|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  |  | 
|  | #include "av1/common/enums.h" | 
|  |  | 
|  | #include "test/acm_random.h" | 
|  | #include "test/function_equivalence_test.h" | 
|  | #include "test/register_state_check.h" | 
|  |  | 
|  | #define WEDGE_WEIGHT_BITS 6 | 
|  | #define MAX_MASK_VALUE (1 << (WEDGE_WEIGHT_BITS)) | 
|  |  | 
|  | using libaom_test::ACMRandom; | 
|  | using libaom_test::FunctionEquivalenceTest; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | static const int16_t kInt13Max = (1 << 12) - 1; | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  | // av1_wedge_sse_from_residuals - functionality | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | class WedgeUtilsSSEFuncTest : public testing::Test { | 
|  | protected: | 
|  | WedgeUtilsSSEFuncTest() : rng_(ACMRandom::DeterministicSeed()) {} | 
|  |  | 
|  | static const int kIterations = 1000; | 
|  |  | 
|  | ACMRandom rng_; | 
|  | }; | 
|  |  | 
|  | static void equiv_blend_residuals(int16_t *r, const int16_t *r0, | 
|  | const int16_t *r1, const uint8_t *m, int N) { | 
|  | for (int i = 0; i < N; i++) { | 
|  | const int32_t m0 = m[i]; | 
|  | const int32_t m1 = MAX_MASK_VALUE - m0; | 
|  | const int16_t R = m0 * r0[i] + m1 * r1[i]; | 
|  | // Note that this rounding is designed to match the result | 
|  | // you would get when actually blending the 2 predictors and computing | 
|  | // the residuals. | 
|  | r[i] = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t equiv_sse_from_residuals(const int16_t *r0, const int16_t *r1, | 
|  | const uint8_t *m, int N) { | 
|  | uint64_t acc = 0; | 
|  | for (int i = 0; i < N; i++) { | 
|  | const int32_t m0 = m[i]; | 
|  | const int32_t m1 = MAX_MASK_VALUE - m0; | 
|  | const int16_t R = m0 * r0[i] + m1 * r1[i]; | 
|  | const int32_t r = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS); | 
|  | acc += r * r; | 
|  | } | 
|  | return acc; | 
|  | } | 
|  |  | 
|  | TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingEquiv) { | 
|  | DECLARE_ALIGNED(32, uint8_t, s[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, uint8_t, p0[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, uint8_t, p1[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, uint8_t, p[MAX_SB_SQUARE]); | 
|  |  | 
|  | DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, r_ref[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, r_tst[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); | 
|  |  | 
|  | for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) { | 
|  | s[i] = rng_.Rand8(); | 
|  | m[i] = rng_(MAX_MASK_VALUE + 1); | 
|  | } | 
|  |  | 
|  | const int w = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3); | 
|  | const int h = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3); | 
|  | const int N = w * h; | 
|  |  | 
|  | for (int j = 0; j < N; j++) { | 
|  | p0[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX); | 
|  | p1[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX); | 
|  | } | 
|  |  | 
|  | aom_blend_a64_mask(p, w, p0, w, p1, w, m, w, w, h, 0, 0); | 
|  |  | 
|  | aom_subtract_block(h, w, r0, w, s, w, p0, w); | 
|  | aom_subtract_block(h, w, r1, w, s, w, p1, w); | 
|  |  | 
|  | aom_subtract_block(h, w, r_ref, w, s, w, p, w); | 
|  | equiv_blend_residuals(r_tst, r0, r1, m, N); | 
|  |  | 
|  | for (int i = 0; i < N; ++i) ASSERT_EQ(r_ref[i], r_tst[i]); | 
|  |  | 
|  | uint64_t ref_sse = aom_sum_squares_i16(r_ref, N); | 
|  | uint64_t tst_sse = equiv_sse_from_residuals(r0, r1, m, N); | 
|  |  | 
|  | ASSERT_EQ(ref_sse, tst_sse); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t sse_from_residuals(const int16_t *r0, const int16_t *r1, | 
|  | const uint8_t *m, int N) { | 
|  | uint64_t acc = 0; | 
|  | for (int i = 0; i < N; i++) { | 
|  | const int32_t m0 = m[i]; | 
|  | const int32_t m1 = MAX_MASK_VALUE - m0; | 
|  | const int32_t r = m0 * r0[i] + m1 * r1[i]; | 
|  | acc += r * r; | 
|  | } | 
|  | return ROUND_POWER_OF_TWO(acc, 2 * WEDGE_WEIGHT_BITS); | 
|  | } | 
|  |  | 
|  | TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingMethod) { | 
|  | DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); | 
|  |  | 
|  | for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) { | 
|  | r1[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN; | 
|  | d[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN; | 
|  | m[i] = rng_(MAX_MASK_VALUE + 1); | 
|  | } | 
|  |  | 
|  | const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); | 
|  |  | 
|  | for (int i = 0; i < N; i++) r0[i] = r1[i] + d[i]; | 
|  |  | 
|  | const uint64_t ref_res = sse_from_residuals(r0, r1, m, N); | 
|  | const uint64_t tst_res = av1_wedge_sse_from_residuals(r1, d, m, N); | 
