_cpi->mv_search_params.max_mv_magnitude = |
| first_cpi->mv_search_params.max_mv_magnitude; |
| if (gf_group->update_type[cur_cpi->gf_frame_index] == INTNL_ARF_UPDATE) { |
| cur_cpi->common.lf.mode_ref_delta_enabled = 1; |
| } |
| cur_cpi->do_frame_data_update = false; |
| // Initialize prev_ts_start and prev_ts_end for show frame(s) and show |
| // existing frame(s). |
| if (gf_group->arf_src_offset[i] == 0) { |
| // Choose source of prev frame. |
| int src_index = gf_group->src_offset[i]; |
| struct lookahead_entry *prev_source = av1_lookahead_peek( |
| ppi->lookahead, src_index - 1, cur_cpi->compressor_stage); |
| // Save timestamps of prev frame. |
| cur_cpi->time_stamps.prev_ts_start = prev_source->ts_start; |
| cur_cpi->time_stamps.prev_ts_end = prev_source->ts_end; |
| } |
| cur_cpi->time_stamps.first_ts_start = |
| first_cpi->time_stamps.first_ts_start; |
| |
| memcpy(cur_cpi->common.ref_frame_map, first_cpi->common.ref_frame_map, |
| sizeof(first_cpi->common.ref_frame_map)); |
| cur_cpi_data->lib_flags = 0; |
| cur_cpi_data->timestamp_ratio = first_cpi_data->timestamp_ratio; |
| cur_cpi_data->flush = first_cpi_data->flush; |
| cur_cpi_data->frame_size = 0; |
| if (gf_group->update_type[gf_index_start] == INTNL_ARF_UPDATE) { |
| // If the first frame in a parallel encode set is INTNL_ARF_UPDATE |
| // frame, initialize lib_flags of frame_parallel_level 2 frame in the |
| // set with that of frame_parallel_level 1 frame. |
| cur_cpi_data->lib_flags = first_cpi_data->lib_flags; |
| // Store the reference refresh index of frame_parallel_level 2 frame in |
| // a parallel encode set of lower layer frames. |
| cur_cpi->ref_refresh_index = |
| av1_calc_refresh_idx_for_intnl_arf(cur_cpi, ref_frame_map_pairs, i); |
| cur_cpi->refresh_idx_available = true; |
| // Skip the reference frame which will be refreshed by |
| // frame_parallel_level 1 frame in a parallel encode set of lower layer |
| // frames. |
| cur_cpi->ref_idx_to_skip = first_cpi->ref_refresh_index; |
| } else { |
| cur_cpi->ref_idx_to_skip = INVALID_IDX; |
| cur_cpi->ref_refresh_index = INVALID_IDX; |
| cur_cpi->refresh_idx_available = false; |
| } |
| cur_cpi->twopass_frame.stats_in = stats_in; |
| |
| av1_get_ref_frames(first_ref_frame_map_pairs, cur_frame_disp, cur_cpi, i, |
| 1, cur_cpi->common.remapped_ref_idx); |
| av1_scale_references_fpmt(cur_cpi, ref_buffers_used_map); |
| parallel_frame_count++; |
| } |
| |
| // Set do_frame_data_update to true for the last frame_parallel_level 2 |
| // frame in the current parallel encode set. |
| if (i == (gf_group->size - 1) || |
| (gf_group->frame_parallel_level[i + 1] == 0 && |
| (gf_group->update_type[i + 1] == ARF_UPDATE || |
| gf_group->update_type[i + 1] == INTNL_ARF_UPDATE)) || |
| gf_group->frame_parallel_level[i + 1] == 1) { |
| ppi->parallel_cpi[parallel_frame_count - 1]->do_frame_data_update = true; |
| break; |
| } |
| } |
| |
| av1_increment_scaled_ref_counts_fpmt(first_cpi->common.buffer_pool, |
| *ref_buffers_used_map); |
| |
| // Return the number of frames in the parallel encode set. |
| return parallel_frame_count; |
| } |
| |
| int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest) { |
| AV1_COMMON *cm = &cpi->common; |
| if (!cm->show_frame) { |
| return -1; |
| } else { |
| int ret; |
| if (cm->cur_frame != NULL && !cpi->oxcf.algo_cfg.skip_postproc_filtering) { |
