| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./vpx_scale_rtcd.h" |
| |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_scale/vpx_scale.h" |
| #include "vpx_scale/yv12config.h" |
| |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes() |
| #include "vp9/common/vp9_systemdependent.h" |
| |
| #include "vp9/encoder/vp9_aq_variance.h" |
| #include "vp9/encoder/vp9_block.h" |
| #include "vp9/encoder/vp9_encodeframe.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_encoder.h" |
| #include "vp9/encoder/vp9_extend.h" |
| #include "vp9/encoder/vp9_firstpass.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_quantize.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vp9/encoder/vp9_rdopt.h" |
| #include "vp9/encoder/vp9_variance.h" |
| |
| #define OUTPUT_FPF 0 |
| |
| #define IIFACTOR 12.5 |
| #define IIKFACTOR1 12.5 |
| #define IIKFACTOR2 15.0 |
| #define RMAX 512.0 |
| #define GF_RMAX 96.0 |
| #define ERR_DIVISOR 150.0 |
| #define MIN_DECAY_FACTOR 0.1 |
| #define SVC_FACTOR_PT_LOW 0.45 |
| #define FACTOR_PT_LOW 0.5 |
| #define FACTOR_PT_HIGH 0.9 |
| |
| #define KF_MB_INTRA_MIN 150 |
| #define GF_MB_INTRA_MIN 100 |
| |
| #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001) |
| |
| #define MIN_KF_BOOST 300 |
| |
| #if CONFIG_MULTIPLE_ARF |
| // Set MIN_GF_INTERVAL to 1 for the full decomposition. |
| #define MIN_GF_INTERVAL 2 |
| #else |
| #define MIN_GF_INTERVAL 4 |
| #endif |
| |
| #define LONG_TERM_VBR_CORRECTION |
| |
| static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) { |
| YV12_BUFFER_CONFIG temp = *a; |
| *a = *b; |
| *b = temp; |
| } |
| |
| static int gfboost_qadjust(int qindex) { |
| const double q = vp9_convert_qindex_to_q(qindex); |
| return (int)((0.00000828 * q * q * q) + |
| (-0.0055 * q * q) + |
| (1.32 * q) + 79.3); |
| } |
| |
| // Resets the first pass file to the given position using a relative seek from |
| // the current position. |
| static void reset_fpf_position(TWO_PASS *p, |
| const FIRSTPASS_STATS *position) { |
| p->stats_in = position; |
| } |
| |
| static int lookup_next_frame_stats(const TWO_PASS *p, |
| FIRSTPASS_STATS *next_frame) { |
| if (p->stats_in >= p->stats_in_end) |
| return EOF; |
| |
| *next_frame = *p->stats_in; |
| return 1; |
| } |
| |
| |
| // Read frame stats at an offset from the current position. |
| static int read_frame_stats(const TWO_PASS *p, |
| FIRSTPASS_STATS *frame_stats, int offset) { |
| const FIRSTPASS_STATS *fps_ptr = p->stats_in; |
| |
| // Check legality of offset. |
| if (offset >= 0) { |
| if (&fps_ptr[offset] >= p->stats_in_end) |
| return EOF; |
| } else if (offset < 0) { |
| if (&fps_ptr[offset] < p->stats_in_start) |
| return EOF; |
| } |
| |
| *frame_stats = fps_ptr[offset]; |
| return 1; |
| } |
| |
| static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { |
| if (p->stats_in >= p->stats_in_end) |
| return EOF; |
| |
| *fps = *p->stats_in; |
| ++p->stats_in; |
| return 1; |
| } |
| |
| static void output_stats(FIRSTPASS_STATS *stats, |
| struct vpx_codec_pkt_list *pktlist) { |
| struct vpx_codec_cx_pkt pkt; |
| pkt.kind = VPX_CODEC_STATS_PKT; |
| pkt.data.twopass_stats.buf = stats; |
| pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); |
| vpx_codec_pkt_list_add(pktlist, &pkt); |
| |
| // TEMP debug code |
| #if OUTPUT_FPF |
| { |
| FILE *fpfile; |
| fpfile = fopen("firstpass.stt", "a"); |
| |
| fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f" |
| "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" |
| "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n", |
| stats->frame, |
| stats->intra_error, |
| stats->coded_error, |
| stats->sr_coded_error, |
| stats->ssim_weighted_pred_err, |
| stats->pcnt_inter, |
| stats->pcnt_motion, |
| stats->pcnt_second_ref, |
| stats->pcnt_neutral, |
| stats->MVr, |
| stats->mvr_abs, |
| stats->MVc, |
| stats->mvc_abs, |
| stats->MVrv, |
| stats->MVcv, |
| stats->mv_in_out_count, |
| stats->new_mv_count, |
| stats->count, |
| stats->duration); |
| fclose(fpfile); |
| } |
| #endif |
| } |
| |
| static void zero_stats(FIRSTPASS_STATS *section) { |
| section->frame = 0.0; |
| section->intra_error = 0.0; |
| section->coded_error = 0.0; |
| section->sr_coded_error = 0.0; |
| section->pcnt_inter = 0.0; |
| section->pcnt_motion = 0.0; |
| section->pcnt_second_ref = 0.0; |
| section->pcnt_neutral = 0.0; |
| section->MVr = 0.0; |
| section->mvr_abs = 0.0; |
| section->MVc = 0.0; |
| section->mvc_abs = 0.0; |
| section->MVrv = 0.0; |
| section->MVcv = 0.0; |
| section->mv_in_out_count = 0.0; |
| section->new_mv_count = 0.0; |
| section->count = 0.0; |
| section->duration = 1.0; |
| section->spatial_layer_id = 0; |
| } |
| |
| static void accumulate_stats(FIRSTPASS_STATS *section, |
| const FIRSTPASS_STATS *frame) { |
| section->frame += frame->frame; |
| section->spatial_layer_id = frame->spatial_layer_id; |
| section->intra_error += frame->intra_error; |
| section->coded_error += frame->coded_error; |
| section->sr_coded_error += frame->sr_coded_error; |
| section->pcnt_inter += frame->pcnt_inter; |
| section->pcnt_motion += frame->pcnt_motion; |
| section->pcnt_second_ref += frame->pcnt_second_ref; |
| section->pcnt_neutral += frame->pcnt_neutral; |
| section->MVr += frame->MVr; |
| section->mvr_abs += frame->mvr_abs; |
| section->MVc += frame->MVc; |
| section->mvc_abs += frame->mvc_abs; |
| section->MVrv += frame->MVrv; |
| section->MVcv += frame->MVcv; |
| section->mv_in_out_count += frame->mv_in_out_count; |
| section->new_mv_count += frame->new_mv_count; |
| section->count += frame->count; |
| section->duration += frame->duration; |
| } |
| |
| static void subtract_stats(FIRSTPASS_STATS *section, |
| const FIRSTPASS_STATS *frame) { |
| section->frame -= frame->frame; |
| section->intra_error -= frame->intra_error; |
| section->coded_error -= frame->coded_error; |
| section->sr_coded_error -= frame->sr_coded_error; |
| section->pcnt_inter -= frame->pcnt_inter; |
| section->pcnt_motion -= frame->pcnt_motion; |
| section->pcnt_second_ref -= frame->pcnt_second_ref; |
| section->pcnt_neutral -= frame->pcnt_neutral; |
| section->MVr -= frame->MVr; |
| section->mvr_abs -= frame->mvr_abs; |
| section->MVc -= frame->MVc; |
| section->mvc_abs -= frame->mvc_abs; |
| section->MVrv -= frame->MVrv; |
| section->MVcv -= frame->MVcv; |
| section->mv_in_out_count -= frame->mv_in_out_count; |
| section->new_mv_count -= frame->new_mv_count; |
| section->count -= frame->count; |
| section->duration -= frame->duration; |
| } |
| |
| static void avg_stats(FIRSTPASS_STATS *section) { |
| if (section->count < 1.0) |
| return; |
| |
| section->intra_error /= section->count; |
| section->coded_error /= section->count; |
| section->sr_coded_error /= section->count; |
| section->pcnt_inter /= section->count; |
| section->pcnt_second_ref /= section->count; |
| section->pcnt_neutral /= section->count; |
| section->pcnt_motion /= section->count; |
| section->MVr /= section->count; |
| section->mvr_abs /= section->count; |
| section->MVc /= section->count; |
| section->mvc_abs /= section->count; |
| section->MVrv /= section->count; |
| section->MVcv /= section->count; |
| section->mv_in_out_count /= section->count; |
| section->duration /= section->count; |
| } |
| |
| // Calculate a modified Error used in distributing bits between easier and |
| // harder frames. |
| static double calculate_modified_err(const TWO_PASS *twopass, |
| const VP9EncoderConfig *oxcf, |
| const FIRSTPASS_STATS *this_frame) { |
| const FIRSTPASS_STATS *const stats = &twopass->total_stats; |
| const double av_err = stats->coded_error / stats->count; |
| const double modified_error = av_err * |
| pow(this_frame->coded_error / DOUBLE_DIVIDE_CHECK(av_err), |
| oxcf->two_pass_vbrbias / 100.0); |
| return fclamp(modified_error, |
| twopass->modified_error_min, twopass->modified_error_max); |
| } |
| |
| // This function returns the maximum target rate per frame. |
| static int frame_max_bits(const RATE_CONTROL *rc, |
| const VP9EncoderConfig *oxcf) { |
| int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * |
| (int64_t)oxcf->two_pass_vbrmax_section) / 100; |
| if (max_bits < 0) |
| max_bits = 0; |
| else if (max_bits > rc->max_frame_bandwidth) |
| max_bits = rc->max_frame_bandwidth; |
| |
| return (int)max_bits; |
| } |
| |
| void vp9_init_first_pass(VP9_COMP *cpi) { |
| zero_stats(&cpi->twopass.total_stats); |
| } |
| |
| void vp9_end_first_pass(VP9_COMP *cpi) { |
| if (cpi->use_svc && cpi->svc.number_temporal_layers == 1) { |
| int i; |
| for (i = 0; i < cpi->svc.number_spatial_layers; ++i) { |
| output_stats(&cpi->svc.layer_context[i].twopass.total_stats, |
| cpi->output_pkt_list); |
| } |
| } else { |
| output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list); |
| } |
| } |
| |
| static vp9_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { |
| switch (bsize) { |
| case BLOCK_8X8: |
| return vp9_mse8x8; |
| case BLOCK_16X8: |
| return vp9_mse16x8; |
| case BLOCK_8X16: |
| return vp9_mse8x16; |
| default: |
| return vp9_mse16x16; |
| } |
| } |
| |
| static unsigned int get_prediction_error(BLOCK_SIZE bsize, |
| const struct buf_2d *src, |
| const struct buf_2d *ref) { |
| unsigned int sse; |
| const vp9_variance_fn_t fn = get_block_variance_fn(bsize); |
| fn(src->buf, src->stride, ref->buf, ref->stride, &sse); |
| return sse; |
| } |
| |
| // Refine the motion search range according to the frame dimension |
| // for first pass test. |
| static int get_search_range(const VP9_COMMON *cm) { |
| int sr = 0; |
| const int dim = MIN(cm->width, cm->height); |