|  |  | 
|  | ASSERT_EQ(ref_res, tst_res); | 
|  | } | 
|  | } | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  | // av1_wedge_sse_from_residuals - optimizations | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | using FSSE = uint64_t (*)(const int16_t *r1, const int16_t *d, const uint8_t *m, | 
|  | int N); | 
|  | using TestFuncsFSSE = libaom_test::FuncParam<FSSE>; | 
|  |  | 
|  | class WedgeUtilsSSEOptTest : public FunctionEquivalenceTest<FSSE> { | 
|  | protected: | 
|  | static const int kIterations = 10000; | 
|  | }; | 
|  | GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(WedgeUtilsSSEOptTest); | 
|  |  | 
|  | TEST_P(WedgeUtilsSSEOptTest, RandomValues) { | 
|  | DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); | 
|  |  | 
|  | for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) { | 
|  | r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max; | 
|  | d[i] = rng_(2 * kInt13Max + 1) - kInt13Max; | 
|  | m[i] = rng_(MAX_MASK_VALUE + 1); | 
|  | } | 
|  |  | 
|  | const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); | 
|  |  | 
|  | const uint64_t ref_res = params_.ref_func(r1, d, m, N); | 
|  | uint64_t tst_res; | 
|  | API_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N)); | 
|  |  | 
|  | ASSERT_EQ(ref_res, tst_res); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(WedgeUtilsSSEOptTest, ExtremeValues) { | 
|  | DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); | 
|  |  | 
|  | for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { | 
|  | if (rng_(2)) { | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = kInt13Max; | 
|  | } else { | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = -kInt13Max; | 
|  | } | 
|  |  | 
|  | if (rng_(2)) { | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = kInt13Max; | 
|  | } else { | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = -kInt13Max; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE; | 
|  |  | 
|  | const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); | 
|  |  | 
|  | const uint64_t ref_res = params_.ref_func(r1, d, m, N); | 
|  | uint64_t tst_res; | 
|  | API_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N)); | 
|  |  | 
|  | ASSERT_EQ(ref_res, tst_res); | 
|  | } | 
|  | } | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  | // av1_wedge_sign_from_residuals | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | using FSign = int8_t (*)(const int16_t *ds, const uint8_t *m, int N, | 
|  | int64_t limit); | 
|  | using TestFuncsFSign = libaom_test::FuncParam<FSign>; | 
|  |  | 
|  | class WedgeUtilsSignOptTest : public FunctionEquivalenceTest<FSign> { | 
|  | protected: | 
|  | static const int kIterations = 10000; | 
|  | static const int kMaxSize = 8196;  // Size limited by SIMD implementation. | 
|  | }; | 
|  | GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(WedgeUtilsSignOptTest); | 
|  |  | 
|  | TEST_P(WedgeUtilsSignOptTest, RandomValues) { | 
|  | DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); | 
|  |  | 
|  | for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) { | 
|  | r0[i] = rng_(2 * kInt13Max + 1) - kInt13Max; | 
|  | r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max; | 
|  | m[i] = rng_(MAX_MASK_VALUE + 1); | 
|  | } | 
|  |  | 
|  | const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE); | 
|  | const int N = 64 * (rng_(maxN / 64 - 1) + 1); | 
|  |  | 
|  | int64_t limit; | 
|  | limit = (int64_t)aom_sum_squares_i16(r0, N); | 
|  | limit -= (int64_t)aom_sum_squares_i16(r1, N); | 
|  | limit *= (1 << WEDGE_WEIGHT_BITS) / 2; | 
|  |  | 
|  | for (int i = 0; i < N; i++) | 
|  | ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX); | 
|  |  | 
|  | const int ref_res = params_.ref_func(ds, m, N, limit); | 
|  | int tst_res; | 
|  | API_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit)); | 
|  |  | 
|  | ASSERT_EQ(ref_res, tst_res); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(WedgeUtilsSignOptTest, ExtremeValues) { | 
|  | DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); | 
|  |  | 
|  | for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { | 
|  | switch (rng_(4)) { | 
|  | case 0: | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) { | 
|  | r0[i] = 0; | 
|  | r1[i] = kInt13Max; | 
|  | } | 
|  | break; | 
|  | case 1: | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) { | 
|  | r0[i] = kInt13Max; | 
|  | r1[i] = 0; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) { | 
|  | r0[i] = 0; | 
|  | r1[i] = -kInt13Max; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) { | 
|  | r0[i] = -kInt13Max; | 
