| /* |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/reconintra.h" |
| |
| #include "av1/encoder/intra_mode_search.h" |
| #include "av1/encoder/intra_mode_search_utils.h" |
| #include "av1/encoder/palette.h" |
| #include "av1/encoder/speed_features.h" |
| #include "av1/encoder/tx_search.h" |
| |
| // Even though there are 7 delta angles, this macro is set to 9 to facilitate |
| // the rd threshold check to prune -3 and 3 delta angles. |
| #define SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY (2 * MAX_ANGLE_DELTA + 3) |
| |
| // The order for evaluating delta angles while processing the luma directional |
| // intra modes. Currently, this order of evaluation is applicable only when |
| // speed feature prune_luma_odd_delta_angles_in_intra is enabled. In this case, |
| // even angles are evaluated first in order to facilitate the pruning of odd |
| // delta angles based on the rd costs of the neighboring delta angles. |
| static const int8_t luma_delta_angles_order[2 * MAX_ANGLE_DELTA] = { |
| -2, 2, -3, -1, 1, 3, |
| }; |
| |
| /*!\cond */ |
| static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = { |
| DC_PRED, H_PRED, V_PRED, SMOOTH_PRED, PAETH_PRED, |
| SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED, D157_PRED, |
| D67_PRED, D113_PRED, D45_PRED, |
| }; |
| |
| static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = { |
| UV_DC_PRED, UV_CFL_PRED, UV_H_PRED, UV_V_PRED, |
| UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED, |
| UV_D135_PRED, UV_D203_PRED, UV_D157_PRED, UV_D67_PRED, |
| UV_D113_PRED, UV_D45_PRED, |
| }; |
| |
| // The bitmask corresponds to the filter intra modes as defined in enums.h |
| // FILTER_INTRA_MODE enumeration type. Setting a bit to 0 in the mask means to |
| // disable the evaluation of corresponding filter intra mode. The table |
| // av1_derived_filter_intra_mode_used_flag is used when speed feature |
| // prune_filter_intra_level is 1. The evaluated filter intra modes are union |
| // of the following: |
| // 1) FILTER_DC_PRED |
| // 2) mode that corresponds to best mode so far of DC_PRED, V_PRED, H_PRED, |
| // D157_PRED and PAETH_PRED. (Eg: FILTER_V_PRED if best mode so far is V_PRED). |
| static const uint8_t av1_derived_filter_intra_mode_used_flag[INTRA_MODES] = { |
| 0x01, // DC_PRED: 0000 0001 |
| 0x03, // V_PRED: 0000 0011 |
| 0x05, // H_PRED: 0000 0101 |
| 0x01, // D45_PRED: 0000 0001 |
| 0x01, // D135_PRED: 0000 0001 |
| 0x01, // D113_PRED: 0000 0001 |
| 0x09, // D157_PRED: 0000 1001 |
| 0x01, // D203_PRED: 0000 0001 |
| 0x01, // D67_PRED: 0000 0001 |
| 0x01, // SMOOTH_PRED: 0000 0001 |
| 0x01, // SMOOTH_V_PRED: 0000 0001 |
| 0x01, // SMOOTH_H_PRED: 0000 0001 |
| 0x11 // PAETH_PRED: 0001 0001 |
| }; |
| |
| // The bitmask corresponds to the chroma intra modes as defined in enums.h |
| // UV_PREDICTION_MODE enumeration type. Setting a bit to 0 in the mask means to |
| // disable the evaluation of corresponding chroma intra mode. The table |
| // av1_derived_chroma_intra_mode_used_flag is used when speed feature |
| // prune_chroma_modes_using_luma_winner is enabled. The evaluated chroma |
| // intra modes are union of the following: |
| // 1) UV_DC_PRED |
| // 2) UV_SMOOTH_PRED |
| // 3) UV_CFL_PRED |
| // 4) mode that corresponds to luma intra mode winner (Eg : UV_V_PRED if luma |
| // intra mode winner is V_PRED). |
| static const uint16_t av1_derived_chroma_intra_mode_used_flag[INTRA_MODES] = { |
| 0x2201, // DC_PRED: 0010 0010 0000 0001 |
| 0x2203, // V_PRED: 0010 0010 0000 0011 |
| 0x2205, // H_PRED: 0010 0010 0000 0101 |
| 0x2209, // D45_PRED: 0010 0010 0000 1001 |
| 0x2211, // D135_PRED: 0010 0010 0001 0001 |
| 0x2221, // D113_PRED: 0010 0010 0010 0001 |
| 0x2241, // D157_PRED: 0010 0010 0100 0001 |
| 0x2281, // D203_PRED: 0010 0010 1000 0001 |
| 0x2301, // D67_PRED: 0010 0011 0000 0001 |
| 0x2201, // SMOOTH_PRED: 0010 0010 0000 0001 |
| 0x2601, // SMOOTH_V_PRED: 0010 0110 0000 0001 |
| 0x2a01, // SMOOTH_H_PRED: 0010 1010 0000 0001 |
| 0x3201 // PAETH_PRED: 0011 0010 0000 0001 |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, all_zeros[MAX_SB_SIZE]) = { 0 }; |
| DECLARE_ALIGNED(16, static const uint16_t, |
| highbd_all_zeros[MAX_SB_SIZE]) = { 0 }; |
| |
| int av1_calc_normalized_variance(aom_variance_fn_t vf, const uint8_t *const buf, |
| const int stride, const int is_hbd) { |
| unsigned int sse; |
| |
| if (is_hbd) |
| return vf(buf, stride, CONVERT_TO_BYTEPTR(highbd_all_zeros), 0, &sse); |
| else |
| return vf(buf, stride, all_zeros, 0, &sse); |
| } |
| |
| // Computes average of log(1 + variance) across 4x4 sub-blocks for source and |
| // reconstructed blocks. |
| static void compute_avg_log_variance(const AV1_COMP *const cpi, MACROBLOCK *x, |
| const BLOCK_SIZE bs, |
| double *avg_log_src_variance, |
| double *avg_log_recon_variance) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size; |
| const int mi_row_in_sb = x->e_mbd.mi_row & (mi_size_high[sb_size] - 1); |
| const int mi_col_in_sb = x->e_mbd.mi_col & (mi_size_wide[sb_size] - 1); |
| const int right_overflow = |
| (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; |
| const int bottom_overflow = |
| (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; |
| const int bw = (MI_SIZE * mi_size_wide[bs] - right_overflow); |
| const int bh = (MI_SIZE * mi_size_high[bs] - bottom_overflow); |
| const int is_hbd = is_cur_buf_hbd(xd); |
| |
| for (int i = 0; i < bh; i += MI_SIZE) { |
| const int r = mi_row_in_sb + (i >> MI_SIZE_LOG2); |
| for (int j = 0; j < bw; j += MI_SIZE) { |
| const int c = mi_col_in_sb + (j >> MI_SIZE_LOG2); |
| const int mi_offset = r * mi_size_wide[sb_size] + c; |
| Block4x4VarInfo *block_4x4_var_info = |
| &x->src_var_info_of_4x4_sub_blocks[mi_offset]; |
| int src_var = block_4x4_var_info->var; |
| double log_src_var = block_4x4_var_info->log_var; |
| // Compute average of log(1 + variance) for the source block from 4x4 |
| // sub-block variance values. Calculate and store 4x4 sub-block variance |
| // and log(1 + variance), if the values present in |
| // src_var_of_4x4_sub_blocks are invalid. Reuse the same if it is readily |
| // available with valid values. |
| if (src_var < 0) { |
| src_var = av1_calc_normalized_variance( |
| cpi->ppi->fn_ptr[BLOCK_4X4].vf, |
| x->plane[0].src.buf + i * x->plane[0].src.stride + j, |
| x->plane[0].src.stride, is_hbd); |
| block_4x4_var_info->var = src_var; |
| log_src_var = log(1.0 + src_var / 16.0); |
| block_4x4_var_info->log_var = log_src_var; |
| } else { |
| // When source variance is already calculated and available for |
| // retrieval, check if log(1 + variance) is also available. If it is |
| // available, then retrieve from buffer. Else, calculate the same and |
| // store to the buffer. |
| if (log_src_var < 0) { |
| log_src_var = log(1.0 + src_var / 16.0); |
| block_4x4_var_info->log_var = log_src_var; |
| } |
| } |
| *avg_log_src_variance += log_src_var; |
| |
| const int recon_var = av1_calc_normalized_variance( |
| cpi->ppi->fn_ptr[BLOCK_4X4].vf, |
| xd->plane[0].dst.buf + i * xd->plane[0].dst.stride + j, |
| xd->plane[0].dst.stride, is_hbd); |
| *avg_log_recon_variance += log(1.0 + recon_var / 16.0); |
| } |
| } |
| |
| const int blocks = (bw * bh) / 16; |
| *avg_log_src_variance /= (double)blocks; |
| *avg_log_recon_variance /= (double)blocks; |
| } |
| |
| // Returns a factor to be applied to the RD value based on how well the |
| // reconstructed block variance matches the source variance. |
| static double intra_rd_variance_factor(const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bs) { |
| double threshold = INTRA_RD_VAR_THRESH(cpi->oxcf.speed); |
| // For non-positive threshold values, the comparison of source and |
| // reconstructed variances with threshold evaluates to false |
| // (src_var < threshold/rec_var < threshold) as these metrics are greater than |
| // than 0. Hence further calculations are skipped. |
| if (threshold <= 0) return 1.0; |
| |
| double variance_rd_factor = 1.0; |
| double avg_log_src_variance = 0.0; |
| double avg_log_recon_variance = 0.0; |
| double var_diff = 0.0; |
| |