| |
| while ((dim << sr) < MAX_FULL_PEL_VAL) |
| ++sr; |
| return sr; |
| } |
| |
| static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| const MV *ref_mv, MV *best_mv, |
| int *best_motion_err) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MV tmp_mv = {0, 0}; |
| MV ref_mv_full = {ref_mv->row >> 3, ref_mv->col >> 3}; |
| int num00, tmp_err, n; |
| const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; |
| const int new_mv_mode_penalty = 256; |
| |
| int step_param = 3; |
| int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
| const int sr = get_search_range(&cpi->common); |
| step_param += sr; |
| further_steps -= sr; |
| |
| // Override the default variance function to use MSE. |
| v_fn_ptr.vf = get_block_variance_fn(bsize); |
| |
| // Center the initial step/diamond search on best mv. |
| tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, |
| step_param, |
| x->sadperbit16, &num00, &v_fn_ptr, ref_mv); |
| if (tmp_err < INT_MAX) |
| tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); |
| if (tmp_err < INT_MAX - new_mv_mode_penalty) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) { |
| *best_motion_err = tmp_err; |
| *best_mv = tmp_mv; |
| } |
| |
| // Carry out further step/diamond searches as necessary. |
| n = num00; |
| num00 = 0; |
| |
| while (n < further_steps) { |
| ++n; |
| |
| if (num00) { |
| --num00; |
| } else { |
| tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, |
| step_param + n, x->sadperbit16, |
| &num00, &v_fn_ptr, ref_mv); |
| if (tmp_err < INT_MAX) |
| tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); |
| if (tmp_err < INT_MAX - new_mv_mode_penalty) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) { |
| *best_motion_err = tmp_err; |
| *best_mv = tmp_mv; |
| } |
| } |
| } |
| } |
| |
| static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) { |
| if (2 * mb_col + 1 < cm->mi_cols) { |
| return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 |
| : BLOCK_16X8; |
| } else { |
| return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 |
| : BLOCK_8X8; |
| } |
| } |
| |
| static int find_fp_qindex() { |
| int i; |
| |
| for (i = 0; i < QINDEX_RANGE; ++i) |
| if (vp9_convert_qindex_to_q(i) >= 30.0) |
| break; |
| |
| if (i == QINDEX_RANGE) |
| i--; |
| |
| return i; |
| } |
| |
| static void set_first_pass_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if (!cpi->refresh_alt_ref_frame && |
| (cm->current_video_frame == 0 || |
| (cpi->frame_flags & FRAMEFLAGS_KEY))) { |
| cm->frame_type = KEY_FRAME; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| // Do not use periodic key frames. |
| cpi->rc.frames_to_key = INT_MAX; |
| } |
| |
| void vp9_first_pass(VP9_COMP *cpi) { |
| int mb_row, mb_col; |
| MACROBLOCK *const x = &cpi->mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TileInfo tile; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const PICK_MODE_CONTEXT *ctx = &cpi->pc_root->none; |
| int i; |
| |
| int recon_yoffset, recon_uvoffset; |
| YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); |
| YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); |
| YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); |
| int recon_y_stride = lst_yv12->y_stride; |
| int recon_uv_stride = lst_yv12->uv_stride; |
| int uv_mb_height = 16 >> (lst_yv12->y_height > lst_yv12->uv_height); |
| int64_t intra_error = 0; |
| int64_t coded_error = 0; |
| int64_t sr_coded_error = 0; |
| |
| int sum_mvr = 0, sum_mvc = 0; |
| int sum_mvr_abs = 0, sum_mvc_abs = 0; |
| int64_t sum_mvrs = 0, sum_mvcs = 0; |
| int mvcount = 0; |
| int intercount = 0; |
| int second_ref_count = 0; |
| int intrapenalty = 256; |
| int neutral_count = 0; |
| int new_mv_count = 0; |
| int sum_in_vectors = 0; |
| uint32_t lastmv_as_int = 0; |
| TWO_PASS *twopass = &cpi->twopass; |
| const MV zero_mv = {0, 0}; |
| const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; |
| FIRSTPASS_STATS fps; |
| |
| vp9_clear_system_state(); |
| |
| set_first_pass_params(cpi); |
| vp9_set_quantizer(cm, find_fp_qindex()); |
| |
| if (cpi->use_svc && cpi->svc.number_temporal_layers == 1) { |
| MV_REFERENCE_FRAME ref_frame = LAST_FRAME; |
| const YV12_BUFFER_CONFIG *scaled_ref_buf = NULL; |
| twopass = &cpi->svc.layer_context[cpi->svc.spatial_layer_id].twopass; |
| |
| vp9_scale_references(cpi); |
| |
| // Use either last frame or alt frame for motion search. |
| if (cpi->ref_frame_flags & VP9_LAST_FLAG) { |
| scaled_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME); |
| ref_frame = LAST_FRAME; |
| } else if (cpi->ref_frame_flags & VP9_ALT_FLAG) { |
| scaled_ref_buf = vp9_get_scaled_ref_frame(cpi, ALTREF_FRAME); |
| ref_frame = ALTREF_FRAME; |
| } |
| |
| if (scaled_ref_buf != NULL) { |
| // Update the stride since we are using scaled reference buffer |
| first_ref_buf = scaled_ref_buf; |
| recon_y_stride = first_ref_buf->y_stride; |
| recon_uv_stride = first_ref_buf->uv_stride; |
| uv_mb_height = 16 >> (first_ref_buf->y_height > first_ref_buf->uv_height); |
| } |
| |
| // Disable golden frame for svc first pass for now. |
| gld_yv12 = NULL; |
| set_ref_ptrs(cm, xd, ref_frame, NONE); |
| |
| cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source, |
| &cpi->scaled_source); |
| } |
| |
| vp9_setup_src_planes(x, cpi->Source, 0, 0); |
| vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL); |
| vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0); |
| |
| xd->mi = cm->mi_grid_visible; |
| xd->mi[0] = cm->mi; |
| |
| vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); |
| |
| vp9_frame_init_quantizer(cpi); |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][1]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; |
| p[i].eobs = ctx->eobs_pbuf[i][1]; |
| } |
| x->skip_recode = 0; |
| |
| vp9_init_mv_probs(cm); |
| vp9_initialize_rd_consts(cpi); |
| |
| // Tiling is ignored in the first pass. |
| vp9_tile_init(&tile, cm, 0, 0); |
| |
| for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { |
| int_mv best_ref_mv; |
| |
| best_ref_mv.as_int = 0; |
| |
| // Reset above block coeffs. |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height); |
| |
| // Set up limit values for motion vectors to prevent them extending |
| // outside the UMV borders. |
| x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); |
| x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) |
| + BORDER_MV_PIXELS_B16; |
| |
| for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { |
| int this_error; |
| const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
| double error_weight = 1.0; |
| const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); |
| |
| vp9_clear_system_state(); |
| |
| xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; |
| xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; |
| xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; |
| xd->left_available = (mb_col != 0); |
| xd->mi[0]->mbmi.sb_type = bsize; |
| xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME; |
| set_mi_row_col(xd, &tile, |
| mb_row << 1, num_8x8_blocks_high_lookup[bsize], |
| mb_col << 1, num_8x8_blocks_wide_lookup[bsize], |
| cm->mi_rows, cm->mi_cols); |
| |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| const int energy = vp9_block_energy(cpi, x, bsize); |
| error_weight = vp9_vaq_inv_q_ratio(energy); |
| } |
| |
| // Do intra 16x16 prediction. |
| x->skip_encode = 0; |
| xd->mi[0]->mbmi.mode = DC_PRED; |
| xd->mi[0]->mbmi.tx_size = use_dc_pred ? |
| (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; |
| vp9_encode_intra_block_plane(x, bsize, 0); |
| this_error = vp9_get_mb_ss(x->plane[0].src_diff); |
| |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_clear_system_state(); |
| this_error = (int)(this_error * error_weight); |
| } |
| |
| // Intrapenalty below deals with situations where the intra and inter |
| // error scores are very low (e.g. a plain black frame). |
| // We do not have special cases in first pass for 0,0 and nearest etc so |
| // all inter modes carry an overhead cost estimate for the mv. |
| // When the error score is very low this causes us to pick all or lots of |
| // INTRA modes and throw lots of key frames. |
| // This penalty adds a cost matching that of a 0,0 mv to the intra case. |
| this_error += intrapenalty; |
| |
| // Accumulate the intra error. |
| intra_error += (int64_t)this_error; |
| |
| // Set up limit values for motion vectors to prevent them extending |
| // outside the UMV borders. |
| x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); |
| x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; |
| |
| // Other than for the first frame do a motion search. |
| if (cm->current_video_frame > 0) { |
| int tmp_err, motion_error; |
| int_mv mv, tmp_mv; |
| int raw_motion_error; |
| struct buf_2d unscaled_last_source_buf_2d; |
| |
| xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; |
| motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &xd->plane[0].pre[0]); |
| |
| // compute the motion error of the zero motion vector using the last |
| // source frame as the reference |
| // skip the further motion search on reconstructed frame |
| // if this error is small |
| unscaled_last_source_buf_2d.buf = cpi->unscaled_last_source->y_buffer |
| + recon_yoffset; |
| unscaled_last_source_buf_2d.stride = |
| cpi->unscaled_last_source->y_stride; |
| raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &unscaled_last_source_buf_2d); |
| |
| // TODO(pengchong): Replace the hard-coded threshold |
| if (raw_motion_error > 25) { |
