| /* |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| #include <immintrin.h> // AVX2 |
| |
| #include "config/av1_rtcd.h" |
| #include "aom_dsp/x86/synonyms.h" |
| |
| static int64_t k_means_horizontal_sum_avx2(__m256i a) { |
| const __m128i low = _mm256_castsi256_si128(a); |
| const __m128i high = _mm256_extracti128_si256(a, 1); |
| const __m128i sum = _mm_add_epi64(low, high); |
| const __m128i sum_high = _mm_unpackhi_epi64(sum, sum); |
| int64_t res; |
| _mm_storel_epi64((__m128i *)&res, _mm_add_epi64(sum, sum_high)); |
| return res; |
| } |
| |
| void av1_calc_indices_dim1_avx2(const int16_t *data, const int16_t *centroids, |
| uint8_t *indices, int64_t *total_dist, int n, |
| int k) { |
| const __m256i v_zero = _mm256_setzero_si256(); |
| __m256i sum = _mm256_setzero_si256(); |
| __m256i cents[PALETTE_MAX_SIZE]; |
| for (int j = 0; j < k; ++j) { |
| cents[j] = _mm256_set1_epi16(centroids[j]); |
| } |
| |
| for (int i = 0; i < n; i += 16) { |
| const __m256i in = _mm256_loadu_si256((__m256i *)data); |
| __m256i ind = _mm256_setzero_si256(); |
| // Compute the distance to the first centroid. |
| __m256i d1 = _mm256_sub_epi16(in, cents[0]); |
| __m256i dist_min = _mm256_abs_epi16(d1); |
| |
| for (int j = 1; j < k; ++j) { |
| // Compute the distance to the centroid. |
| d1 = _mm256_sub_epi16(in, cents[j]); |
| const __m256i dist = _mm256_abs_epi16(d1); |
| // Compare to the minimal one. |
| const __m256i cmp = _mm256_cmpgt_epi16(dist_min, dist); |
| dist_min = _mm256_min_epi16(dist_min, dist); |
| const __m256i ind1 = _mm256_set1_epi16(j); |
| ind = _mm256_or_si256(_mm256_andnot_si256(cmp, ind), |
| _mm256_and_si256(cmp, ind1)); |
| } |
| |
| const __m256i p1 = _mm256_packus_epi16(ind, v_zero); |
| const __m256i px = _mm256_permute4x64_epi64(p1, 0x58); |
| const __m128i d2 = _mm256_extracti128_si256(px, 0); |
| |
| _mm_storeu_si128((__m128i *)indices, d2); |
| |
| if (total_dist) { |
| // Square, convert to 32 bit and add together. |
| dist_min = _mm256_madd_epi16(dist_min, dist_min); |
| // Convert to 64 bit and add to sum. |
| const __m256i dist1 = _mm256_unpacklo_epi32(dist_min, v_zero); |
| const __m256i dist2 = _mm256_unpackhi_epi32(dist_min, v_zero); |
| sum = _mm256_add_epi64(sum, dist1); |
| sum = _mm256_add_epi64(sum, dist2); |
| } |
| |
| indices += 16; |
| data += 16; |
| } |
| if (total_dist) { |
| *total_dist = k_means_horizontal_sum_avx2(sum); |
| } |
| } |
| |
| void av1_calc_indices_dim2_avx2(const int16_t *data, const int16_t *centroids, |
| uint8_t *indices, int64_t *total_dist, int n, |
| int k) { |
| const __m256i v_zero = _mm256_setzero_si256(); |
| const __m256i permute = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0); |
| __m256i sum = _mm256_setzero_si256(); |
| __m256i ind[2]; |
| __m256i cents[PALETTE_MAX_SIZE]; |
| for (int j = 0; j < k; ++j) { |
| const int16_t cx = centroids[2 * j], cy = centroids[2 * j + 1]; |
| cents[j] = _mm256_set_epi16(cy, cx, cy, cx, cy, cx, cy, cx, cy, cx, cy, cx, |
| cy, cx, cy, cx); |
| } |
| |
| for (int i = 0; i < n; i += 16) { |
| for (int l = 0; l < 2; ++l) { |
| const __m256i in = _mm256_loadu_si256((__m256i *)data); |
| ind[l] = _mm256_setzero_si256(); |
| // Compute the distance to the first centroid. |
| __m256i d1 = _mm256_sub_epi16(in, cents[0]); |
| __m256i dist_min = _mm256_madd_epi16(d1, d1); |
| |
| for (int j = 1; j < k; ++j) { |
| // Compute the distance to the centroid. |
| d1 = _mm256_sub_epi16(in, cents[j]); |
| const __m256i dist = _mm256_madd_epi16(d1, d1); |
| // Compare to the minimal one. |
| const __m256i cmp = _mm256_cmpgt_epi32(dist_min, dist); |
| dist_min = _mm256_min_epi32(dist_min, dist); |
| const __m256i ind1 = _mm256_set1_epi32(j); |
| ind[l] = _mm256_or_si256(_mm256_andnot_si256(cmp, ind[l]), |
| _mm256_and_si256(cmp, ind1)); |
| } |
| if (total_dist) { |
| // Convert to 64 bit and add to sum. |
| const __m256i dist1 = _mm256_unpacklo_epi32(dist_min, v_zero); |
| const __m256i dist2 = _mm256_unpackhi_epi32(dist_min, v_zero); |
| sum = _mm256_add_epi64(sum, dist1); |
| sum = _mm256_add_epi64(sum, dist2); |
| } |
| data += 16; |
| } |
| // Cast to 8 bit and store. |
| const __m256i d2 = _mm256_packus_epi32(ind[0], ind[1]); |
| const __m256i d3 = _mm256_packus_epi16(d2, v_zero); |
| const __m256i d4 = _mm256_permutevar8x32_epi32(d3, permute); |
| const __m128i d5 = _mm256_extracti128_si256(d4, 0); |
| _mm_storeu_si128((__m128i *)indices, d5); |
| indices += 16; |
| } |
| if (total_dist) { |
| *total_dist = k_means_horizontal_sum_avx2(sum); |
| } |
| } |