| compute_avg_log_variance(cpi, x, bs, &avg_log_src_variance, |
| &avg_log_recon_variance); |
| |
| // Dont allow 0 to prevent / 0 below. |
| avg_log_src_variance += 0.000001; |
| avg_log_recon_variance += 0.000001; |
| |
| if (avg_log_src_variance >= avg_log_recon_variance) { |
| var_diff = (avg_log_src_variance - avg_log_recon_variance); |
| if ((var_diff > 0.5) && (avg_log_recon_variance < threshold)) { |
| variance_rd_factor = 1.0 + ((var_diff * 2) / avg_log_src_variance); |
| } |
| } else { |
| var_diff = (avg_log_recon_variance - avg_log_src_variance); |
| if ((var_diff > 0.5) && (avg_log_src_variance < threshold)) { |
| variance_rd_factor = 1.0 + (var_diff / (2 * avg_log_src_variance)); |
| } |
| } |
| |
| // Limit adjustment; |
| variance_rd_factor = AOMMIN(3.0, variance_rd_factor); |
| |
| return variance_rd_factor; |
| } |
| /*!\endcond */ |
| |
| /*!\brief Search for the best filter_intra mode when coding intra frame. |
| * |
| * \ingroup intra_mode_search |
| * \callergraph |
| * This function loops through all filter_intra modes to find the best one. |
| * |
| * \return Returns 1 if a new filter_intra mode is selected; 0 otherwise. |
| */ |
| static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, uint8_t *skippable, |
| BLOCK_SIZE bsize, int mode_cost, |
| PREDICTION_MODE best_mode_so_far, |
| int64_t *best_rd, int64_t *best_model_rd, |
| PICK_MODE_CONTEXT *ctx) { |
| // Skip the evaluation of filter intra modes. |
| if (cpi->sf.intra_sf.prune_filter_intra_level == 2) return 0; |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| int filter_intra_selected_flag = 0; |
| FILTER_INTRA_MODE mode; |
| TX_SIZE best_tx_size = TX_8X8; |
| FILTER_INTRA_MODE_INFO filter_intra_mode_info; |
| uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| av1_zero(filter_intra_mode_info); |
| mbmi->filter_intra_mode_info.use_filter_intra = 1; |
| mbmi->mode = DC_PRED; |
| mbmi->palette_mode_info.palette_size[0] = 0; |
| |
| // Skip the evaluation of filter-intra if cached MB_MODE_INFO does not have |
| // filter-intra as winner. |
| if (x->use_mb_mode_cache && |
| !x->mb_mode_cache->filter_intra_mode_info.use_filter_intra) |
| return 0; |
| |
| for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { |
| int64_t this_rd; |
| RD_STATS tokenonly_rd_stats; |
| mbmi->filter_intra_mode_info.filter_intra_mode = mode; |
| |
| if ((cpi->sf.intra_sf.prune_filter_intra_level == 1) && |
| !(av1_derived_filter_intra_mode_used_flag[best_mode_so_far] & |
| (1 << mode))) |
| continue; |
| |
| // Skip the evaluation of modes that do not match with the winner mode in |
| // x->mb_mode_cache. |
| if (x->use_mb_mode_cache && |
| mode != x->mb_mode_cache->filter_intra_mode_info.filter_intra_mode) |
| continue; |
| |
| if (model_intra_yrd_and_prune(cpi, x, bsize, best_model_rd)) { |
| continue; |
| } |
| av1_pick_uniform_tx_size_type_yrd(cpi, x, &tokenonly_rd_stats, bsize, |
| *best_rd); |
| if (tokenonly_rd_stats.rate == INT_MAX) continue; |
| const int this_rate = |
| tokenonly_rd_stats.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| |
| // Visual quality adjustment based on recon vs source variance. |
| if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) { |
| this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize)); |
| } |
| |
| // Collect mode stats for multiwinner mode processing |
| const int txfm_search_done = 1; |
| store_winner_mode_stats( |
| &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd, |
| cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| best_tx_size = mbmi->tx_size; |
| filter_intra_mode_info = mbmi->filter_intra_mode_info; |
| av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
| memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, |
| sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
| *rate = this_rate; |
| *rate_tokenonly = tokenonly_rd_stats.rate; |
| *distortion = tokenonly_rd_stats.dist; |
| *skippable = tokenonly_rd_stats.skip_txfm; |
| filter_intra_selected_flag = 1; |
| } |
| } |
| |
| if (filter_intra_selected_flag) { |
| mbmi->mode = DC_PRED; |
| mbmi->tx_size = best_tx_size; |
| mbmi->filter_intra_mode_info = filter_intra_mode_info; |
| av1_copy_array(ctx->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| void av1_count_colors(const uint8_t *src, int stride, int rows, int cols, |
| int *val_count, int *num_colors) { |
| const int max_pix_val = 1 << 8; |
| memset(val_count, 0, max_pix_val * sizeof(val_count[0])); |
| for (int r = 0; r < rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| const int this_val = src[r * stride + c]; |
| assert(this_val < max_pix_val); |
| ++val_count[this_val]; |
| } |
| } |
| int n = 0; |
| for (int i = 0; i < max_pix_val; ++i) { |
| if (val_count[i]) ++n; |
| } |
| *num_colors = n; |
| } |
| |
| void av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, |
| int cols, int bit_depth, int *val_count, |
| int *bin_val_count, int *num_color_bins, |
| int *num_colors) { |
| assert(bit_depth <= 12); |
| const int max_bin_val = 1 << 8; |
| const int max_pix_val = 1 << bit_depth; |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| memset(bin_val_count, 0, max_bin_val * sizeof(val_count[0])); |
| if (val_count != NULL) |
| memset(val_count, 0, max_pix_val * sizeof(val_count[0])); |
| for (int r = 0; r < rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| /* |
| * Down-convert the pixels to 8-bit domain before counting. |
| * This provides consistency of behavior for palette search |
| * between lbd and hbd encodes. This down-converted pixels |
| * are only used for calculating the threshold (n). |
| */ |
| const int this_val = ((src[r * stride + c]) >> (bit_depth - 8)); |
| assert(this_val < max_bin_val); |
| if (this_val >= max_bin_val) continue; |
| ++bin_val_count[this_val]; |
| if (val_count != NULL) ++val_count[(src[r * stride + c])]; |
| } |
| } |
| int n = 0; |
| // Count the colors based on 8-bit domain used to gate the palette path |
| for (int i = 0; i < max_bin_val; ++i) { |
| if (bin_val_count[i]) ++n; |
| } |
| *num_color_bins = n; |
| |
| // Count the actual hbd colors used to create top_colors |
| n = 0; |
| if (val_count != NULL) { |
| for (int i = 0; i < max_pix_val; ++i) { |
| if (val_count[i]) ++n; |
| } |
| *num_colors = n; |
| } |
| } |
| |
| void set_y_mode_and_delta_angle(const int mode_idx, MB_MODE_INFO *const mbmi, |
| int reorder_delta_angle_eval) { |
| if (mode_idx < INTRA_MODE_END) { |
| mbmi->mode = intra_rd_search_mode_order[mode_idx]; |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| } else { |
| mbmi->mode = (mode_idx - INTRA_MODE_END) / (MAX_ANGLE_DELTA * 2) + V_PRED; |
| int delta_angle_eval_idx = |
| (mode_idx - INTRA_MODE_END) % (MAX_ANGLE_DELTA * 2); |
| if (reorder_delta_angle_eval) { |
| mbmi->angle_delta[PLANE_TYPE_Y] = |
| luma_delta_angles_order[delta_angle_eval_idx]; |
| } else { |
| mbmi->angle_delta[PLANE_TYPE_Y] = |
| (delta_angle_eval_idx < 3 ? (delta_angle_eval_idx - 3) |
| : (delta_angle_eval_idx - 2)); |
| } |
| } |
| } |
| |
| static AOM_INLINE int get_model_rd_index_for_pruning( |
| const MACROBLOCK *const x, |
| const INTRA_MODE_SPEED_FEATURES *const intra_sf) { |
| const int top_intra_model_count_allowed = |
| intra_sf->top_intra_model_count_allowed; |
| if (!intra_sf->adapt_top_model_rd_count_using_neighbors) |
| return top_intra_model_count_allowed - 1; |
| |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const PREDICTION_MODE mode = xd->mi[0]->mode; |
| int model_rd_index_for_pruning = top_intra_model_count_allowed - 1; |
| int is_left_mode_neq_cur_mode = 0, is_above_mode_neq_cur_mode = 0; |
| if (xd->left_available) |
| is_left_mode_neq_cur_mode = xd->left_mbmi->mode != mode; |
| if (xd->up_available) |
| is_above_mode_neq_cur_mode = xd->above_mbmi->mode != mode; |
| // The pruning of luma intra modes is made more aggressive at lower quantizers |
| // and vice versa. The value for model_rd_index_for_pruning is derived as |
| // follows. |
| // qidx 0 to 127: Reduce the index of a candidate used for comparison only if |
| // the current mode does not match either of the available neighboring modes. |