| // Assume 0,0 motion with no mv overhead. |
| mv.as_int = tmp_mv.as_int = 0; |
| |
| // Test last reference frame using the previous best mv as the |
| // starting point (best reference) for the search. |
| first_pass_motion_search(cpi, x, &best_ref_mv.as_mv, &mv.as_mv, |
| &motion_error); |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_clear_system_state(); |
| motion_error = (int)(motion_error * error_weight); |
| } |
| |
| // If the current best reference mv is not centered on 0,0 |
| // then do a 0,0 |
| // based search as well. |
| if (best_ref_mv.as_int) { |
| tmp_err = INT_MAX; |
| first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv, |
| &tmp_err); |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_clear_system_state(); |
| tmp_err = (int)(tmp_err * error_weight); |
| } |
| |
| if (tmp_err < motion_error) { |
| motion_error = tmp_err; |
| mv.as_int = tmp_mv.as_int; |
| } |
| } |
| |
| // Search in an older reference frame. |
| if (cm->current_video_frame > 1 && gld_yv12 != NULL) { |
| // Assume 0,0 motion with no mv overhead. |
| int gf_motion_error; |
| |
| xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; |
| gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &xd->plane[0].pre[0]); |
| |
| first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv, |
| &gf_motion_error); |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_clear_system_state(); |
| gf_motion_error = (int)(gf_motion_error * error_weight); |
| } |
| |
| if (gf_motion_error < motion_error && gf_motion_error < this_error) |
| ++second_ref_count; |
| |
| // Reset to last frame as reference buffer. |
| xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; |
| xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; |
| xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; |
| |
| // In accumulating a score for the older reference frame take the |
| // best of the motion predicted score and the intra coded error |
| // (just as will be done for) accumulation of "coded_error" for |
| // the last frame. |
| if (gf_motion_error < this_error) |
| sr_coded_error += gf_motion_error; |
| else |
| sr_coded_error += this_error; |
| } else { |
| sr_coded_error += motion_error; |
| } |
| } |
| // Start by assuming that intra mode is best. |
| best_ref_mv.as_int = 0; |
| |
| if (motion_error <= this_error) { |
| // Keep a count of cases where the inter and intra were very close |
| // and very low. This helps with scene cut detection for example in |
| // cropped clips with black bars at the sides or top and bottom. |
| if (((this_error - intrapenalty) * 9 <= motion_error * 10) && |
| this_error < 2 * intrapenalty) |
| ++neutral_count; |
| |
| mv.as_mv.row *= 8; |
| mv.as_mv.col *= 8; |
| this_error = motion_error; |
| xd->mi[0]->mbmi.mode = NEWMV; |
| xd->mi[0]->mbmi.mv[0] = mv; |
| xd->mi[0]->mbmi.tx_size = TX_4X4; |
| xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME; |
| xd->mi[0]->mbmi.ref_frame[1] = NONE; |
| vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize); |
| vp9_encode_sby_pass1(x, bsize); |
| sum_mvr += mv.as_mv.row; |
| sum_mvr_abs += abs(mv.as_mv.row); |
| sum_mvc += mv.as_mv.col; |
| sum_mvc_abs += abs(mv.as_mv.col); |
| sum_mvrs += mv.as_mv.row * mv.as_mv.row; |
| sum_mvcs += mv.as_mv.col * mv.as_mv.col; |
| ++intercount; |
| |
| best_ref_mv.as_int = mv.as_int; |
| |
| if (mv.as_int) { |
| ++mvcount; |
| |
| // Non-zero vector, was it different from the last non zero vector? |
| if (mv.as_int != lastmv_as_int) |
| ++new_mv_count; |
| lastmv_as_int = mv.as_int; |
| |
| // Does the row vector point inwards or outwards? |
| if (mb_row < cm->mb_rows / 2) { |
| if (mv.as_mv.row > 0) |
| --sum_in_vectors; |
| else if (mv.as_mv.row < 0) |
| ++sum_in_vectors; |
| } else if (mb_row > cm->mb_rows / 2) { |
| if (mv.as_mv.row > 0) |
| ++sum_in_vectors; |
| else if (mv.as_mv.row < 0) |
| --sum_in_vectors; |
| } |
| |
| // Does the col vector point inwards or outwards? |
| if (mb_col < cm->mb_cols / 2) { |
| if (mv.as_mv.col > 0) |
| --sum_in_vectors; |
| else if (mv.as_mv.col < 0) |
| ++sum_in_vectors; |
| } else if (mb_col > cm->mb_cols / 2) { |
| if (mv.as_mv.col > 0) |
| ++sum_in_vectors; |
| else if (mv.as_mv.col < 0) |
| --sum_in_vectors; |
| } |
| } |
| } |
| } else { |
| sr_coded_error += (int64_t)this_error; |
| } |
| coded_error += (int64_t)this_error; |
| |
| // Adjust to the next column of MBs. |
| x->plane[0].src.buf += 16; |
| x->plane[1].src.buf += uv_mb_height; |
| x->plane[2].src.buf += uv_mb_height; |
| |
| recon_yoffset += 16; |
| recon_uvoffset += uv_mb_height; |
| } |
| |
| // Adjust to the next row of MBs. |
| x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; |
| x->plane[1].src.buf += uv_mb_height * x->plane[1].src.stride - |
| uv_mb_height * cm->mb_cols; |
| x->plane[2].src.buf += uv_mb_height * x->plane[1].src.stride - |
| uv_mb_height * cm->mb_cols; |
| |
| vp9_clear_system_state(); |
| } |
| |
| vp9_clear_system_state(); |
| { |
| fps.frame = cm->current_video_frame; |
| fps.spatial_layer_id = cpi->svc.spatial_layer_id; |
| fps.intra_error = (double)(intra_error >> 8); |
| fps.coded_error = (double)(coded_error >> 8); |
| fps.sr_coded_error = (double)(sr_coded_error >> 8); |
| fps.count = 1.0; |
| fps.pcnt_inter = (double)intercount / cm->MBs; |
| fps.pcnt_second_ref = (double)second_ref_count / cm->MBs; |
| fps.pcnt_neutral = (double)neutral_count / cm->MBs; |
| |
| if (mvcount > 0) { |
| fps.MVr = (double)sum_mvr / mvcount; |
| fps.mvr_abs = (double)sum_mvr_abs / mvcount; |
| fps.MVc = (double)sum_mvc / mvcount; |
| fps.mvc_abs = (double)sum_mvc_abs / mvcount; |
| fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / mvcount)) / mvcount; |
| fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / mvcount)) / mvcount; |
| fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2); |
| fps.new_mv_count = new_mv_count; |
| fps.pcnt_motion = (double)mvcount / cm->MBs; |
| } else { |
| fps.MVr = 0.0; |
| fps.mvr_abs = 0.0; |
| fps.MVc = 0.0; |
| fps.mvc_abs = 0.0; |
| fps.MVrv = 0.0; |
| fps.MVcv = 0.0; |
| fps.mv_in_out_count = 0.0; |
| fps.new_mv_count = 0.0; |
| fps.pcnt_motion = 0.0; |
| } |
| |
| // TODO(paulwilkins): Handle the case when duration is set to 0, or |
| // something less than the full time between subsequent values of |
| // cpi->source_time_stamp. |
| fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start); |
| |
| // Don't want to do output stats with a stack variable! |
| output_stats(&fps, cpi->output_pkt_list); |
| accumulate_stats(&twopass->total_stats, &fps); |
| } |
| |
| // Copy the previous Last Frame back into gf and and arf buffers if |
| // the prediction is good enough... but also don't allow it to lag too far. |
| if ((twopass->sr_update_lag > 3) || |
| ((cm->current_video_frame > 0) && |
| (fps.pcnt_inter > 0.20) && |
| ((fps.intra_error / |
| DOUBLE_DIVIDE_CHECK(fps.coded_error)) > 2.0))) { |
| if (gld_yv12 != NULL) { |
| vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
| } |
| twopass->sr_update_lag = 1; |
| } else { |
| ++twopass->sr_update_lag; |
| } |
| |
| vp9_extend_frame_borders(new_yv12); |
| |
| if (cpi->use_svc && cpi->svc.number_temporal_layers == 1) { |
| vp9_update_reference_frames(cpi); |
| } else { |
| // Swap frame pointers so last frame refers to the frame we just compressed. |
| swap_yv12(lst_yv12, new_yv12); |
| } |
| |
| // Special case for the first frame. Copy into the GF buffer as a second |
| // reference. |
| if (cm->current_video_frame == 0 && gld_yv12 != NULL) { |
| vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
| } |
| |
| // Use this to see what the first pass reconstruction looks like. |
| if (0) { |
| char filename[512]; |
| FILE *recon_file; |
| snprintf(filename, sizeof(filename), "enc%04d.yuv", |
| (int)cm->current_video_frame); |
| |
| if (cm->current_video_frame == 0) |
| recon_file = fopen(filename, "wb"); |
| else |
| recon_file = fopen(filename, "ab"); |
| |
| (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); |
| fclose(recon_file); |
| } |
| |
| ++cm->current_video_frame; |
| } |
| |
| static double calc_correction_factor(double err_per_mb, |
| double err_divisor, |
| double pt_low, |
| double pt_high, |
| int q) { |
| const double error_term = err_per_mb / err_divisor; |
| |
| // Adjustment based on actual quantizer to power term. |
| const double power_term = MIN(vp9_convert_qindex_to_q(q) * 0.0125 + pt_low, |
| pt_high); |
| |
| // Calculate correction factor. |
| if (power_term < 1.0) |
| assert(error_term >= 0.0); |
| |
| return fclamp(pow(error_term, power_term), 0.05, 5.0); |
| } |
| |
| static int get_twopass_worst_quality(const VP9_COMP *cpi, |
| const FIRSTPASS_STATS *stats, |
| int section_target_bandwidth) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| |
| if (section_target_bandwidth <= 0) { |
| return rc->worst_quality; // Highest value allowed |
| } else { |
| const int num_mbs = cpi->common.MBs; |
| const double section_err = stats->coded_error / stats->count; |
| const double err_per_mb = section_err / num_mbs; |
| const double speed_term = 1.0 + 0.04 * oxcf->speed; |
| const int target_norm_bits_per_mb = ((uint64_t)section_target_bandwidth << |
| BPER_MB_NORMBITS) / num_mbs; |
| int q; |
| int is_svc_upper_layer = 0; |
| if (cpi->use_svc && cpi->svc.number_temporal_layers == 1 && |
| cpi->svc.spatial_layer_id > 0) { |
| is_svc_upper_layer = 1; |
| } |
| |
| // Try and pick a max Q that will be high enough to encode the |
| // content at the given rate. |
| for (q = rc->best_quality; q < rc->worst_quality; ++q) { |