| *dest = cm->cur_frame->buf; |
| dest->y_width = cm->width; |
| dest->y_height = cm->height; |
| dest->uv_width = cm->width >> cm->seq_params->subsampling_x; |
| dest->uv_height = cm->height >> cm->seq_params->subsampling_y; |
| ret = 0; |
| } else { |
| ret = -1; |
| } |
| return ret; |
| } |
| } |
| |
| int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame) { |
| if (cpi->last_show_frame_buf == NULL || |
| cpi->oxcf.algo_cfg.skip_postproc_filtering) |
| return -1; |
| |
| *frame = cpi->last_show_frame_buf->buf; |
| return 0; |
| } |
| |
| aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm, |
| YV12_BUFFER_CONFIG *new_frame, |
| YV12_BUFFER_CONFIG *sd) { |
| const int num_planes = av1_num_planes(cm); |
| if (!equal_dimensions_and_border(new_frame, sd)) |
| aom_internal_error(cm->error, AOM_CODEC_ERROR, |
| "Incorrect buffer dimensions"); |
| else |
| aom_yv12_copy_frame(new_frame, sd, num_planes); |
| |
| return cm->error->error_code; |
| } |
| |
| int av1_set_internal_size(AV1EncoderConfig *const oxcf, |
| ResizePendingParams *resize_pending_params, |
| AOM_SCALING_MODE horiz_mode, |
| AOM_SCALING_MODE vert_mode) { |
| int hr = 0, hs = 0, vr = 0, vs = 0; |
| |
| // Checks for invalid AOM_SCALING_MODE values. |
| if (horiz_mode > AOME_ONETHREE || vert_mode > AOME_ONETHREE) return -1; |
| |
| Scale2Ratio(horiz_mode, &hr, &hs); |
| Scale2Ratio(vert_mode, &vr, &vs); |
| |
| // always go to the next whole number |
| resize_pending_params->width = (hs - 1 + oxcf->frm_dim_cfg.width * hr) / hs; |
| resize_pending_params->height = (vs - 1 + oxcf->frm_dim_cfg.height * vr) / vs; |
| |
| if (horiz_mode != AOME_NORMAL || vert_mode != AOME_NORMAL) { |
| oxcf->resize_cfg.resize_mode = RESIZE_FIXED; |
| oxcf->algo_cfg.enable_tpl_model = 0; |
| } |
| return 0; |
| } |
| |
| int av1_get_quantizer(AV1_COMP *cpi) { |
| return cpi->common.quant_params.base_qindex; |
| } |
| |
| int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *frame_size) { |
| size_t output_size = 0; |
| size_t total_bytes_read = 0; |
| size_t remaining_size = *frame_size; |
| uint8_t *buff_ptr = buffer; |
| |
| // go through each OBUs |
| while (total_bytes_read < *frame_size) { |
| uint8_t saved_obu_header[2]; |
| uint64_t obu_payload_size; |
| size_t length_of_payload_size; |
| size_t length_of_obu_size; |
| uint32_t obu_header_size = (buff_ptr[0] >> 2) & 0x1 ? 2 : 1; |
| size_t obu_bytes_read = obu_header_size; // bytes read for current obu |
| |
| // save the obu header (1 or 2 bytes) |
| memmove(saved_obu_header, buff_ptr, obu_header_size); |
| // clear the obu_has_size_field |
| saved_obu_header[0] = saved_obu_header[0] & (~0x2); |
| |
| // get the payload_size and length of payload_size |
| if (aom_uleb_decode(buff_ptr + obu_header_size, remaining_size, |
| &obu_payload_size, &length_of_payload_size) != 0) { |
| return AOM_CODEC_ERROR; |
| } |
| obu_bytes_read += length_of_payload_size; |
| |
| // calculate the length of size of the obu header plus payload |
| length_of_obu_size = |
| aom_uleb_size_in_bytes((uint64_t)(obu_header_size + obu_payload_size)); |
| |
| // move the rest of data to new location |
| memmove(buff_ptr + length_of_obu_size + obu_header_size, |
| buff_ptr + obu_bytes_read, remaining_size - obu_bytes_read); |
| obu_bytes_read += (size_t)obu_payload_size; |
| |
| // write the new obu size |
| const uint64_t obu_size = obu_header_size + obu_payload_size; |