| // qidx 128 to 255: Reduce the index of a candidate used for comparison only |
| // if the current mode does not match both the available neighboring modes. |
| if (x->qindex <= 127) { |
| if (is_left_mode_neq_cur_mode || is_above_mode_neq_cur_mode) |
| model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0); |
| } else { |
| if (is_left_mode_neq_cur_mode && is_above_mode_neq_cur_mode) |
| model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0); |
| } |
| return model_rd_index_for_pruning; |
| } |
| |
| int prune_intra_y_mode(int64_t this_model_rd, int64_t *best_model_rd, |
| int64_t top_intra_model_rd[], int max_model_cnt_allowed, |
| int model_rd_index_for_pruning) { |
| const double thresh_best = 1.50; |
| const double thresh_top = 1.00; |
| for (int i = 0; i < max_model_cnt_allowed; i++) { |
| if (this_model_rd < top_intra_model_rd[i]) { |
| for (int j = max_model_cnt_allowed - 1; j > i; j--) { |
| top_intra_model_rd[j] = top_intra_model_rd[j - 1]; |
| } |
| top_intra_model_rd[i] = this_model_rd; |
| break; |
| } |
| } |
| if (top_intra_model_rd[model_rd_index_for_pruning] != INT64_MAX && |
| this_model_rd > |
| thresh_top * top_intra_model_rd[model_rd_index_for_pruning]) |
| return 1; |
| |
| if (this_model_rd != INT64_MAX && |
| this_model_rd > thresh_best * (*best_model_rd)) |
| return 1; |
| if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; |
| return 0; |
| } |
| |
| // Run RD calculation with given chroma intra prediction angle., and return |
| // the RD cost. Update the best mode info. if the RD cost is the best so far. |
| static int64_t pick_intra_angle_routine_sbuv( |
| const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats, |
| int *best_angle_delta, int64_t *best_rd) { |
| MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; |
| assert(!is_inter_block(mbmi)); |
| int this_rate; |
| int64_t this_rd; |
| RD_STATS tokenonly_rd_stats; |
| |
| if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in)) |
| return INT64_MAX; |
| this_rate = tokenonly_rd_stats.rate + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead); |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; |
| *rate = this_rate; |
| rd_stats->rate = tokenonly_rd_stats.rate; |
| rd_stats->dist = tokenonly_rd_stats.dist; |
| rd_stats->skip_txfm = tokenonly_rd_stats.skip_txfm; |
| } |
| return this_rd; |
| } |
| |
| /*!\brief Search for the best angle delta for chroma prediction |
| * |
| * \ingroup intra_mode_search |
| * \callergraph |
| * Given a chroma directional intra prediction mode, this function will try to |
| * estimate the best delta_angle. |
| * |
| * \returns Return if there is a new mode with smaller rdcost than best_rd. |
| */ |
| static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int rate_overhead, |
| int64_t best_rd, int *rate, |
| RD_STATS *rd_stats) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| assert(!is_inter_block(mbmi)); |
| int i, angle_delta, best_angle_delta = 0; |
| int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; |
| |
| rd_stats->rate = INT_MAX; |
| rd_stats->skip_txfm = 0; |
| rd_stats->dist = INT64_MAX; |
| for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; |
| |
| for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| for (i = 0; i < 2; ++i) { |
| best_rd_in = (best_rd == INT64_MAX) |
| ? INT64_MAX |
| : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5))); |
| mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; |
| this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, |
| best_rd_in, rate, rd_stats, |
| &best_angle_delta, &best_rd); |
| rd_cost[2 * angle_delta + i] = this_rd; |
| if (angle_delta == 0) { |
| if (this_rd == INT64_MAX) return 0; |
| rd_cost[1] = this_rd; |
| break; |
| } |
| } |
| } |
| |
| assert(best_rd != INT64_MAX); |
| for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| int64_t rd_thresh; |
| for (i = 0; i < 2; ++i) { |
| int skip_search = 0; |
| rd_thresh = best_rd + (best_rd >> 5); |
| if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && |
| rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) |
| skip_search = 1; |
| if (!skip_search) { |
| mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; |
| pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd, |
| rate, rd_stats, &best_angle_delta, |
| &best_rd); |
| } |
| } |
| } |
| |
| mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta; |
| return rd_stats->rate != INT_MAX; |
| } |
| |
| #define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \ |
| (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1) |
| |
| static void cfl_idx_to_sign_and_alpha(int cfl_idx, CFL_SIGN_TYPE *cfl_sign, |
| int *cfl_alpha) { |
| int cfl_linear_idx = cfl_idx - CFL_INDEX_ZERO; |
| if (cfl_linear_idx == 0) { |
| *cfl_sign = CFL_SIGN_ZERO; |
| *cfl_alpha = 0; |
| } else { |
| *cfl_sign = cfl_linear_idx > 0 ? CFL_SIGN_POS : CFL_SIGN_NEG; |
| *cfl_alpha = abs(cfl_linear_idx) - 1; |
| } |
| } |
| |
| static int64_t cfl_compute_rd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int plane, TX_SIZE tx_size, |
| BLOCK_SIZE plane_bsize, int cfl_idx, |
| int fast_mode, RD_STATS *rd_stats) { |
| assert(IMPLIES(fast_mode, rd_stats == NULL)); |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| int cfl_plane = get_cfl_pred_type(plane); |
| CFL_SIGN_TYPE cfl_sign; |
| int cfl_alpha; |
| cfl_idx_to_sign_and_alpha(cfl_idx, &cfl_sign, &cfl_alpha); |
| // We conly build CFL for a given plane, the other plane's sign is dummy |
| int dummy_sign = CFL_SIGN_NEG; |
| const int8_t orig_cfl_alpha_signs = mbmi->cfl_alpha_signs; |
| const uint8_t orig_cfl_alpha_idx = mbmi->cfl_alpha_idx; |
| mbmi->cfl_alpha_signs = |
| PLANE_SIGN_TO_JOINT_SIGN(cfl_plane, cfl_sign, dummy_sign); |
| mbmi->cfl_alpha_idx = (cfl_alpha << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha; |
| int64_t cfl_cost; |
| if (fast_mode) { |
| cfl_cost = |
| intra_model_rd(cm, x, plane, plane_bsize, tx_size, /*use_hadamard=*/0); |
| } else { |
| av1_init_rd_stats(rd_stats); |
| av1_txfm_rd_in_plane(x, cpi, rd_stats, INT64_MAX, 0, plane, plane_bsize, |
| tx_size, FTXS_NONE, 0); |
| av1_rd_cost_update(x->rdmult, rd_stats); |
| cfl_cost = rd_stats->rdcost; |
| } |
| mbmi->cfl_alpha_signs = orig_cfl_alpha_signs; |
| mbmi->cfl_alpha_idx = orig_cfl_alpha_idx; |
| return cfl_cost; |
| } |
| |
| static const int cfl_dir_ls[2] = { 1, -1 }; |
| |
| // If cfl_search_range is CFL_MAGS_SIZE, return zero. Otherwise return the index |
| // of the best alpha found using intra_model_rd(). |
| static int cfl_pick_plane_parameter(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int plane, TX_SIZE tx_size, |
| int cfl_search_range) { |
| assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); |
| |
| if (cfl_search_range == CFL_MAGS_SIZE) return CFL_INDEX_ZERO; |
| |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(mbmi->uv_mode == UV_CFL_PRED); |
| const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| int est_best_cfl_idx = CFL_INDEX_ZERO; |
| int fast_mode = 1; |
| int start_cfl_idx = CFL_INDEX_ZERO; |
| int64_t best_cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, |
| start_cfl_idx, fast_mode, NULL); |
| for (int si = 0; si < 2; ++si) { |
| const int dir = cfl_dir_ls[si]; |
| for (int i = 1; i < CFL_MAGS_SIZE; ++i) { |
| int cfl_idx = start_cfl_idx + dir * i; |
| if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break; |
| int64_t cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, |
| cfl_idx, fast_mode, NULL); |
| if (cfl_cost < best_cfl_cost) { |
| best_cfl_cost = cfl_cost; |
| est_best_cfl_idx = cfl_idx; |
| } else { |
| break; |
| } |
| } |
| } |
| return est_best_cfl_idx; |
| } |
| |
| static void cfl_pick_plane_rd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int plane, TX_SIZE tx_size, int cfl_search_range, |
| RD_STATS cfl_rd_arr[CFL_MAGS_SIZE], |
| int est_best_cfl_idx) { |
| assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(mbmi->uv_mode == UV_CFL_PRED); |
| const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| for (int cfl_idx = 0; cfl_idx < CFL_MAGS_SIZE; ++cfl_idx) { |
| av1_invalid_rd_stats(&cfl_rd_arr[cfl_idx]); |
| } |
| |
| int fast_mode = 0; |