| const double factor = |
| calc_correction_factor(err_per_mb, ERR_DIVISOR, |
| is_svc_upper_layer ? SVC_FACTOR_PT_LOW : |
| FACTOR_PT_LOW, FACTOR_PT_HIGH, q); |
| const int bits_per_mb = vp9_rc_bits_per_mb(INTER_FRAME, q, |
| factor * speed_term); |
| if (bits_per_mb <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| // Restriction on active max q for constrained quality mode. |
| if (cpi->oxcf.rc_mode == RC_MODE_CONSTRAINED_QUALITY) |
| q = MAX(q, oxcf->cq_level); |
| return q; |
| } |
| } |
| |
| extern void vp9_new_framerate(VP9_COMP *cpi, double framerate); |
| |
| void vp9_init_second_pass(VP9_COMP *cpi) { |
| SVC *const svc = &cpi->svc; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| const int is_spatial_svc = (svc->number_spatial_layers > 1) && |
| (svc->number_temporal_layers == 1); |
| TWO_PASS *const twopass = is_spatial_svc ? |
| &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass; |
| double frame_rate; |
| FIRSTPASS_STATS *stats; |
| |
| zero_stats(&twopass->total_stats); |
| zero_stats(&twopass->total_left_stats); |
| |
| if (!twopass->stats_in_end) |
| return; |
| |
| stats = &twopass->total_stats; |
| |
| *stats = *twopass->stats_in_end; |
| twopass->total_left_stats = *stats; |
| |
| frame_rate = 10000000.0 * stats->count / stats->duration; |
| // Each frame can have a different duration, as the frame rate in the source |
| // isn't guaranteed to be constant. The frame rate prior to the first frame |
| // encoded in the second pass is a guess. However, the sum duration is not. |
| // It is calculated based on the actual durations of all frames from the |
| // first pass. |
| |
| if (is_spatial_svc) { |
| vp9_update_spatial_layer_framerate(cpi, frame_rate); |
| twopass->bits_left = (int64_t)(stats->duration * |
| svc->layer_context[svc->spatial_layer_id].target_bandwidth / |
| 10000000.0); |
| } else { |
| vp9_new_framerate(cpi, frame_rate); |
| twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth / |
| 10000000.0); |
| } |
| |
| // Calculate a minimum intra value to be used in determining the IIratio |
| // scores used in the second pass. We have this minimum to make sure |
| // that clips that are static but "low complexity" in the intra domain |
| // are still boosted appropriately for KF/GF/ARF. |
| if (!is_spatial_svc) { |
| // We don't know the number of MBs for each layer at this point. |
| // So we will do it later. |
| twopass->kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; |
| twopass->gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; |
| } |
| |
| // This variable monitors how far behind the second ref update is lagging. |
| twopass->sr_update_lag = 1; |
| |
| // Scan the first pass file and calculate a modified total error based upon |
| // the bias/power function used to allocate bits. |
| { |
| const double avg_error = stats->coded_error / |
| DOUBLE_DIVIDE_CHECK(stats->count); |
| const FIRSTPASS_STATS *s = twopass->stats_in; |
| double modified_error_total = 0.0; |
| twopass->modified_error_min = (avg_error * |
| oxcf->two_pass_vbrmin_section) / 100; |
| twopass->modified_error_max = (avg_error * |
| oxcf->two_pass_vbrmax_section) / 100; |
| while (s < twopass->stats_in_end) { |
| modified_error_total += calculate_modified_err(twopass, oxcf, s); |
| ++s; |
| } |
| twopass->modified_error_left = modified_error_total; |
| } |
| |
| // Reset the vbr bits off target counter |
| cpi->rc.vbr_bits_off_target = 0; |
| } |
| |
| // This function gives an estimate of how badly we believe the prediction |
| // quality is decaying from frame to frame. |
| static double get_prediction_decay_rate(const VP9_COMMON *cm, |
| const FIRSTPASS_STATS *next_frame) { |
| // Look at the observed drop in prediction quality between the last frame |
| // and the GF buffer (which contains an older frame). |
| const double mb_sr_err_diff = (next_frame->sr_coded_error - |
| next_frame->coded_error) / cm->MBs; |
| const double second_ref_decay = mb_sr_err_diff <= 512.0 |
| ? fclamp(pow(1.0 - (mb_sr_err_diff / 512.0), 0.5), 0.85, 1.0) |
| : 0.85; |
| |
| return MIN(second_ref_decay, next_frame->pcnt_inter); |
| } |
| |
| // Function to test for a condition where a complex transition is followed |
| // by a static section. For example in slide shows where there is a fade |
| // between slides. This is to help with more optimal kf and gf positioning. |
| static int detect_transition_to_still(TWO_PASS *twopass, |
| int frame_interval, int still_interval, |
| double loop_decay_rate, |
| double last_decay_rate) { |
| int trans_to_still = 0; |
| |
| // Break clause to detect very still sections after motion |
| // For example a static image after a fade or other transition |
| // instead of a clean scene cut. |
| if (frame_interval > MIN_GF_INTERVAL && |
| loop_decay_rate >= 0.999 && |
| last_decay_rate < 0.9) { |
| int j; |
| const FIRSTPASS_STATS *position = twopass->stats_in; |
| FIRSTPASS_STATS tmp_next_frame; |
| |
| // Look ahead a few frames to see if static condition persists... |
| for (j = 0; j < still_interval; ++j) { |
| if (EOF == input_stats(twopass, &tmp_next_frame)) |
| break; |
| |
| if (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion < 0.999) |
| break; |
| } |
| |
| reset_fpf_position(twopass, position); |
| |
| // Only if it does do we signal a transition to still. |
| if (j == still_interval) |
| trans_to_still = 1; |
| } |
| |
| return trans_to_still; |
| } |
| |
| // This function detects a flash through the high relative pcnt_second_ref |
| // score in the frame following a flash frame. The offset passed in should |
| // reflect this. |
| static int detect_flash(const TWO_PASS *twopass, int offset) { |
| FIRSTPASS_STATS next_frame; |
| |
| int flash_detected = 0; |
| |
| // Read the frame data. |
| // The return is FALSE (no flash detected) if not a valid frame |
| if (read_frame_stats(twopass, &next_frame, offset) != EOF) { |
| // What we are looking for here is a situation where there is a |
| // brief break in prediction (such as a flash) but subsequent frames |
| // are reasonably well predicted by an earlier (pre flash) frame. |
| // The recovery after a flash is indicated by a high pcnt_second_ref |
| // compared to pcnt_inter. |
| if (next_frame.pcnt_second_ref > next_frame.pcnt_inter && |
| next_frame.pcnt_second_ref >= 0.5) |
| flash_detected = 1; |
| } |
| |
| return flash_detected; |
| } |
| |
| // Update the motion related elements to the GF arf boost calculation. |
| static void accumulate_frame_motion_stats( |
| FIRSTPASS_STATS *this_frame, |
| double *this_frame_mv_in_out, |
| double *mv_in_out_accumulator, |
| double *abs_mv_in_out_accumulator, |
| double *mv_ratio_accumulator) { |
| double motion_pct; |
| |
| // Accumulate motion stats. |
| motion_pct = this_frame->pcnt_motion; |
| |
| // Accumulate Motion In/Out of frame stats. |
| *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; |
| *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; |
| *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct); |
| |
| // Accumulate a measure of how uniform (or conversely how random) |
| // the motion field is (a ratio of absmv / mv). |
| if (motion_pct > 0.05) { |
| const double this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / |
| DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); |
| |
| const double this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / |
| DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); |
| |
| *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs) |
| ? (this_frame_mvr_ratio * motion_pct) |
| : this_frame->mvr_abs * motion_pct; |
| |
| *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs) |
| ? (this_frame_mvc_ratio * motion_pct) |
| : this_frame->mvc_abs * motion_pct; |
| } |
| } |
| |
| // Calculate a baseline boost number for the current frame. |
| static double calc_frame_boost(const TWO_PASS *twopass, |
| const FIRSTPASS_STATS *this_frame, |
| double this_frame_mv_in_out) { |
| double frame_boost; |
| |
| // Underlying boost factor is based on inter intra error ratio. |
| if (this_frame->intra_error > twopass->gf_intra_err_min) |
| frame_boost = (IIFACTOR * this_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
| else |
| frame_boost = (IIFACTOR * twopass->gf_intra_err_min / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
| |
| // Increase boost for frames where new data coming into frame (e.g. zoom out). |
| // Slightly reduce boost if there is a net balance of motion out of the frame |
| // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. |
| if (this_frame_mv_in_out > 0.0) |
| frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
| // In the extreme case the boost is halved. |
| else |
| frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
| |
| return MIN(frame_boost, GF_RMAX); |
| } |
| |
| static int calc_arf_boost(VP9_COMP *cpi, int offset, |
| int f_frames, int b_frames, |
| int *f_boost, int *b_boost) { |
| FIRSTPASS_STATS this_frame; |
| TWO_PASS *const twopass = &cpi->twopass; |
| int i; |
| double boost_score = 0.0; |
| double mv_ratio_accumulator = 0.0; |
| double decay_accumulator = 1.0; |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| int arf_boost; |
| int flash_detected = 0; |
| |
| // Search forward from the proposed arf/next gf position. |
| for (i = 0; i < f_frames; ++i) { |
| if (read_frame_stats(twopass, &this_frame, (i + offset)) == EOF) |
| break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats(&this_frame, |
| &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, |