|  | r1[i] = 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE; | 
|  |  | 
|  | const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE); | 
|  | const int N = 64 * (rng_(maxN / 64 - 1) + 1); | 
|  |  | 
|  | int64_t limit; | 
|  | limit = (int64_t)aom_sum_squares_i16(r0, N); | 
|  | limit -= (int64_t)aom_sum_squares_i16(r1, N); | 
|  | limit *= (1 << WEDGE_WEIGHT_BITS) / 2; | 
|  |  | 
|  | for (int i = 0; i < N; i++) | 
|  | ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX); | 
|  |  | 
|  | const int ref_res = params_.ref_func(ds, m, N, limit); | 
|  | int tst_res; | 
|  | API_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit)); | 
|  |  | 
|  | ASSERT_EQ(ref_res, tst_res); | 
|  | } | 
|  | } | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  | // av1_wedge_compute_delta_squares | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | using FDS = void (*)(int16_t *d, const int16_t *a, const int16_t *b, int N); | 
|  | using TestFuncsFDS = libaom_test::FuncParam<FDS>; | 
|  |  | 
|  | class WedgeUtilsDeltaSquaresOptTest : public FunctionEquivalenceTest<FDS> { | 
|  | protected: | 
|  | static const int kIterations = 10000; | 
|  | }; | 
|  | GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(WedgeUtilsDeltaSquaresOptTest); | 
|  |  | 
|  | TEST_P(WedgeUtilsDeltaSquaresOptTest, RandomValues) { | 
|  | DECLARE_ALIGNED(32, int16_t, a[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, b[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, d_ref[MAX_SB_SQUARE]); | 
|  | DECLARE_ALIGNED(32, int16_t, d_tst[MAX_SB_SQUARE]); | 
|  |  | 
|  | for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) { | 
|  | a[i] = rng_.Rand16Signed(); | 
|  | b[i] = rng_(2 * INT16_MAX + 1) - INT16_MAX; | 
|  | } | 
|  |  | 
|  | const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1); | 
|  |  | 
|  | memset(&d_ref, INT16_MAX, sizeof(d_ref)); | 
|  | memset(&d_tst, INT16_MAX, sizeof(d_tst)); | 
|  |  | 
|  | params_.ref_func(d_ref, a, b, N); | 
|  | API_REGISTER_STATE_CHECK(params_.tst_func(d_tst, a, b, N)); | 
|  |  | 
|  | for (int i = 0; i < MAX_SB_SQUARE; ++i) ASSERT_EQ(d_ref[i], d_tst[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if HAVE_SSE2 | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | SSE2, WedgeUtilsSSEOptTest, | 
|  | ::testing::Values(TestFuncsFSSE(av1_wedge_sse_from_residuals_c, | 
|  | av1_wedge_sse_from_residuals_sse2))); | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | SSE2, WedgeUtilsSignOptTest, | 
|  | ::testing::Values(TestFuncsFSign(av1_wedge_sign_from_residuals_c, | 
|  | av1_wedge_sign_from_residuals_sse2))); | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | SSE2, WedgeUtilsDeltaSquaresOptTest, | 
|  | ::testing::Values(TestFuncsFDS(av1_wedge_compute_delta_squares_c, | 
|  | av1_wedge_compute_delta_squares_sse2))); | 
|  | #endif  // HAVE_SSE2 | 
|  |  | 
|  | #if HAVE_NEON | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | NEON, WedgeUtilsSSEOptTest, | 
|  | ::testing::Values(TestFuncsFSSE(av1_wedge_sse_from_residuals_c, | 
|  | av1_wedge_sse_from_residuals_neon))); | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | NEON, WedgeUtilsSignOptTest, | 
|  | ::testing::Values(TestFuncsFSign(av1_wedge_sign_from_residuals_c, | 
|  | av1_wedge_sign_from_residuals_neon))); | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | NEON, WedgeUtilsDeltaSquaresOptTest, | 
|  | ::testing::Values(TestFuncsFDS(av1_wedge_compute_delta_squares_c, | 
|  | av1_wedge_compute_delta_squares_neon))); | 
|  | #endif  // HAVE_NEON | 
|  |  | 
|  | #if HAVE_AVX2 | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | AVX2, WedgeUtilsSSEOptTest, | 
|  | ::testing::Values(TestFuncsFSSE(av1_wedge_sse_from_residuals_sse2, | 
|  | av1_wedge_sse_from_residuals_avx2))); | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | AVX2, WedgeUtilsSignOptTest, | 
|  | ::testing::Values(TestFuncsFSign(av1_wedge_sign_from_residuals_sse2, | 
|  | av1_wedge_sign_from_residuals_avx2))); | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | AVX2, WedgeUtilsDeltaSquaresOptTest, | 
|  | ::testing::Values(TestFuncsFDS(av1_wedge_compute_delta_squares_sse2, | 
|  | av1_wedge_compute_delta_squares_avx2))); | 
|  | #endif  // HAVE_AVX2 | 
|  |  | 
|  | #if HAVE_SVE | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | SVE, WedgeUtilsSSEOptTest, | 
|  | ::testing::Values(TestFuncsFSSE(av1_wedge_sse_from_residuals_c, | 
|  | av1_wedge_sse_from_residuals_sve))); | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | SVE, WedgeUtilsSignOptTest, | 
|  | ::testing::Values(TestFuncsFSign(av1_wedge_sign_from_residuals_c, | 
|  | av1_wedge_sign_from_residuals_sve))); | 
|  | #endif  // HAVE_SVE | 
|  |  | 
|  | }  // namespace |