| int start_cfl_idx = est_best_cfl_idx; |
| cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, start_cfl_idx, fast_mode, |
| &cfl_rd_arr[start_cfl_idx]); |
| |
| if (cfl_search_range == 1) return; |
| |
| for (int si = 0; si < 2; ++si) { |
| const int dir = cfl_dir_ls[si]; |
| for (int i = 1; i < cfl_search_range; ++i) { |
| int cfl_idx = start_cfl_idx + dir * i; |
| if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break; |
| cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, cfl_idx, fast_mode, |
| &cfl_rd_arr[cfl_idx]); |
| } |
| } |
| } |
| |
| /*!\brief Pick the optimal parameters for Chroma to Luma (CFL) component |
| * |
| * \ingroup intra_mode_search |
| * \callergraph |
| * |
| * This function will use DCT_DCT followed by computing SATD (sum of absolute |
| * transformed differences) to estimate the RD score and find the best possible |
| * CFL parameter. |
| * |
| * Then the function will apply a full RD search near the best possible CFL |
| * parameter to find the best actual CFL parameter. |
| * |
| * Side effect: |
| * We use ths buffers in x->plane[] and xd->plane[] as throw-away buffers for RD |
| * search. |
| * |
| * \param[in] x Encoder prediction block structure. |
| * \param[in] cpi Top-level encoder instance structure. |
| * \param[in] tx_size Transform size. |
| * \param[in] ref_best_rd Reference best RD. |
| * \param[in] cfl_search_range The search range of full RD search near the |
| * estimated best CFL parameter. |
| * |
| * \param[out] best_rd_stats RD stats of the best CFL parameter |
| * \param[out] best_cfl_alpha_idx Best CFL alpha index |
| * \param[out] best_cfl_alpha_signs Best CFL joint signs |
| * |
| */ |
| static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi, |
| TX_SIZE tx_size, int64_t ref_best_rd, |
| int cfl_search_range, RD_STATS *best_rd_stats, |
| uint8_t *best_cfl_alpha_idx, |
| int8_t *best_cfl_alpha_signs) { |
| assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); |
| const ModeCosts *mode_costs = &x->mode_costs; |
| RD_STATS cfl_rd_arr_u[CFL_MAGS_SIZE]; |
| RD_STATS cfl_rd_arr_v[CFL_MAGS_SIZE]; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int est_best_cfl_idx_u, est_best_cfl_idx_v; |
| |
| av1_invalid_rd_stats(best_rd_stats); |
| |
| // As the dc pred data is same for different values of alpha, enable the |
| // caching of dc pred data. |
| xd->cfl.use_dc_pred_cache = 1; |
| // Evaluate alpha parameter of each chroma plane. |
| est_best_cfl_idx_u = |
| cfl_pick_plane_parameter(cpi, x, 1, tx_size, cfl_search_range); |
| est_best_cfl_idx_v = |
| cfl_pick_plane_parameter(cpi, x, 2, tx_size, cfl_search_range); |
| |
| // For cfl_search_range=1, further refinement of alpha is not enabled. Hence |
| // CfL index=0 for both the chroma planes implies invalid CfL mode. |
| if (cfl_search_range == 1 && est_best_cfl_idx_u == CFL_INDEX_ZERO && |
| est_best_cfl_idx_v == CFL_INDEX_ZERO) { |
| // Set invalid CfL parameters here as CfL mode is invalid. |
| *best_cfl_alpha_idx = 0; |
| *best_cfl_alpha_signs = 0; |
| |
| // Clear the following flags to avoid the unintentional usage of cached dc |
| // pred data. |
| xd->cfl.use_dc_pred_cache = 0; |
| xd->cfl.dc_pred_is_cached[0] = 0; |
| xd->cfl.dc_pred_is_cached[1] = 0; |
| return 0; |
| } |
| |
| // Compute the rd cost of each chroma plane using the alpha parameters which |
| // were already evaluated. |
| cfl_pick_plane_rd(cpi, x, 1, tx_size, cfl_search_range, cfl_rd_arr_u, |
| est_best_cfl_idx_u); |
| cfl_pick_plane_rd(cpi, x, 2, tx_size, cfl_search_range, cfl_rd_arr_v, |
| est_best_cfl_idx_v); |
| |
| // Clear the following flags to avoid the unintentional usage of cached dc |
| // pred data. |
| xd->cfl.use_dc_pred_cache = 0; |
| xd->cfl.dc_pred_is_cached[0] = 0; |
| xd->cfl.dc_pred_is_cached[1] = 0; |
| |
| for (int ui = 0; ui < CFL_MAGS_SIZE; ++ui) { |
| if (cfl_rd_arr_u[ui].rate == INT_MAX) continue; |
| int cfl_alpha_u; |
| CFL_SIGN_TYPE cfl_sign_u; |
| cfl_idx_to_sign_and_alpha(ui, &cfl_sign_u, &cfl_alpha_u); |
| for (int vi = 0; vi < CFL_MAGS_SIZE; ++vi) { |
| if (cfl_rd_arr_v[vi].rate == INT_MAX) continue; |
| int cfl_alpha_v; |
| CFL_SIGN_TYPE cfl_sign_v; |
| cfl_idx_to_sign_and_alpha(vi, &cfl_sign_v, &cfl_alpha_v); |
| // cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO is not a |
| // valid parameter for CFL |
| if (cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO) continue; |
| int joint_sign = cfl_sign_u * CFL_SIGNS + cfl_sign_v - 1; |
| RD_STATS rd_stats = cfl_rd_arr_u[ui]; |
| av1_merge_rd_stats(&rd_stats, &cfl_rd_arr_v[vi]); |
| if (rd_stats.rate != INT_MAX) { |
| rd_stats.rate += |
| mode_costs->cfl_cost[joint_sign][CFL_PRED_U][cfl_alpha_u]; |
| rd_stats.rate += |
| mode_costs->cfl_cost[joint_sign][CFL_PRED_V][cfl_alpha_v]; |
| } |
| av1_rd_cost_update(x->rdmult, &rd_stats); |
| if (rd_stats.rdcost < best_rd_stats->rdcost) { |
| *best_rd_stats = rd_stats; |
| *best_cfl_alpha_idx = |
| (cfl_alpha_u << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha_v; |
| *best_cfl_alpha_signs = joint_sign; |
| } |
| } |
| } |
| if (best_rd_stats->rdcost >= ref_best_rd) { |
| av1_invalid_rd_stats(best_rd_stats); |
| // Set invalid CFL parameters here since the rdcost is not better than |
| // ref_best_rd. |
| *best_cfl_alpha_idx = 0; |
| *best_cfl_alpha_signs = 0; |
| return 0; |
| } |
| return 1; |
| } |
| |
| static bool should_prune_chroma_smooth_pred_based_on_source_variance( |
| const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize) { |
| if (!cpi->sf.intra_sf.prune_smooth_intra_mode_for_chroma) return false; |
| |
| // If the source variance of both chroma planes is less than 20 (empirically |
| // derived), prune UV_SMOOTH_PRED. |
| for (int i = AOM_PLANE_U; i < av1_num_planes(&cpi->common); i++) { |
| const unsigned int variance = av1_get_perpixel_variance_facade( |
| cpi, &x->e_mbd, &x->plane[i].src, bsize, i); |
| if (variance >= 20) return false; |
| } |
| return true; |
| } |
| |
| int64_t av1_rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, uint8_t *skippable, |
| BLOCK_SIZE bsize, TX_SIZE max_tx_size) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| assert(!is_inter_block(mbmi)); |
| MB_MODE_INFO best_mbmi = *mbmi; |
| int64_t best_rd = INT64_MAX, this_rd; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg; |
| |
| init_sbuv_mode(mbmi); |
| |
| // Return if the current block does not correspond to a chroma block. |
| if (!xd->is_chroma_ref) { |
| *rate = 0; |
| *rate_tokenonly = 0; |
| *distortion = 0; |
| *skippable = 1; |
| return INT64_MAX; |
| } |
| |
| // Only store reconstructed luma when there's chroma RDO. When there's no |
| // chroma RDO, the reconstructed luma will be stored in encode_superblock(). |
| xd->cfl.store_y = store_cfl_required_rdo(cm, x); |
| if (xd->cfl.store_y) { |
| // Restore reconstructed luma values. |
| // TODO(chiyotsai@google.com): right now we are re-computing the txfm in |
| // this function everytime we search through uv modes. There is some |
| // potential speed up here if we cache the result to avoid redundant |
| // computation. |
| av1_encode_intra_block_plane(cpi, x, mbmi->bsize, AOM_PLANE_Y, |
| DRY_RUN_NORMAL, |
| cpi->optimize_seg_arr[mbmi->segment_id]); |
| xd->cfl.store_y = 0; |
| } |
| IntraModeSearchState intra_search_state; |
| init_intra_mode_search_state(&intra_search_state); |
| |
| // Search through all non-palette modes. |
| for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) { |
| int this_rate; |
| RD_STATS tokenonly_rd_stats; |
| UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx]; |
| const int is_diagonal_mode = av1_is_diagonal_mode(get_uv_mode(mode)); |
| const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode)); |
| |
| if (is_diagonal_mode && !cpi->oxcf.intra_mode_cfg.enable_diagonal_intra) |
| continue; |
| if (is_directional_mode && |
| !cpi->oxcf.intra_mode_cfg.enable_directional_intra) |
| continue; |
| |
| if (!(cpi->sf.intra_sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] & |
| (1 << mode))) |
| continue; |
| if (!intra_mode_cfg->enable_smooth_intra && mode >= UV_SMOOTH_PRED && |
| mode <= UV_SMOOTH_H_PRED) |