| &mv_ratio_accumulator); |
| |
| // We want to discount the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(twopass, i + offset) || |
| detect_flash(twopass, i + offset + 1); |
| |
| // Accumulate the effect of prediction quality decay. |
| if (!flash_detected) { |
| decay_accumulator *= get_prediction_decay_rate(&cpi->common, &this_frame); |
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR : decay_accumulator; |
| } |
| |
| boost_score += decay_accumulator * calc_frame_boost(twopass, &this_frame, |
| this_frame_mv_in_out); |
| } |
| |
| *f_boost = (int)boost_score; |
| |
| // Reset for backward looking loop. |
| boost_score = 0.0; |
| mv_ratio_accumulator = 0.0; |
| decay_accumulator = 1.0; |
| this_frame_mv_in_out = 0.0; |
| mv_in_out_accumulator = 0.0; |
| abs_mv_in_out_accumulator = 0.0; |
| |
| // Search backward towards last gf position. |
| for (i = -1; i >= -b_frames; --i) { |
| if (read_frame_stats(twopass, &this_frame, (i + offset)) == EOF) |
| break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats(&this_frame, |
| &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, |
| &mv_ratio_accumulator); |
| |
| // We want to discount the the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(twopass, i + offset) || |
| detect_flash(twopass, i + offset + 1); |
| |
| // Cumulative effect of prediction quality decay. |
| if (!flash_detected) { |
| decay_accumulator *= get_prediction_decay_rate(&cpi->common, &this_frame); |
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR : decay_accumulator; |
| } |
| |
| boost_score += decay_accumulator * calc_frame_boost(twopass, &this_frame, |
| this_frame_mv_in_out); |
| } |
| *b_boost = (int)boost_score; |
| |
| arf_boost = (*f_boost + *b_boost); |
| if (arf_boost < ((b_frames + f_frames) * 20)) |
| arf_boost = ((b_frames + f_frames) * 20); |
| |
| return arf_boost; |
| } |
| |
| #if CONFIG_MULTIPLE_ARF |
| // Work out the frame coding order for a GF or an ARF group. |
| // The current implementation codes frames in their natural order for a |
| // GF group, and inserts additional ARFs into an ARF group using a |
| // binary split approach. |
| // NOTE: this function is currently implemented recursively. |
| static void schedule_frames(VP9_COMP *cpi, const int start, const int end, |
| const int arf_idx, const int gf_or_arf_group, |
| const int level) { |
| int i, abs_end, half_range; |
| int *cfo = cpi->frame_coding_order; |
| int idx = cpi->new_frame_coding_order_period; |
| |
| // If (end < 0) an ARF should be coded at position (-end). |
| assert(start >= 0); |
| |
| // printf("start:%d end:%d\n", start, end); |
| |
| // GF Group: code frames in logical order. |
| if (gf_or_arf_group == 0) { |
| assert(end >= start); |
| for (i = start; i <= end; ++i) { |
| cfo[idx] = i; |
| cpi->arf_buffer_idx[idx] = arf_idx; |
| cpi->arf_weight[idx] = -1; |
| ++idx; |
| } |
| cpi->new_frame_coding_order_period = idx; |
| return; |
| } |
| |
| // ARF Group: Work out the ARF schedule and mark ARF frames as negative. |
| if (end < 0) { |
| // printf("start:%d end:%d\n", -end, -end); |
| // ARF frame is at the end of the range. |
| cfo[idx] = end; |
| // What ARF buffer does this ARF use as predictor. |
| cpi->arf_buffer_idx[idx] = (arf_idx > 2) ? (arf_idx - 1) : 2; |
| cpi->arf_weight[idx] = level; |
| ++idx; |
| abs_end = -end; |
| } else { |
| abs_end = end; |
| } |
| |
| half_range = (abs_end - start) >> 1; |
| |
| // ARFs may not be adjacent, they must be separated by at least |
| // MIN_GF_INTERVAL non-ARF frames. |
| if ((start + MIN_GF_INTERVAL) >= (abs_end - MIN_GF_INTERVAL)) { |
| // printf("start:%d end:%d\n", start, abs_end); |
| // Update the coding order and active ARF. |
| for (i = start; i <= abs_end; ++i) { |
| cfo[idx] = i; |
| cpi->arf_buffer_idx[idx] = arf_idx; |
| cpi->arf_weight[idx] = -1; |
| ++idx; |
| } |
| cpi->new_frame_coding_order_period = idx; |
| } else { |
| // Place a new ARF at the mid-point of the range. |
| cpi->new_frame_coding_order_period = idx; |
| schedule_frames(cpi, start, -(start + half_range), arf_idx + 1, |
| gf_or_arf_group, level + 1); |
| schedule_frames(cpi, start + half_range + 1, abs_end, arf_idx, |
| gf_or_arf_group, level + 1); |
| } |
| } |
| |
| #define FIXED_ARF_GROUP_SIZE 16 |
| |
| void define_fixed_arf_period(VP9_COMP *cpi) { |
| int i; |
| int max_level = INT_MIN; |
| |
| assert(cpi->multi_arf_enabled); |
| assert(cpi->oxcf.lag_in_frames >= FIXED_ARF_GROUP_SIZE); |
| |
| // Save the weight of the last frame in the sequence before next |
| // sequence pattern overwrites it. |
| cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number]; |
| assert(cpi->this_frame_weight >= 0); |
| |
| cpi->twopass.gf_zeromotion_pct = 0; |
| |
| // Initialize frame coding order variables. |
| cpi->new_frame_coding_order_period = 0; |
| cpi->next_frame_in_order = 0; |
| cpi->arf_buffered = 0; |
| vp9_zero(cpi->frame_coding_order); |
| vp9_zero(cpi->arf_buffer_idx); |
| vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight)); |
| |
| if (cpi->rc.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) { |
| // Setup a GF group close to the keyframe. |
| cpi->rc.source_alt_ref_pending = 0; |
| cpi->rc.baseline_gf_interval = cpi->rc.frames_to_key; |
| schedule_frames(cpi, 0, (cpi->rc.baseline_gf_interval - 1), 2, 0, 0); |
| } else { |
| // Setup a fixed period ARF group. |
| cpi->rc.source_alt_ref_pending = 1; |
| cpi->rc.baseline_gf_interval = FIXED_ARF_GROUP_SIZE; |
| schedule_frames(cpi, 0, -(cpi->rc.baseline_gf_interval - 1), 2, 1, 0); |
| } |
| |
| // Replace level indicator of -1 with correct level. |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| if (cpi->arf_weight[i] > max_level) { |
| max_level = cpi->arf_weight[i]; |
| } |
| } |
| ++max_level; |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| if (cpi->arf_weight[i] == -1) { |
| cpi->arf_weight[i] = max_level; |
| } |
| } |
| cpi->max_arf_level = max_level; |
| #if 0 |
| printf("\nSchedule: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->frame_coding_order[i]); |
| } |
| printf("\n"); |
| printf("ARFref: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->arf_buffer_idx[i]); |
| } |
| printf("\n"); |
| printf("Weight: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->arf_weight[i]); |
| } |
| printf("\n"); |
| #endif |
| } |
| #endif |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, |
| const FIRSTPASS_STATS *end, |
| int section_length) { |
| const FIRSTPASS_STATS *s = begin; |
| double intra_error = 0.0; |
| double coded_error = 0.0; |
| int i = 0; |
| |
| while (s < end && i < section_length) { |
| intra_error += s->intra_error; |
| coded_error += s->coded_error; |
| ++s; |
| ++i; |
| } |
| |
| return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); |
| } |
| |
| // Calculate the total bits to allocate in this GF/ARF group. |
| static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi, |
| double gf_group_err) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const TWO_PASS *const twopass = &cpi->twopass; |
| const int max_bits = frame_max_bits(rc, &cpi->oxcf); |
| int64_t total_group_bits; |
| |
| // Calculate the bits to be allocated to the group as a whole. |
| if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { |
| total_group_bits = (int64_t)(twopass->kf_group_bits * |
| (gf_group_err / twopass->kf_group_error_left)); |
| } else { |
| total_group_bits = 0; |
| } |
| |
| // Clamp odd edge cases. |
| total_group_bits = (total_group_bits < 0) ? |
| 0 : (total_group_bits > twopass->kf_group_bits) ? |
| twopass->kf_group_bits : total_group_bits; |
| |
| // Clip based on user supplied data rate variability limit. |
| if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) |
| total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; |
| |
| return total_group_bits; |
| } |
| |
| // Calculate the number bits extra to assign to boosted frames in a group. |
| static int calculate_boost_bits(int frame_count, |
| int boost, int64_t total_group_bits) { |
| int allocation_chunks; |
| |
| // return 0 for invalid inputs (could arise e.g. through rounding errors) |
| if (!boost || (total_group_bits <= 0) || (frame_count <= 0) ) |
| return 0; |
| |
| allocation_chunks = (frame_count * 100) + boost; |
| |
| // Prevent overflow. |
| if (boost > 1023) { |
| int divisor = boost >> 10; |
| boost /= divisor; |
| allocation_chunks /= divisor; |
| } |
| |
| // Calculate the number of extra bits for use in the boosted frame or frames. |
| return MAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0); |
| } |
| |
| static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits, |
| double group_error, int gf_arf_bits) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *twopass = &cpi->twopass; |
| FIRSTPASS_STATS frame_stats; |
| int i; |
| int group_frame_index = 1; |
| int target_frame_size; |
| int key_frame; |
| const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf); |
| int64_t total_group_bits = gf_group_bits; |
| double modified_err = 0.0; |
| double err_fraction; |
| |
| key_frame = cpi->common.frame_type == KEY_FRAME || |
| vp9_is_upper_layer_key_frame(cpi); |
| |
| // For key frames the frame target rate is already set and it |
| // is also the golden frame. |
| // NOTE: We dont bother to check for the special case of ARF overlay |
| // frames here, as there is clamping code for this in the function |
| // vp9_rc_clamp_pframe_target_size(), which applies to one and two pass |
| // encodes. |
| if (!key_frame) { |
| twopass->gf_group_bit_allocation[0] = gf_arf_bits; |
| |