| size_t coded_obu_size; |
| if (aom_uleb_encode(obu_size, sizeof(obu_size), buff_ptr, |
| &coded_obu_size) != 0) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| // write the saved (modified) obu_header following obu size |
| memmove(buff_ptr + length_of_obu_size, saved_obu_header, obu_header_size); |
| |
| total_bytes_read += obu_bytes_read; |
| remaining_size -= obu_bytes_read; |
| buff_ptr += length_of_obu_size + obu_size; |
| output_size += length_of_obu_size + (size_t)obu_size; |
| } |
| |
| *frame_size = output_size; |
| return AOM_CODEC_OK; |
| } |
| |
| static void rtc_set_updates_ref_frame_config( |
| ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags, |
| RTC_REF *const rtc_ref) { |
| ext_refresh_frame_flags->update_pending = 1; |
| ext_refresh_frame_flags->last_frame = rtc_ref->refresh[rtc_ref->ref_idx[0]]; |
| ext_refresh_frame_flags->golden_frame = rtc_ref->refresh[rtc_ref->ref_idx[3]]; |
| ext_refresh_frame_flags->bwd_ref_frame = |
| rtc_ref->refresh[rtc_ref->ref_idx[4]]; |
| ext_refresh_frame_flags->alt2_ref_frame = |
| rtc_ref->refresh[rtc_ref->ref_idx[5]]; |
| ext_refresh_frame_flags->alt_ref_frame = |
| rtc_ref->refresh[rtc_ref->ref_idx[6]]; |
| rtc_ref->non_reference_frame = 1; |
| for (int i = 0; i < REF_FRAMES; i++) { |
| if (rtc_ref->refresh[i] == 1) { |
| rtc_ref->non_reference_frame = 0; |
| break; |
| } |
| } |
| } |
| |
| static int rtc_set_references_external_ref_frame_config(AV1_COMP *cpi) { |
| // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3), |
| // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6). |
| int ref = AOM_REFFRAME_ALL; |
| for (int i = 0; i < INTER_REFS_PER_FRAME; i++) { |
| if (!cpi->ppi->rtc_ref.reference[i]) ref ^= (1 << i); |
| } |
| return ref; |
| } |
| |
| void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags) { |
| // TODO(yunqingwang): For what references to use, external encoding flags |
| // should be consistent with internal reference frame selection. Need to |
| // ensure that there is not conflict between the two. In AV1 encoder, the |
| // priority rank for 7 reference frames are: LAST, ALTREF, LAST2, LAST3, |
| // GOLDEN, BWDREF, ALTREF2. |
| |
| ExternalFlags *const ext_flags = &cpi->ext_flags; |
| ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = |
| &ext_flags->refresh_frame; |
| ext_flags->ref_frame_flags = AOM_REFFRAME_ALL; |
| if (flags & |
| (AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 | |
| AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_REF_BWD | |
| AOM_EFLAG_NO_REF_ARF2)) { |
| int ref = AOM_REFFRAME_ALL; |
| |
| if (flags & AOM_EFLAG_NO_REF_LAST) ref ^= AOM_LAST_FLAG; |
| if (flags & AOM_EFLAG_NO_REF_LAST2) ref ^= AOM_LAST2_FLAG; |
| if (flags & AOM_EFLAG_NO_REF_LAST3) ref ^= AOM_LAST3_FLAG; |
| |
| if (flags & AOM_EFLAG_NO_REF_GF) ref ^= AOM_GOLD_FLAG; |
| |
| if (flags & AOM_EFLAG_NO_REF_ARF) { |
| ref ^= AOM_ALT_FLAG; |
| ref ^= AOM_BWD_FLAG; |
| ref ^= AOM_ALT2_FLAG; |
| } else { |
| if (flags & AOM_EFLAG_NO_REF_BWD) ref ^= AOM_BWD_FLAG; |
| if (flags & AOM_EFLAG_NO_REF_ARF2) ref ^= AOM_ALT2_FLAG; |
| } |
| |
| av1_use_as_reference(&ext_flags->ref_frame_flags, ref); |
| } else { |
| if (cpi->ppi->rtc_ref.set_ref_frame_config) { |
| int ref = rtc_set_references_external_ref_frame_config(cpi); |
| av1_use_as_reference(&ext_flags->ref_frame_flags, ref); |