| continue; |
| |
| if (!intra_mode_cfg->enable_paeth_intra && mode == UV_PAETH_PRED) continue; |
| |
| assert(mbmi->mode < INTRA_MODES); |
| if (cpi->sf.intra_sf.prune_chroma_modes_using_luma_winner && |
| !(av1_derived_chroma_intra_mode_used_flag[mbmi->mode] & (1 << mode))) |
| continue; |
| |
| mbmi->uv_mode = mode; |
| |
| // Init variables for cfl and angle delta |
| const SPEED_FEATURES *sf = &cpi->sf; |
| mbmi->angle_delta[PLANE_TYPE_UV] = 0; |
| if (mode == UV_CFL_PRED) { |
| if (!is_cfl_allowed(xd) || !intra_mode_cfg->enable_cfl_intra) continue; |
| assert(!is_directional_mode); |
| const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); |
| if (!cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd, |
| sf->intra_sf.cfl_search_range, &tokenonly_rd_stats, |
| &mbmi->cfl_alpha_idx, &mbmi->cfl_alpha_signs)) { |
| continue; |
| } |
| } else if (is_directional_mode && av1_use_angle_delta(mbmi->bsize) && |
| intra_mode_cfg->enable_angle_delta) { |
| if (sf->intra_sf.chroma_intra_pruning_with_hog && |
| !intra_search_state.dir_mode_skip_mask_ready) { |
| static const float thresh[2][4] = { |
| { -1.2f, 0.0f, 0.0f, 1.2f }, // Interframe |
| { -1.2f, -1.2f, -0.6f, 0.4f }, // Intraframe |
| }; |
| const int is_chroma = 1; |
| const int is_intra_frame = frame_is_intra_only(cm); |
| prune_intra_mode_with_hog( |
| x, bsize, cm->seq_params->sb_size, |
| thresh[is_intra_frame] |
| [sf->intra_sf.chroma_intra_pruning_with_hog - 1], |
| intra_search_state.directional_mode_skip_mask, is_chroma); |
| intra_search_state.dir_mode_skip_mask_ready = 1; |
| } |
| if (intra_search_state.directional_mode_skip_mask[mode]) { |
| continue; |
| } |
| |
| // Search through angle delta |
| const int rate_overhead = |
| mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode]; |
| if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd, |
| &this_rate, &tokenonly_rd_stats)) |
| continue; |
| } else { |
| if (mode == UV_SMOOTH_PRED && |
| should_prune_chroma_smooth_pred_based_on_source_variance(cpi, x, |
| bsize)) |
| continue; |
| |
| // Predict directly if we don't need to search for angle delta. |
| if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) { |
| continue; |
| } |
| } |
| const int mode_cost = |
| mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode]; |
| this_rate = tokenonly_rd_stats.rate + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost); |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| |
| if (this_rd < best_rd) { |
| best_mbmi = *mbmi; |
| best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = tokenonly_rd_stats.rate; |
| *distortion = tokenonly_rd_stats.dist; |
| *skippable = tokenonly_rd_stats.skip_txfm; |
| } |
| } |
| |
| // Search palette mode |
| const int try_palette = |
| cpi->oxcf.tool_cfg.enable_palette && |
| av1_allow_palette(cpi->common.features.allow_screen_content_tools, |
| mbmi->bsize); |
| if (try_palette) { |
| uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map; |
| av1_rd_pick_palette_intra_sbuv( |
| cpi, x, |
| mode_costs |
| ->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_DC_PRED], |
| best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly, |
| distortion, skippable); |
| } |
| |
| *mbmi = best_mbmi; |
| // Make sure we actually chose a mode |
| assert(best_rd < INT64_MAX); |
| return best_rd; |
| } |
| |
| // Searches palette mode for luma channel in inter frame. |
| int av1_search_palette_mode(IntraModeSearchState *intra_search_state, |
| const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, unsigned int ref_frame_cost, |
| PICK_MODE_CONTEXT *ctx, RD_STATS *this_rd_cost, |
| int64_t best_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MB_MODE_INFO *const mbmi = x->e_mbd.mi[0]; |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int rate2 = 0; |
| int64_t distortion2 = 0, best_rd_palette = best_rd, this_rd; |
| int skippable = 0; |
| uint8_t *const best_palette_color_map = |
| x->palette_buffer->best_palette_color_map; |
| uint8_t *const color_map = xd->plane[0].color_index_map; |
| MB_MODE_INFO best_mbmi_palette = *mbmi; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int *const intra_mode_cost = |
| mode_costs->mbmode_cost[size_group_lookup[bsize]]; |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| |
| mbmi->mode = DC_PRED; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = INTRA_FRAME; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| av1_zero(pmi->palette_size); |
| |
| RD_STATS rd_stats_y; |
| av1_invalid_rd_stats(&rd_stats_y); |
| av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED], |
| &best_mbmi_palette, best_palette_color_map, |
| &best_rd_palette, &rd_stats_y.rate, NULL, |
| &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL, |
| ctx, best_blk_skip, best_tx_type_map); |
| if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) { |
| this_rd_cost->rdcost = INT64_MAX; |
| return skippable; |
| } |
| |
| memcpy(x->txfm_search_info.blk_skip, best_blk_skip, |
| sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); |
| av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); |
| memcpy(color_map, best_palette_color_map, |
| rows * cols * sizeof(best_palette_color_map[0])); |
| |
| skippable = rd_stats_y.skip_txfm; |
| distortion2 = rd_stats_y.dist; |
| rate2 = rd_stats_y.rate + ref_frame_cost; |
| if (num_planes > 1) { |
| if (intra_search_state->rate_uv_intra == INT_MAX) { |
| // We have not found any good uv mode yet, so we need to search for it. |
| TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); |
| av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra, |
| &intra_search_state->rate_uv_tokenonly, |
| &intra_search_state->dist_uvs, |
| &intra_search_state->skip_uvs, bsize, uv_tx); |
| intra_search_state->mode_uv = mbmi->uv_mode; |
| intra_search_state->pmi_uv = *pmi; |
| intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; |
| } |
| |
| // We have found at least one good uv mode before, so copy and paste it |
| // over. |
| mbmi->uv_mode = intra_search_state->mode_uv; |
| pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1]; |
| if (pmi->palette_size[1] > 0) { |
| memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, |
| intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE, |
| 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); |
| } |
| mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta; |
| skippable = skippable && intra_search_state->skip_uvs; |
| distortion2 += intra_search_state->dist_uvs; |
| rate2 += intra_search_state->rate_uv_intra; |
| } |
| |
| if (skippable) { |
| rate2 -= rd_stats_y.rate; |
| if (num_planes > 1) rate2 -= intra_search_state->rate_uv_tokenonly; |
| rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1]; |
| } else { |
| rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0]; |
| } |
| this_rd = RDCOST(x->rdmult, rate2, distortion2); |
| this_rd_cost->rate = rate2; |
| this_rd_cost->dist = distortion2; |
| this_rd_cost->rdcost = this_rd; |
| return skippable; |
| } |
| |
| void av1_search_palette_mode_luma(const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, unsigned int ref_frame_cost, |
| PICK_MODE_CONTEXT *ctx, |
| RD_STATS *this_rd_cost, int64_t best_rd) { |
| MB_MODE_INFO *const mbmi = x->e_mbd.mi[0]; |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int64_t best_rd_palette = best_rd, this_rd; |
| uint8_t *const best_palette_color_map = |
| x->palette_buffer->best_palette_color_map; |
| uint8_t *const color_map = xd->plane[0].color_index_map; |
| MB_MODE_INFO best_mbmi_palette = *mbmi; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int *const intra_mode_cost = |
| mode_costs->mbmode_cost[size_group_lookup[bsize]]; |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| |
| mbmi->mode = DC_PRED; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = INTRA_FRAME; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| av1_zero(pmi->palette_size); |
| |
| RD_STATS rd_stats_y; |
| av1_invalid_rd_stats(&rd_stats_y); |
| av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED], |
| &best_mbmi_palette, best_palette_color_map, |
| &best_rd_palette, &rd_stats_y.rate, NULL, |