| // Step over the golden frame / overlay frame |
| if (EOF == input_stats(twopass, &frame_stats)) |
| return; |
| } |
| |
| // Store the bits to spend on the ARF if there is one. |
| if (rc->source_alt_ref_pending) { |
| twopass->gf_group_bit_allocation[group_frame_index++] = gf_arf_bits; |
| } |
| |
| // Deduct the boost bits for arf or gf if it is not a key frame. |
| if (rc->source_alt_ref_pending || !key_frame) |
| total_group_bits -= gf_arf_bits; |
| |
| // Allocate bits to the other frames in the group. |
| for (i = 0; i < rc->baseline_gf_interval - 1; ++i) { |
| if (EOF == input_stats(twopass, &frame_stats)) |
| break; |
| |
| modified_err = calculate_modified_err(twopass, oxcf, &frame_stats); |
| |
| if (group_error > 0) |
| err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error); |
| else |
| err_fraction = 0.0; |
| |
| target_frame_size = (int)((double)total_group_bits * err_fraction); |
| target_frame_size = clamp(target_frame_size, 0, |
| MIN(max_bits, (int)total_group_bits)); |
| |
| twopass->gf_group_bit_allocation[group_frame_index++] = target_frame_size; |
| } |
| } |
| |
| // Analyse and define a gf/arf group. |
| static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->twopass; |
| FIRSTPASS_STATS next_frame; |
| const FIRSTPASS_STATS *const start_pos = twopass->stats_in; |
| int i; |
| |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double gf_group_err = 0.0; |
| double gf_first_frame_err = 0.0; |
| double mod_frame_err = 0.0; |
| |
| double mv_ratio_accumulator = 0.0; |
| double decay_accumulator = 1.0; |
| double zero_motion_accumulator = 1.0; |
| |
| double loop_decay_rate = 1.00; |
| double last_loop_decay_rate = 1.00; |
| |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| double mv_ratio_accumulator_thresh; |
| unsigned int allow_alt_ref = oxcf->play_alternate && oxcf->lag_in_frames; |
| |
| int f_boost = 0; |
| int b_boost = 0; |
| int flash_detected; |
| int active_max_gf_interval; |
| int64_t gf_group_bits; |
| double gf_group_error_left; |
| int gf_arf_bits; |
| |
| // Reset the GF group data structures unless this is a key |
| // frame in which case it will already have been done. |
| if (cpi->common.frame_type != KEY_FRAME) { |
| twopass->gf_group_index = 0; |
| vp9_zero(twopass->gf_group_bit_allocation); |
| } |
| |
| vp9_clear_system_state(); |
| vp9_zero(next_frame); |
| |
| gf_group_bits = 0; |
| |
| // Load stats for the current frame. |
| mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame); |
| |
| // Note the error of the frame at the start of the group. This will be |
| // the GF frame error if we code a normal gf. |
| gf_first_frame_err = mod_frame_err; |
| |
| // If this is a key frame or the overlay from a previous arf then |
| // the error score / cost of this frame has already been accounted for. |
| if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active) |
| gf_group_err -= gf_first_frame_err; |
| |
| // Motion breakout threshold for loop below depends on image size. |
| mv_ratio_accumulator_thresh = (cpi->common.width + cpi->common.height) / 10.0; |
| |
| // Work out a maximum interval for the GF. |
| // If the image appears completely static we can extend beyond this. |
| // The value chosen depends on the active Q range. At low Q we have |
| // bits to spare and are better with a smaller interval and smaller boost. |
| // At high Q when there are few bits to spare we are better with a longer |
| // interval to spread the cost of the GF. |
| // |
| active_max_gf_interval = |
| 12 + ((int)vp9_convert_qindex_to_q(rc->last_q[INTER_FRAME]) >> 5); |
| |
| if (active_max_gf_interval > rc->max_gf_interval) |
| active_max_gf_interval = rc->max_gf_interval; |
| |
| i = 0; |
| while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) { |
| ++i; |
| |
| // Accumulate error score of frames in this gf group. |
| mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame); |
| gf_group_err += mod_frame_err; |
| |
| if (EOF == input_stats(twopass, &next_frame)) |
| break; |
| |
| // Test for the case where there is a brief flash but the prediction |
| // quality back to an earlier frame is then restored. |
| flash_detected = detect_flash(twopass, 0); |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats(&next_frame, |
| &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, |
| &mv_ratio_accumulator); |
| |
| // Accumulate the effect of prediction quality decay. |
| if (!flash_detected) { |
| last_loop_decay_rate = loop_decay_rate; |
| loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame); |
| decay_accumulator = decay_accumulator * loop_decay_rate; |
| |
| // Monitor for static sections. |
| if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < |
| zero_motion_accumulator) { |
| zero_motion_accumulator = next_frame.pcnt_inter - |
| next_frame.pcnt_motion; |
| } |
| |
| // Break clause to detect very still sections after motion. For example, |
| // a static image after a fade or other transition. |
| if (detect_transition_to_still(twopass, i, 5, loop_decay_rate, |
| last_loop_decay_rate)) { |
| allow_alt_ref = 0; |
| break; |
| } |
| } |
| |
| // Calculate a boost number for this frame. |
| boost_score += decay_accumulator * calc_frame_boost(twopass, &next_frame, |
| this_frame_mv_in_out); |
| |
| // Break out conditions. |
| if ( |
| // Break at active_max_gf_interval unless almost totally static. |
| (i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) || |
| ( |
| // Don't break out with a very short interval. |
| (i > MIN_GF_INTERVAL) && |
| ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) && |
| (!flash_detected) && |
| ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || |
| (abs_mv_in_out_accumulator > 3.0) || |
| (mv_in_out_accumulator < -2.0) || |
| ((boost_score - old_boost_score) < IIFACTOR)))) { |
| boost_score = old_boost_score; |
| break; |
| } |
| |
| *this_frame = next_frame; |
| |
| old_boost_score = boost_score; |
| } |
| |
| twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0); |
| |
| // Don't allow a gf too near the next kf. |
| if ((rc->frames_to_key - i) < MIN_GF_INTERVAL) { |
| while (i < (rc->frames_to_key + !rc->next_key_frame_forced)) { |
| ++i; |
| |
| if (EOF == input_stats(twopass, this_frame)) |
| break; |
| |
| if (i < rc->frames_to_key) { |
| mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame); |
| gf_group_err += mod_frame_err; |
| } |
| } |
| } |
| |
| #if CONFIG_MULTIPLE_ARF |
| if (cpi->multi_arf_enabled) { |
| // Initialize frame coding order variables. |
| cpi->new_frame_coding_order_period = 0; |
| cpi->next_frame_in_order = 0; |
| cpi->arf_buffered = 0; |
| vp9_zero(cpi->frame_coding_order); |
| vp9_zero(cpi->arf_buffer_idx); |
| vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight)); |
| } |
| #endif |
| |
| // Set the interval until the next gf. |
| if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active) |
| rc->baseline_gf_interval = i - 1; |
| else |
| rc->baseline_gf_interval = i; |
| |
| // Should we use the alternate reference frame. |
| if (allow_alt_ref && |
| (i < cpi->oxcf.lag_in_frames) && |
| (i >= MIN_GF_INTERVAL) && |
| // For real scene cuts (not forced kfs) don't allow arf very near kf. |
| (rc->next_key_frame_forced || |
| (i <= (rc->frames_to_key - MIN_GF_INTERVAL)))) { |
| // Calculate the boost for alt ref. |
| rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, |
| &b_boost); |
| rc->source_alt_ref_pending = 1; |
| |
| #if CONFIG_MULTIPLE_ARF |
| // Set the ARF schedule. |
| if (cpi->multi_arf_enabled) { |
| schedule_frames(cpi, 0, -(rc->baseline_gf_interval - 1), 2, 1, 0); |
| } |
| #endif |
| } else { |
| rc->gfu_boost = (int)boost_score; |
| rc->source_alt_ref_pending = 0; |
| #if CONFIG_MULTIPLE_ARF |
| // Set the GF schedule. |
| if (cpi->multi_arf_enabled) { |
| schedule_frames(cpi, 0, rc->baseline_gf_interval - 1, 2, 0, 0); |
| assert(cpi->new_frame_coding_order_period == |
| rc->baseline_gf_interval); |
| } |
| #endif |
| } |
| |
| #if CONFIG_MULTIPLE_ARF |
| if (cpi->multi_arf_enabled && (cpi->common.frame_type != KEY_FRAME)) { |
| int max_level = INT_MIN; |
| // Replace level indicator of -1 with correct level. |
| for (i = 0; i < cpi->frame_coding_order_period; ++i) { |
| if (cpi->arf_weight[i] > max_level) { |
| max_level = cpi->arf_weight[i]; |
| } |
| } |
| ++max_level; |
| for (i = 0; i < cpi->frame_coding_order_period; ++i) { |
| if (cpi->arf_weight[i] == -1) { |
| cpi->arf_weight[i] = max_level; |
| } |
| } |
| cpi->max_arf_level = max_level; |
| } |
| #if 0 |
| if (cpi->multi_arf_enabled) { |
| printf("\nSchedule: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->frame_coding_order[i]); |
| } |
| printf("\n"); |
| printf("ARFref: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->arf_buffer_idx[i]); |
| } |
| printf("\n"); |
| printf("Weight: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->arf_weight[i]); |
| } |
| printf("\n"); |
| } |
| #endif |
| #endif |
| // Reset the file position. |
| reset_fpf_position(twopass, start_pos); |
| |
| // Calculate the bits to be allocated to the gf/arf group as a whole |
| gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); |
| |
| // Calculate the extra bits to be used for boosted frame(s) |
| { |
| int q = rc->last_q[INTER_FRAME]; |
| int boost = (rc->gfu_boost * gfboost_qadjust(q)) / 100; |
| |
| // Set max and minimum boost and hence minimum allocation. |
| boost = clamp(boost, 125, (rc->baseline_gf_interval + 1) * 200); |
| |
| // Calculate the extra bits to be used for boosted frame(s) |
| gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, |
| boost, gf_group_bits); |
| } |
| |
| // Adjust KF group bits and error remaining. |
| twopass->kf_group_error_left -= (int64_t)gf_group_err; |
| |
| // If this is an arf update we want to remove the score for the overlay |
| // frame at the end which will usually be very cheap to code. |
| // The overlay frame has already, in effect, been coded so we want to spread |
| // the remaining bits among the other frames. |
| // For normal GFs remove the score for the GF itself unless this is |
| // also a key frame in which case it has already been accounted for. |
| if (rc->source_alt_ref_pending) { |
| gf_group_error_left = gf_group_err - mod_frame_err; |
| } else if (cpi->common.frame_type != KEY_FRAME) { |
| gf_group_error_left = gf_group_err - gf_first_frame_err; |
| } else { |
| gf_group_error_left = gf_group_err; |
| } |
| |
| // Allocate bits to each of the frames in the GF group. |
| allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits); |
| |
| // Reset the file position. |
| reset_fpf_position(twopass, start_pos); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| if (cpi->common.frame_type != KEY_FRAME) { |
| twopass->section_intra_rating = |
| calculate_section_intra_ratio(start_pos, twopass->stats_in_end, |
| rc->baseline_gf_interval); |
| } |
| } |
| |
| static int test_candidate_kf(TWO_PASS *twopass, |
| const FIRSTPASS_STATS *last_frame, |
| const FIRSTPASS_STATS *this_frame, |
| const FIRSTPASS_STATS *next_frame) { |
| int is_viable_kf = 0; |
| |
| // Does the frame satisfy the primary criteria of a key frame? |
| // If so, then examine how well it predicts subsequent frames. |
| if ((this_frame->pcnt_second_ref < 0.10) && |
| (next_frame->pcnt_second_ref < 0.10) && |
| ((this_frame->pcnt_inter < 0.05) || |
| (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < 0.35) && |
| ((this_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && |
| ((fabs(last_frame->coded_error - this_frame->coded_error) / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > 0.40) || |
| (fabs(last_frame->intra_error - this_frame->intra_error) / |
| DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > 0.40) || |
| ((next_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) { |
| int i; |
| const FIRSTPASS_STATS *start_pos = twopass->stats_in; |
| FIRSTPASS_STATS local_next_frame = *next_frame; |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double decay_accumulator = 1.0; |
| |
| // Examine how well the key frame predicts subsequent frames. |
| for (i = 0; i < 16; ++i) { |
| double next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); |
| |
| if (next_iiratio > RMAX) |
| next_iiratio = RMAX; |
| |
| // Cumulative effect of decay in prediction quality. |
| if (local_next_frame.pcnt_inter > 0.85) |
| decay_accumulator *= local_next_frame.pcnt_inter; |
| else |
| decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; |
| |
| // Keep a running total. |
| boost_score += (decay_accumulator * next_iiratio); |
| |
| // Test various breakout clauses. |
| if ((local_next_frame.pcnt_inter < 0.05) || |
| (next_iiratio < 1.5) || |
| (((local_next_frame.pcnt_inter - |
| local_next_frame.pcnt_neutral) < 0.20) && |
| (next_iiratio < 3.0)) || |
| ((boost_score - old_boost_score) < 3.0) || |
| (local_next_frame.intra_error < 200)) { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| |
| // Get the next frame details |
| if (EOF == input_stats(twopass, &local_next_frame)) |
| break; |
| } |
| |
| // If there is tolerable prediction for at least the next 3 frames then |
| // break out else discard this potential key frame and move on |
| if (boost_score > 30.0 && (i > 3)) { |
| is_viable_kf = 1; |
| } else { |
| // Reset the file position |
| reset_fpf_position(twopass, start_pos); |
| |
| is_viable_kf = 0; |
| } |
| } |
| |
| return is_viable_kf; |
| } |
| |
| static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
| int i, j; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| const FIRSTPASS_STATS first_frame = *this_frame; |
| const FIRSTPASS_STATS *const start_position = twopass->stats_in; |
| FIRSTPASS_STATS next_frame; |
| FIRSTPASS_STATS last_frame; |
| int kf_bits = 0; |
| double decay_accumulator = 1.0; |
| double zero_motion_accumulator = 1.0; |
| double boost_score = 0.0; |
| double kf_mod_err = 0.0; |
| double kf_group_err = 0.0; |
| double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; |
| |
| vp9_zero(next_frame); |
| |
| cpi->common.frame_type = KEY_FRAME; |
| |
| // Reset the GF group data structures. |
| twopass->gf_group_index = 0; |
| vp9_zero(twopass->gf_group_bit_allocation); |
| |
| // Is this a forced key frame by interval. |
| rc->this_key_frame_forced = rc->next_key_frame_forced; |
| |
| // Clear the alt ref active flag as this can never be active on a key frame. |
| rc->source_alt_ref_active = 0; |
| |
| // KF is always a GF so clear frames till next gf counter. |
| rc->frames_till_gf_update_due = 0; |
| |
| rc->frames_to_key = 1; |
| |
| twopass->kf_group_bits = 0; // Total bits available to kf group |
| twopass->kf_group_error_left = 0; // Group modified error score. |
| |
| kf_mod_err = calculate_modified_err(twopass, oxcf, this_frame); |
| |
| // Find the next keyframe. |
| i = 0; |
| while (twopass->stats_in < twopass->stats_in_end && |
| rc->frames_to_key < cpi->oxcf.key_freq) { |
| // Accumulate kf group error. |
| kf_group_err += calculate_modified_err(twopass, oxcf, this_frame); |
| |
| // Load the next frame's stats. |
| last_frame = *this_frame; |
| input_stats(twopass, this_frame); |
| |
| // Provided that we are not at the end of the file... |
| if (cpi->oxcf.auto_key && |
| lookup_next_frame_stats(twopass, &next_frame) != EOF) { |
| double loop_decay_rate; |
| |
| // Check for a scene cut. |
| if (test_candidate_kf(twopass, &last_frame, this_frame, &next_frame)) |
| break; |
| |
| // How fast is the prediction quality decaying? |
| loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame); |
| |
| // We want to know something about the recent past... rather than |
| // as used elsewhere where we are concerned with decay in prediction |
| // quality since the last GF or KF. |
| recent_loop_decay[i % 8] = loop_decay_rate; |
| decay_accumulator = 1.0; |
| for (j = 0; j < 8; ++j) |
| decay_accumulator *= recent_loop_decay[j]; |
| |
| // Special check for transition or high motion followed by a |
| // static scene. |
| if (detect_transition_to_still(twopass, i, cpi->oxcf.key_freq - i, |
| loop_decay_rate, decay_accumulator)) |
| break; |
| |
| // Step on to the next frame. |
| ++rc->frames_to_key; |
| |
| // If we don't have a real key frame within the next two |
| // key_freq intervals then break out of the loop. |
| if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) |
| break; |
| } else { |
| ++rc->frames_to_key; |
| } |
| ++i; |
| } |
| |
| // If there is a max kf interval set by the user we must obey it. |
| // We already breakout of the loop above at 2x max. |
| // This code centers the extra kf if the actual natural interval |
| // is between 1x and 2x. |
| if (cpi->oxcf.auto_key && |
| rc->frames_to_key > cpi->oxcf.key_freq) { |
| FIRSTPASS_STATS tmp_frame = first_frame; |
| |
| rc->frames_to_key /= 2; |
| |
| // Reset to the start of the group. |
| reset_fpf_position(twopass, start_position); |
| |
| kf_group_err = 0; |
| |
| // Rescan to get the correct error data for the forced kf group. |
| for (i = 0; i < rc->frames_to_key; ++i) { |
| kf_group_err += calculate_modified_err(twopass, oxcf, &tmp_frame); |
| input_stats(twopass, &tmp_frame); |
| } |
| rc->next_key_frame_forced = 1; |
| } else if (twopass->stats_in == twopass->stats_in_end || |
| rc->frames_to_key >= cpi->oxcf.key_freq) { |
| rc->next_key_frame_forced = 1; |
| } else { |
| rc->next_key_frame_forced = 0; |
| } |
| |
| // Special case for the last key frame of the file. |
| if (twopass->stats_in >= twopass->stats_in_end) { |
| // Accumulate kf group error. |
| kf_group_err += calculate_modified_err(twopass, oxcf, this_frame); |
| } |
| |
| // Calculate the number of bits that should be assigned to the kf group. |
| if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) { |
| // Maximum number of bits for a single normal frame (not key frame). |
| const int max_bits = frame_max_bits(rc, &cpi->oxcf); |
| |
| // Maximum number of bits allocated to the key frame group. |
| int64_t max_grp_bits; |
| |
| // Default allocation based on bits left and relative |
| // complexity of the section. |
| twopass->kf_group_bits = (int64_t)(twopass->bits_left * |
| (kf_group_err / twopass->modified_error_left)); |
| |
| // Clip based on maximum per frame rate defined by the user. |
| max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; |
| if (twopass->kf_group_bits > max_grp_bits) |
| twopass->kf_group_bits = max_grp_bits; |
| } else { |
| twopass->kf_group_bits = 0; |
| } |
| twopass->kf_group_bits = MAX(0, twopass->kf_group_bits); |
| |
| // Reset the first pass file position. |
| reset_fpf_position(twopass, start_position); |
| |
| // Scan through the kf group collating various stats used to deteermine |
| // how many bits to spend on it. |
| decay_accumulator = 1.0; |
| boost_score = 0.0; |
| for (i = 0; i < rc->frames_to_key; ++i) { |
| if (EOF == input_stats(twopass, &next_frame)) |
| break; |
| |
| // Monitor for static sections. |
| if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < |
| zero_motion_accumulator) { |
| zero_motion_accumulator = (next_frame.pcnt_inter - |