| } |
| } |
| |
| if (flags & |
| (AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF)) { |
| int upd = AOM_REFFRAME_ALL; |
| |
| // Refreshing LAST/LAST2/LAST3 is handled by 1 common flag. |
| if (flags & AOM_EFLAG_NO_UPD_LAST) upd ^= AOM_LAST_FLAG; |
| |
| if (flags & AOM_EFLAG_NO_UPD_GF) upd ^= AOM_GOLD_FLAG; |
| |
| if (flags & AOM_EFLAG_NO_UPD_ARF) { |
| upd ^= AOM_ALT_FLAG; |
| upd ^= AOM_BWD_FLAG; |
| upd ^= AOM_ALT2_FLAG; |
| } |
| |
| ext_refresh_frame_flags->last_frame = (upd & AOM_LAST_FLAG) != 0; |
| ext_refresh_frame_flags->golden_frame = (upd & AOM_GOLD_FLAG) != 0; |
| ext_refresh_frame_flags->alt_ref_frame = (upd & AOM_ALT_FLAG) != 0; |
| ext_refresh_frame_flags->bwd_ref_frame = (upd & AOM_BWD_FLAG) != 0; |
| ext_refresh_frame_flags->alt2_ref_frame = (upd & AOM_ALT2_FLAG) != 0; |
| ext_refresh_frame_flags->update_pending = 1; |
| } else { |
| if (cpi->ppi->rtc_ref.set_ref_frame_config) |
| rtc_set_updates_ref_frame_config(ext_refresh_frame_flags, |
| &cpi->ppi->rtc_ref); |
| else |
| ext_refresh_frame_flags->update_pending = 0; |
| } |
| |
| ext_flags->use_ref_frame_mvs = cpi->oxcf.tool_cfg.enable_ref_frame_mvs & |
| ((flags & AOM_EFLAG_NO_REF_FRAME_MVS) == 0); |
| ext_flags->use_error_resilient = cpi->oxcf.tool_cfg.error_resilient_mode | |
| ((flags & AOM_EFLAG_ERROR_RESILIENT) != 0); |
| ext_flags->use_s_frame = |
| cpi->oxcf.kf_cfg.enable_sframe | ((flags & AOM_EFLAG_SET_S_FRAME) != 0); |
| ext_flags->use_primary_ref_none = |
| (flags & AOM_EFLAG_SET_PRIMARY_REF_NONE) != 0; |
| |
| if (flags & AOM_EFLAG_NO_UPD_ENTROPY) { |
| update_entropy(&ext_flags->refresh_frame_context, |
| &ext_flags->refresh_frame_context_pending, 0); |
| } |
| } |
| |
| aom_fixed_buf_t *av1_get_global_headers(AV1_PRIMARY *ppi) { |
| if (!ppi) return NULL; |
| |
| uint8_t header_buf[512] = { 0 }; |
| const uint32_t sequence_header_size = |
| av1_write_sequence_header_obu(&ppi->seq_params, &header_buf[0]); |
| assert(sequence_header_size <= sizeof(header_buf)); |
| if (sequence_header_size == 0) return NULL; |
| |
| const size_t obu_header_size = 1; |
| const size_t size_field_size = aom_uleb_size_in_bytes(sequence_header_size); |
| const size_t payload_offset = obu_header_size + size_field_size; |
| |
| if (payload_offset + sequence_header_size > sizeof(header_buf)) return NULL; |
| memmove(&header_buf[payload_offset], &header_buf[0], sequence_header_size); |
| |
| if (av1_write_obu_header(&ppi->level_params, &ppi->cpi->frame_header_count, |
| OBU_SEQUENCE_HEADER, 0, |
| &header_buf[0]) != obu_header_size) { |
| return NULL; |
| } |
| |
| size_t coded_size_field_size = 0; |
| if (aom_uleb_encode(sequence_header_size, size_field_size, |
| &header_buf[obu_header_size], |
| &coded_size_field_size) != 0) { |
| return NULL; |
| } |
| assert(coded_size_field_size == size_field_size); |
| |
| aom_fixed_buf_t *global_headers = |
| (aom_fixed_buf_t *)malloc(sizeof(*global_headers)); |
| if (!global_headers) return NULL; |
| |
| const size_t global_header_buf_size = |
| obu_header_size + size_field_size + sequence_header_size; |
| |
| global_headers->buf = malloc(global_header_buf_size); |
| if (!global_headers->buf) { |
| free(global_headers); |
| return NULL; |
| } |
| |
| memcpy(global_headers->buf, &header_buf[0], global_header_buf_size); |
| global_headers->sz = global_header_buf_size; |
| return global_headers; |
| } |