| &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL, |
| ctx, best_blk_skip, best_tx_type_map); |
| if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) { |
| this_rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| memcpy(x->txfm_search_info.blk_skip, best_blk_skip, |
| sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); |
| av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); |
| memcpy(color_map, best_palette_color_map, |
| rows * cols * sizeof(best_palette_color_map[0])); |
| |
| rd_stats_y.rate += ref_frame_cost; |
| |
| if (rd_stats_y.skip_txfm) { |
| rd_stats_y.rate = |
| ref_frame_cost + |
| mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1]; |
| } else { |
| rd_stats_y.rate += |
| mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0]; |
| } |
| this_rd = RDCOST(x->rdmult, rd_stats_y.rate, rd_stats_y.dist); |
| this_rd_cost->rate = rd_stats_y.rate; |
| this_rd_cost->dist = rd_stats_y.dist; |
| this_rd_cost->rdcost = this_rd; |
| this_rd_cost->skip_txfm = rd_stats_y.skip_txfm; |
| } |
| |
| /*!\brief Get the intra prediction by searching through tx_type and tx_size. |
| * |
| * \ingroup intra_mode_search |
| * \callergraph |
| * Currently this function is only used in the intra frame code path for |
| * winner-mode processing. |
| * |
| * \return Returns whether the current mode is an improvement over best_rd. |
| */ |
| static AOM_INLINE int intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, const int *bmode_costs, |
| int64_t *best_rd, int *rate, |
| int *rate_tokenonly, int64_t *distortion, |
| uint8_t *skippable, |
| MB_MODE_INFO *best_mbmi, |
| PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| RD_STATS rd_stats; |
| // In order to improve txfm search avoid rd based breakouts during winner |
| // mode evaluation. Hence passing ref_best_rd as a maximum value |
| av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats, bsize, INT64_MAX); |
| if (rd_stats.rate == INT_MAX) return 0; |
| int this_rate_tokenonly = rd_stats.rate; |
| if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) { |
| // av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size |
| // in the tokenonly rate, but for intra blocks, tx_size is always coded |
| // (prediction granularity), so we account for it in the full rate, |
| // not the tokenonly rate. |
| this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size); |
| } |
| const int this_rate = |
| rd_stats.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0); |
| const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist); |
| if (this_rd < *best_rd) { |
| *best_mbmi = *mbmi; |
| *best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = rd_stats.dist; |
| *skippable = rd_stats.skip_txfm; |
| av1_copy_array(ctx->blk_skip, x->txfm_search_info.blk_skip, |
| ctx->num_4x4_blk); |
| av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /*!\brief Search for the best filter_intra mode when coding inter frame. |
| * |
| * \ingroup intra_mode_search |
| * \callergraph |
| * This function loops through all filter_intra modes to find the best one. |
| * |
| * \remark Returns nothing, but updates the mbmi and rd_stats. |
| */ |
| static INLINE void handle_filter_intra_mode(const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| const PICK_MODE_CONTEXT *ctx, |
| RD_STATS *rd_stats_y, int mode_cost, |
| int64_t best_rd, |
| int64_t best_rd_so_far) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(mbmi->mode == DC_PRED && |
| av1_filter_intra_allowed_bsize(&cpi->common, bsize)); |
| |
| RD_STATS rd_stats_y_fi; |
| int filter_intra_selected_flag = 0; |
| TX_SIZE best_tx_size = mbmi->tx_size; |
| FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| memcpy(best_blk_skip, x->txfm_search_info.blk_skip, |
| sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); |
| uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
| mbmi->filter_intra_mode_info.use_filter_intra = 1; |
| for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; fi_mode < FILTER_INTRA_MODES; |
| ++fi_mode) { |
| mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode; |
| av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y_fi, bsize, best_rd); |
| if (rd_stats_y_fi.rate == INT_MAX) continue; |
| const int this_rate_tmp = |
| rd_stats_y_fi.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); |
| const int64_t this_rd_tmp = |
| RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist); |
| |
| if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > best_rd) { |
| break; |
| } |
| if (this_rd_tmp < best_rd_so_far) { |
| best_tx_size = mbmi->tx_size; |
| av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
| memcpy(best_blk_skip, x->txfm_search_info.blk_skip, |
| sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); |
| best_fi_mode = fi_mode; |
| *rd_stats_y = rd_stats_y_fi; |
| filter_intra_selected_flag = 1; |
| best_rd_so_far = this_rd_tmp; |
| } |
| } |
| |
| mbmi->tx_size = best_tx_size; |
| av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); |
| memcpy(x->txfm_search_info.blk_skip, best_blk_skip, |
| sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
| |
| if (filter_intra_selected_flag) { |
| mbmi->filter_intra_mode_info.use_filter_intra = 1; |
| mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode; |
| } else { |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| } |
| } |
| |
| // Evaluate a given luma intra-mode in inter frames. |
| int av1_handle_intra_y_mode(IntraModeSearchState *intra_search_state, |
| const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, unsigned int ref_frame_cost, |
| const PICK_MODE_CONTEXT *ctx, RD_STATS *rd_stats_y, |
| int64_t best_rd, int *mode_cost_y, int64_t *rd_y, |
| int64_t *best_model_rd, |
| int64_t top_intra_model_rd[]) { |
| const AV1_COMMON *cm = &cpi->common; |
| const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(mbmi->ref_frame[0] == INTRA_FRAME); |
| const PREDICTION_MODE mode = mbmi->mode; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int mode_cost = |
| mode_costs->mbmode_cost[size_group_lookup[bsize]][mode] + ref_frame_cost; |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| |
| int known_rate = mode_cost; |
| const int intra_cost_penalty = av1_get_intra_cost_penalty( |
| cm->quant_params.base_qindex, cm->quant_params.y_dc_delta_q, |
| cm->seq_params->bit_depth); |
| |
| if (mode != DC_PRED && mode != PAETH_PRED) known_rate += intra_cost_penalty; |
| known_rate += AOMMIN(mode_costs->skip_txfm_cost[skip_ctx][0], |
| mode_costs->skip_txfm_cost[skip_ctx][1]); |
| const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0); |
| if (known_rd > best_rd) { |
| intra_search_state->skip_intra_modes = 1; |
| return 0; |
| } |
| |
| const int is_directional_mode = av1_is_directional_mode(mode); |
| if (is_directional_mode && av1_use_angle_delta(bsize) && |
| cpi->oxcf.intra_mode_cfg.enable_angle_delta) { |
| if (intra_sf->intra_pruning_with_hog && |
| !intra_search_state->dir_mode_skip_mask_ready) { |
| const float thresh[4] = { -1.2f, 0.0f, 0.0f, 1.2f }; |
| const int is_chroma = 0; |
| prune_intra_mode_with_hog(x, bsize, cm->seq_params->sb_size, |
| thresh[intra_sf->intra_pruning_with_hog - 1], |
| intra_search_state->directional_mode_skip_mask, |
| is_chroma); |
| intra_search_state->dir_mode_skip_mask_ready = 1; |
| } |
| if (intra_search_state->directional_mode_skip_mask[mode]) return 0; |
| } |
| const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]); |
| const int64_t this_model_rd = |
| intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1); |
| |
| const int model_rd_index_for_pruning = |
| get_model_rd_index_for_pruning(x, intra_sf); |
| |
| if (prune_intra_y_mode(this_model_rd, best_model_rd, top_intra_model_rd, |
| intra_sf->top_intra_model_count_allowed, |
| model_rd_index_for_pruning)) |
| return 0; |
| av1_init_rd_stats(rd_stats_y); |
| av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, best_rd); |
| |
| // Pick filter intra modes. |
| if (mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { |
| int try_filter_intra = 1; |
| int64_t best_rd_so_far = INT64_MAX; |