| next_frame.pcnt_motion); |
| } |
| |
| // For the first few frames collect data to decide kf boost. |
| if (i <= (rc->max_gf_interval * 2)) { |
| double r; |
| if (next_frame.intra_error > twopass->kf_intra_err_min) |
| r = (IIKFACTOR2 * next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
| else |
| r = (IIKFACTOR2 * twopass->kf_intra_err_min / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
| |
| if (r > RMAX) |
| r = RMAX; |
| |
| // How fast is prediction quality decaying. |
| if (!detect_flash(twopass, 0)) { |
| const double loop_decay_rate = get_prediction_decay_rate(&cpi->common, |
| &next_frame); |
| decay_accumulator *= loop_decay_rate; |
| decay_accumulator = MAX(decay_accumulator, MIN_DECAY_FACTOR); |
| } |
| |
| boost_score += (decay_accumulator * r); |
| } |
| } |
| |
| reset_fpf_position(twopass, start_position); |
| |
| // Store the zero motion percentage |
| twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| twopass->section_intra_rating = |
| calculate_section_intra_ratio(start_position, twopass->stats_in_end, |
| rc->frames_to_key); |
| |
| // Work out how many bits to allocate for the key frame itself. |
| rc->kf_boost = (int)boost_score; |
| |
| if (rc->kf_boost < (rc->frames_to_key * 3)) |
| rc->kf_boost = (rc->frames_to_key * 3); |
| if (rc->kf_boost < MIN_KF_BOOST) |
| rc->kf_boost = MIN_KF_BOOST; |
| |
| kf_bits = calculate_boost_bits((rc->frames_to_key - 1), |
| rc->kf_boost, twopass->kf_group_bits); |
| |
| twopass->kf_group_bits -= kf_bits; |
| |
| // Save the bits to spend on the key frame. |
| twopass->gf_group_bit_allocation[0] = kf_bits; |
| |
| // Note the total error score of the kf group minus the key frame itself. |
| twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
| |
| // Adjust the count of total modified error left. |
| // The count of bits left is adjusted elsewhere based on real coded frame |
| // sizes. |
| twopass->modified_error_left -= kf_group_err; |
| } |
| |
| // For VBR...adjustment to the frame target based on error from previous frames |
| void vbr_rate_correction(int * this_frame_target, |
| const int64_t vbr_bits_off_target) { |
| int max_delta = (*this_frame_target * 15) / 100; |
| |
| // vbr_bits_off_target > 0 means we have extra bits to spend |
| if (vbr_bits_off_target > 0) { |
| *this_frame_target += |
| (vbr_bits_off_target > max_delta) ? max_delta |
| : (int)vbr_bits_off_target; |
| } else { |
| *this_frame_target -= |
| (vbr_bits_off_target < -max_delta) ? max_delta |
| : (int)-vbr_bits_off_target; |
| } |
| } |
| |
| void vp9_rc_get_second_pass_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| int frames_left; |
| FIRSTPASS_STATS this_frame; |
| FIRSTPASS_STATS this_frame_copy; |
| |
| int target_rate; |
| LAYER_CONTEXT *lc = NULL; |
| const int is_spatial_svc = (cpi->use_svc && |
| cpi->svc.number_temporal_layers == 1); |
| if (is_spatial_svc) { |
| lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id]; |
| frames_left = (int)(twopass->total_stats.count - |
| lc->current_video_frame_in_layer); |
| } else { |
| frames_left = (int)(twopass->total_stats.count - |
| cm->current_video_frame); |
| } |
| |
| if (!twopass->stats_in) |
| return; |
| |
| // Increment the gf group index. |
| ++twopass->gf_group_index; |
| |
| // If this is an arf frame then we dont want to read the stats file or |
| // advance the input pointer as we already have what we need. |
| if (cpi->refresh_alt_ref_frame) { |
| int target_rate; |
| target_rate = twopass->gf_group_bit_allocation[twopass->gf_group_index]; |
| target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate); |
| rc->base_frame_target = target_rate; |
| #ifdef LONG_TERM_VBR_CORRECTION |
| // Correction to rate target based on prior over or under shoot. |
| if (cpi->oxcf.rc_mode == RC_MODE_VBR) |
| vbr_rate_correction(&target_rate, rc->vbr_bits_off_target); |
| #endif |
| vp9_rc_set_frame_target(cpi, target_rate); |
| cm->frame_type = INTER_FRAME; |
| return; |
| } |
| |
| vp9_clear_system_state(); |
| |
| if (is_spatial_svc && twopass->kf_intra_err_min == 0) { |
| twopass->kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; |
| twopass->gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; |
| } |
| |
| if (cpi->oxcf.rc_mode == RC_MODE_CONSTANT_QUALITY) { |
| twopass->active_worst_quality = cpi->oxcf.cq_level; |
| } else if (cm->current_video_frame == 0 || |
| (is_spatial_svc && lc->current_video_frame_in_layer == 0)) { |
| // Special case code for first frame. |
| const int section_target_bandwidth = (int)(twopass->bits_left / |
| frames_left); |
| const int tmp_q = get_twopass_worst_quality(cpi, &twopass->total_left_stats, |
| section_target_bandwidth); |
| twopass->active_worst_quality = tmp_q; |
| rc->ni_av_qi = tmp_q; |
| rc->avg_q = vp9_convert_qindex_to_q(tmp_q); |
| } |
| vp9_zero(this_frame); |
| if (EOF == input_stats(twopass, &this_frame)) |
| return; |
| |
| // Local copy of the current frame's first pass stats. |
| this_frame_copy = this_frame; |
| |
| // Keyframe and section processing. |
| if (rc->frames_to_key == 0 || |
| (cpi->frame_flags & FRAMEFLAGS_KEY)) { |
| // Define next KF group and assign bits to it. |
| find_next_key_frame(cpi, &this_frame_copy); |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| |
| if (is_spatial_svc) { |
| if (cpi->svc.spatial_layer_id == 0) { |
| lc->is_key_frame = (cm->frame_type == KEY_FRAME); |
| } else { |
| cm->frame_type = INTER_FRAME; |
| lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame; |
| |
| if (lc->is_key_frame) { |
| cpi->ref_frame_flags &= (~VP9_LAST_FLAG); |
| } |
| } |
| } |
| |
| // Define a new GF/ARF group. (Should always enter here for key frames). |
| if (rc->frames_till_gf_update_due == 0) { |
| #if CONFIG_MULTIPLE_ARF |
| if (cpi->multi_arf_enabled) { |
| define_fixed_arf_period(cpi); |
| } else { |
| #endif |
| define_gf_group(cpi, &this_frame_copy); |
| #if CONFIG_MULTIPLE_ARF |
| } |
| #endif |
| |
| if (twopass->gf_zeromotion_pct > 995) { |
| // As long as max_thresh for encode breakout is small enough, it is ok |
| // to enable it for show frame, i.e. set allow_encode_breakout to |
| // ENCODE_BREAKOUT_LIMITED. |
| if (!cm->show_frame) |
| cpi->allow_encode_breakout = ENCODE_BREAKOUT_DISABLED; |
| else |
| cpi->allow_encode_breakout = ENCODE_BREAKOUT_LIMITED; |
| } |
| |
| rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| cpi->refresh_golden_frame = 1; |
| } |
| |
| { |
| FIRSTPASS_STATS next_frame; |
| if (lookup_next_frame_stats(twopass, &next_frame) != EOF) { |
| twopass->next_iiratio = (int)(next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
| } |
| } |
| |
| target_rate = twopass->gf_group_bit_allocation[twopass->gf_group_index]; |
| if (cpi->common.frame_type == KEY_FRAME) |
| target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate); |
| else |
| target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate); |
| |
| rc->base_frame_target = target_rate; |
| #ifdef LONG_TERM_VBR_CORRECTION |
| // Correction to rate target based on prior over or under shoot. |
| if (cpi->oxcf.rc_mode == RC_MODE_VBR) |
| vbr_rate_correction(&target_rate, rc->vbr_bits_off_target); |
| #endif |
| vp9_rc_set_frame_target(cpi, target_rate); |
| |
| // Update the total stats remaining structure. |
| subtract_stats(&twopass->total_left_stats, &this_frame); |
| } |
| |
| void vp9_twopass_postencode_update(VP9_COMP *cpi) { |
| TWO_PASS *const twopass = &cpi->twopass; |
| RATE_CONTROL *const rc = &cpi->rc; |
| #ifdef LONG_TERM_VBR_CORRECTION |
| // In this experimental mode, the VBR correction is done exclusively through |
| // rc->vbr_bits_off_target. Based on the sign of this value, a limited % |
| // adjustment is made to the target rate of subsequent frames, to try and |
| // push it back towards 0. This mode is less likely to suffer from |
| // extreme behaviour at the end of a clip or group of frames. |
| const int bits_used = rc->base_frame_target; |
| rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; |
| #else |
| // In this mode, VBR correction is acheived by altering bits_left, |
| // kf_group_bits & gf_group_bits to reflect any deviation from the target |
| // rate in this frame. This alters the allocation of bits to the |
| // remaning frames in the group / clip. |
| // |
| // This method can give rise to unstable behaviour near the end of a clip |
| // or kf/gf group of frames where any accumulated error is corrected over an |
| // ever decreasing number of frames. Hence we change the balance of target |
| // vs. actual bitrate gradually as we progress towards the end of the |
| // sequence in order to mitigate this effect. |
| const double progress = |
| (double)(twopass->stats_in - twopass->stats_in_start) / |
| (twopass->stats_in_end - twopass->stats_in_start); |
| const int bits_used = (int)(progress * rc->this_frame_target + |
| (1.0 - progress) * rc->projected_frame_size); |
| #endif |
| |
| twopass->bits_left = MAX(twopass->bits_left - bits_used, 0); |
| |
| #ifdef LONG_TERM_VBR_CORRECTION |
| if (cpi->common.frame_type != KEY_FRAME && |
| !vp9_is_upper_layer_key_frame(cpi)) { |
| #else |
| if (cpi->common.frame_type == KEY_FRAME || |
| vp9_is_upper_layer_key_frame(cpi)) { |
| // For key frames kf_group_bits already had the target bits subtracted out. |
| // So now update to the correct value based on the actual bits used. |
| twopass->kf_group_bits += rc->this_frame_target - bits_used; |
| } else { |
| #endif |
| twopass->kf_group_bits -= bits_used; |
| } |
| twopass->kf_group_bits = MAX(twopass->kf_group_bits, 0); |
| } |