| if (rd_stats_y->rate != INT_MAX) { |
| // best_rd_so_far is the rdcost of DC_PRED without using filter_intra. |
| // Later, in filter intra search, best_rd_so_far is used for comparison. |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| const int tmp_rate = |
| rd_stats_y->rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); |
| best_rd_so_far = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist); |
| try_filter_intra = (best_rd_so_far / 2) <= best_rd; |
| } else if (intra_sf->skip_filter_intra_in_inter_frames >= 1) { |
| // As rd cost of luma intra dc mode is more than best_rd (i.e., |
| // rd_stats_y->rate = INT_MAX), skip the evaluation of filter intra modes. |
| try_filter_intra = 0; |
| } |
| |
| if (try_filter_intra) { |
| handle_filter_intra_mode(cpi, x, bsize, ctx, rd_stats_y, mode_cost, |
| best_rd, best_rd_so_far); |
| } |
| } |
| |
| if (rd_stats_y->rate == INT_MAX) return 0; |
| |
| *mode_cost_y = intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); |
| const int rate_y = rd_stats_y->skip_txfm |
| ? mode_costs->skip_txfm_cost[skip_ctx][1] |
| : rd_stats_y->rate; |
| *rd_y = RDCOST(x->rdmult, rate_y + *mode_cost_y, rd_stats_y->dist); |
| if (best_rd < (INT64_MAX / 2) && *rd_y > (best_rd + (best_rd >> 2))) { |
| intra_search_state->skip_intra_modes = 1; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int av1_search_intra_uv_modes_in_interframe( |
| IntraModeSearchState *intra_search_state, const AV1_COMP *cpi, |
| MACROBLOCK *x, BLOCK_SIZE bsize, RD_STATS *rd_stats, |
| const RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, int64_t best_rd) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(mbmi->ref_frame[0] == INTRA_FRAME); |
| |
| // TODO(chiyotsai@google.com): Consolidate the chroma search code here with |
| // the one in av1_search_palette_mode. |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int try_palette = |
| cpi->oxcf.tool_cfg.enable_palette && |
| av1_allow_palette(cm->features.allow_screen_content_tools, mbmi->bsize); |
| |
| assert(intra_search_state->rate_uv_intra == INT_MAX); |
| if (intra_search_state->rate_uv_intra == INT_MAX) { |
| // If no good uv-predictor had been found, search for it. |
| const TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); |
| av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra, |
| &intra_search_state->rate_uv_tokenonly, |
| &intra_search_state->dist_uvs, |
| &intra_search_state->skip_uvs, bsize, uv_tx); |
| intra_search_state->mode_uv = mbmi->uv_mode; |
| if (try_palette) intra_search_state->pmi_uv = *pmi; |
| intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; |
| |
| const int uv_rate = intra_search_state->rate_uv_tokenonly; |
| const int64_t uv_dist = intra_search_state->dist_uvs; |
| const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist); |
| if (uv_rd > best_rd) { |
| // If there is no good intra uv-mode available, we can skip all intra |
| // modes. |
| intra_search_state->skip_intra_modes = 1; |
| return 0; |
| } |
| } |
| |
| // If we are here, then the encoder has found at least one good intra uv |
| // predictor, so we can directly copy its statistics over. |
| // TODO(any): the stats here is not right if the best uv mode is CFL but the |
| // best y mode is palette. |
| rd_stats_uv->rate = intra_search_state->rate_uv_tokenonly; |
| rd_stats_uv->dist = intra_search_state->dist_uvs; |
| rd_stats_uv->skip_txfm = intra_search_state->skip_uvs; |
| rd_stats->skip_txfm = rd_stats_y->skip_txfm && rd_stats_uv->skip_txfm; |
| mbmi->uv_mode = intra_search_state->mode_uv; |
| if (try_palette) { |
| pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1]; |
| memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, |
| intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE, |
| 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); |
| } |
| mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta; |
| |
| return 1; |
| } |
| |
| // Checks if odd delta angles can be pruned based on rdcosts of even delta |
| // angles of the corresponding directional mode. |
| static AOM_INLINE int prune_luma_odd_delta_angles_using_rd_cost( |
| const MB_MODE_INFO *const mbmi, const int64_t *const intra_modes_rd_cost, |
| int64_t best_rd, int prune_luma_odd_delta_angles_in_intra) { |
| const int luma_delta_angle = mbmi->angle_delta[PLANE_TYPE_Y]; |
| if (!prune_luma_odd_delta_angles_in_intra || |
| !av1_is_directional_mode(mbmi->mode) || !(abs(luma_delta_angle) & 1) || |
| best_rd == INT64_MAX) |
| return 0; |
| |
| const int64_t rd_thresh = best_rd + (best_rd >> 3); |
| |
| // Neighbour rdcosts are considered for pruning of odd delta angles as |
| // mentioned below: |
| // Delta angle Delta angle rdcost |
| // to be pruned to be considered |
| // -3 -2 |
| // -1 -2, 0 |
| // 1 0, 2 |
| // 3 2 |
| return intra_modes_rd_cost[luma_delta_angle + MAX_ANGLE_DELTA] > rd_thresh && |
| intra_modes_rd_cost[luma_delta_angle + MAX_ANGLE_DELTA + 2] > |
| rd_thresh; |
| } |
| |
| // Finds the best non-intrabc mode on an intra frame. |
| int64_t av1_rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, uint8_t *skippable, |
| BLOCK_SIZE bsize, int64_t best_rd, |
| PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(!is_inter_block(mbmi)); |
| int64_t best_model_rd = INT64_MAX; |
| int is_directional_mode; |
| uint8_t directional_mode_skip_mask[INTRA_MODES] = { 0 }; |
| // Flag to check rd of any intra mode is better than best_rd passed to this |
| // function |
| int beat_best_rd = 0; |
| const int *bmode_costs; |
| const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg; |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int try_palette = |
| cpi->oxcf.tool_cfg.enable_palette && |
| av1_allow_palette(cpi->common.features.allow_screen_content_tools, |
| mbmi->bsize); |
| uint8_t *best_palette_color_map = |
| try_palette ? x->palette_buffer->best_palette_color_map : NULL; |
| const MB_MODE_INFO *above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *left_mi = xd->left_mbmi; |
| const PREDICTION_MODE A = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE L = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[A]; |
| const int left_ctx = intra_mode_context[L]; |
| bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx]; |
| |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf; |
| if (intra_sf->intra_pruning_with_hog) { |
| // Less aggressive thresholds are used here than those used in inter frame |
| // encoding in av1_handle_intra_y_mode() because we want key frames/intra |
| // frames to have higher quality. |
| const float thresh[4] = { -1.2f, -1.2f, -0.6f, 0.4f }; |
| const int is_chroma = 0; |
| prune_intra_mode_with_hog(x, bsize, cpi->common.seq_params->sb_size, |
| thresh[intra_sf->intra_pruning_with_hog - 1], |
| directional_mode_skip_mask, is_chroma); |
| } |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| pmi->palette_size[0] = 0; |
| |
| // Set params for mode evaluation |
| set_mode_eval_params(cpi, x, MODE_EVAL); |
| |
| MB_MODE_INFO best_mbmi = *mbmi; |
| const int max_winner_mode_count = |
| winner_mode_count_allowed[cpi->sf.winner_mode_sf.multi_winner_mode_type]; |
| zero_winner_mode_stats(bsize, max_winner_mode_count, x->winner_mode_stats); |
| x->winner_mode_count = 0; |
| |
| // Searches the intra-modes except for intrabc, palette, and filter_intra. |
| int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT]; |
| for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) { |
| top_intra_model_rd[i] = INT64_MAX; |
| } |
| |
| // Initialize the rdcost corresponding to all the directional and |
| // non-directional intra modes. |
| // 1. For directional modes, it stores the rdcost values for delta angles -4, |
| // -3, ..., 3, 4. |
| // 2. The rdcost value for luma_delta_angle is stored at index |
| // luma_delta_angle + MAX_ANGLE_DELTA + 1. |
| // 3. The rdcost values for fictitious/nonexistent luma_delta_angle -4 and 4 |
| // (array indices 0 and 8) are always set to INT64_MAX (the initial value). |
| int64_t intra_modes_rd_cost[INTRA_MODE_END] |
| [SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY]; |
| for (int i = 0; i < INTRA_MODE_END; i++) { |
| for (int j = 0; j < SIZE_OF_ANGLE_DELTA_RD_COST_ARRAY; j++) { |
| intra_modes_rd_cost[i][j] = INT64_MAX; |
| } |
| } |
| |
| for (int mode_idx = INTRA_MODE_START; mode_idx < LUMA_MODE_COUNT; |
| ++mode_idx) { |
| set_y_mode_and_delta_angle(mode_idx, mbmi, |
| intra_sf->prune_luma_odd_delta_angles_in_intra); |
| RD_STATS this_rd_stats; |
| int this_rate, this_rate_tokenonly, s; |
| int is_diagonal_mode; |
| int64_t this_distortion, this_rd; |
| const int luma_delta_angle = mbmi->angle_delta[PLANE_TYPE_Y]; |
| |
| is_diagonal_mode = av1_is_diagonal_mode(mbmi->mode); |
| if (is_diagonal_mode && !intra_mode_cfg->enable_diagonal_intra) continue; |
| if (av1_is_directional_mode(mbmi->mode) && |
| !intra_mode_cfg->enable_directional_intra) |
| continue; |
| |
| // The smooth prediction mode appears to be more frequently picked |
| // than horizontal / vertical smooth prediction modes. Hence treat |
| // them differently in speed features. |
| if ((!intra_mode_cfg->enable_smooth_intra || |
| intra_sf->disable_smooth_intra) && |
| (mbmi->mode == SMOOTH_H_PRED || mbmi->mode == SMOOTH_V_PRED)) |
| continue; |
| if (!intra_mode_cfg->enable_smooth_intra && mbmi->mode == SMOOTH_PRED) |
| continue; |
| |
| // The functionality of filter intra modes and smooth prediction |
| // overlap. Hence smooth prediction is pruned only if all the |
| // filter intra modes are enabled. |
| if (intra_sf->disable_smooth_intra && |
| intra_sf->prune_filter_intra_level == 0 && mbmi->mode == SMOOTH_PRED) |
| continue; |
| if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED) |
| continue; |
| |
| // Skip the evaluation of modes that do not match with the winner mode in |
| // x->mb_mode_cache. |
| if (x->use_mb_mode_cache && mbmi->mode != x->mb_mode_cache->mode) continue; |
| |
| is_directional_mode = av1_is_directional_mode(mbmi->mode); |
| if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue; |
| if (is_directional_mode && |
| !(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) && |
| luma_delta_angle != 0) |
| continue; |
| |
| // Use intra_y_mode_mask speed feature to skip intra mode evaluation. |
| if (!(intra_sf->intra_y_mode_mask[max_txsize_lookup[bsize]] & |
| (1 << mbmi->mode))) |
| continue; |
| |
| if (prune_luma_odd_delta_angles_using_rd_cost( |
| mbmi, intra_modes_rd_cost[mbmi->mode], best_rd, |
| intra_sf->prune_luma_odd_delta_angles_in_intra)) |
| continue; |
| |
| const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]); |
| const int64_t this_model_rd = |
| intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1); |
| |
| const int model_rd_index_for_pruning = |
| get_model_rd_index_for_pruning(x, intra_sf); |
| |
| if (prune_intra_y_mode(this_model_rd, &best_model_rd, top_intra_model_rd, |
| intra_sf->top_intra_model_count_allowed, |
| model_rd_index_for_pruning)) |
| continue; |
| |
| // Builds the actual prediction. The prediction from |
| // model_intra_yrd_and_prune was just an estimation that did not take into |
| // account the effect of txfm pipeline, so we need to redo it for real |
| // here. |
| av1_pick_uniform_tx_size_type_yrd(cpi, x, &this_rd_stats, bsize, best_rd); |
| this_rate_tokenonly = this_rd_stats.rate; |
| this_distortion = this_rd_stats.dist; |
| s = this_rd_stats.skip_txfm; |
| |
| if (this_rate_tokenonly == INT_MAX) continue; |
| |
| if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) { |
| // av1_pick_uniform_tx_size_type_yrd above includes the cost of the |
| // tx_size in the tokenonly rate, but for intra blocks, tx_size is always |
| // coded (prediction granularity), so we account for it in the full rate, |
| // not the tokenonly rate. |
| this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size); |
| } |
| this_rate = |
| this_rd_stats.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0); |
| this_rd = RDCOST(x->rdmult, this_rate, this_distortion); |
| |
| // Visual quality adjustment based on recon vs source variance. |
| if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) { |
| this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize)); |
| } |
| |
| intra_modes_rd_cost[mbmi->mode][luma_delta_angle + MAX_ANGLE_DELTA + 1] = |
| this_rd; |
| |
| // Collect mode stats for multiwinner mode processing |
| const int txfm_search_done = 1; |
| store_winner_mode_stats( |
| &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd, |
| cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); |
| if (this_rd < best_rd) { |
| best_mbmi = *mbmi; |
| best_rd = this_rd; |
| // Setting beat_best_rd flag because current mode rd is better than |
| // best_rd passed to this function |
| beat_best_rd = 1; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, |
| sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
| av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); |
| } |
| } |
| |
| // Searches palette |
| if (try_palette) { |
| av1_rd_pick_palette_intra_sby( |
| cpi, x, bsize, bmode_costs[DC_PRED], &best_mbmi, best_palette_color_map, |
| &best_rd, rate, rate_tokenonly, distortion, skippable, &beat_best_rd, |
| ctx, ctx->blk_skip, ctx->tx_type_map); |
| } |
| |
| // Searches filter_intra |
| if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) { |
| if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion, |
| skippable, bsize, bmode_costs[DC_PRED], |
| best_mbmi.mode, &best_rd, &best_model_rd, |
| ctx)) { |
| best_mbmi = *mbmi; |
| } |
| } |
| |
| // No mode is identified with less rd value than best_rd passed to this |
| // function. In such cases winner mode processing is not necessary and return |
| // best_rd as INT64_MAX to indicate best mode is not identified |
| if (!beat_best_rd) return INT64_MAX; |
| |
| // In multi-winner mode processing, perform tx search for few best modes |
| // identified during mode evaluation. Winner mode processing uses best tx |
| // configuration for tx search. |
| if (cpi->sf.winner_mode_sf.multi_winner_mode_type) { |
| int best_mode_idx = 0; |
| int block_width, block_height; |
| uint8_t *color_map_dst = xd->plane[PLANE_TYPE_Y].color_index_map; |
| av1_get_block_dimensions(bsize, AOM_PLANE_Y, xd, &block_width, |
| &block_height, NULL, NULL); |
| |
| for (int mode_idx = 0; mode_idx < x->winner_mode_count; mode_idx++) { |
| *mbmi = x->winner_mode_stats[mode_idx].mbmi; |
| if (is_winner_mode_processing_enabled(cpi, x, mbmi, 0)) { |
| // Restore color_map of palette mode before winner mode processing |
| if (mbmi->palette_mode_info.palette_size[0] > 0) { |
| uint8_t *color_map_src = |
| x->winner_mode_stats[mode_idx].color_index_map; |
| memcpy(color_map_dst, color_map_src, |
| block_width * block_height * sizeof(*color_map_src)); |
| } |
| // Set params for winner mode evaluation |
| set_mode_eval_params(cpi, x, WINNER_MODE_EVAL); |
| |
| // Winner mode processing |
| // If previous searches use only the default tx type/no R-D optimization |
| // of quantized coeffs, do an extra search for the best tx type/better |
| // R-D optimization of quantized coeffs |
| if (intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, |
| rate_tokenonly, distortion, skippable, &best_mbmi, |
| ctx)) |
| best_mode_idx = mode_idx; |
| } |
| } |
| // Copy color_map of palette mode for final winner mode |
| if (best_mbmi.palette_mode_info.palette_size[0] > 0) { |
| uint8_t *color_map_src = |
| x->winner_mode_stats[best_mode_idx].color_index_map; |
| memcpy(color_map_dst, color_map_src, |
| block_width * block_height * sizeof(*color_map_src)); |
| } |
| } else { |
| // If previous searches use only the default tx type/no R-D optimization of |
| // quantized coeffs, do an extra search for the best tx type/better R-D |
| // optimization of quantized coeffs |
| if (is_winner_mode_processing_enabled(cpi, x, mbmi, 0)) { |
| // Set params for winner mode evaluation |
| set_mode_eval_params(cpi, x, WINNER_MODE_EVAL); |
| *mbmi = best_mbmi; |
| intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, |
| rate_tokenonly, distortion, skippable, &best_mbmi, ctx); |
| } |
| } |
| *mbmi = best_mbmi; |
| av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk); |
| return best_rd; |
| } |