| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/intra_mode_search.h" |
| #include "av1/encoder/model_rd.h" |
| #include "av1/encoder/motion_search_facade.h" |
| #include "av1/encoder/nonrd_opt.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/var_based_part.h" |
| |
| static INLINE int early_term_inter_search_with_sse(int early_term_idx, |
| BLOCK_SIZE bsize, |
| int64_t this_sse, |
| int64_t best_sse, |
| PREDICTION_MODE this_mode) { |
| // Aggressiveness to terminate inter mode search early is adjusted based on |
| // speed and block size. |
| static const double early_term_thresh[4][4] = { { 0.65, 0.65, 0.65, 0.7 }, |
| { 0.6, 0.65, 0.85, 0.9 }, |
| { 0.5, 0.5, 0.55, 0.6 }, |
| { 0.6, 0.75, 0.85, 0.85 } }; |
| static const double early_term_thresh_newmv_nearestmv[4] = { 0.3, 0.3, 0.3, |
| 0.3 }; |
| |
| const int size_group = size_group_lookup[bsize]; |
| assert(size_group < 4); |
| assert((early_term_idx > 0) && (early_term_idx < EARLY_TERM_INDICES)); |
| const double threshold = |
| ((early_term_idx == EARLY_TERM_IDX_4) && |
| (this_mode == NEWMV || this_mode == NEARESTMV)) |
| ? early_term_thresh_newmv_nearestmv[size_group] |
| : early_term_thresh[early_term_idx - 1][size_group]; |
| |
| // Terminate inter mode search early based on best sse so far. |
| if ((early_term_idx > 0) && (threshold * this_sse > best_sse)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static INLINE void init_best_pickmode(BEST_PICKMODE *bp) { |
| bp->best_sse = INT64_MAX; |
| bp->best_mode = NEARESTMV; |
| bp->best_ref_frame = LAST_FRAME; |
| bp->best_second_ref_frame = NONE_FRAME; |
| bp->best_tx_size = TX_8X8; |
| bp->tx_type = DCT_DCT; |
| bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); |
| bp->best_mode_skip_txfm = 0; |
| bp->best_mode_initial_skip_flag = 0; |
| bp->best_pred = NULL; |
| bp->best_motion_mode = SIMPLE_TRANSLATION; |
| bp->num_proj_ref = 0; |
| av1_zero(bp->wm_params); |
| av1_zero(bp->blk_skip); |
| av1_zero(bp->pmi); |
| } |
| |
| // Copy best inter mode parameters to best_pickmode |
| static INLINE void update_search_state_nonrd( |
| InterModeSearchStateNonrd *search_state, MB_MODE_INFO *const mi, |
| TxfmSearchInfo *txfm_info, RD_STATS *nonskip_rdc, PICK_MODE_CONTEXT *ctx, |
| PREDICTION_MODE this_best_mode, const int64_t sse_y) { |
| BEST_PICKMODE *const best_pickmode = &search_state->best_pickmode; |
| |
| best_pickmode->best_sse = sse_y; |
| best_pickmode->best_mode = this_best_mode; |
| best_pickmode->best_motion_mode = mi->motion_mode; |
| best_pickmode->wm_params = mi->wm_params; |
| best_pickmode->num_proj_ref = mi->num_proj_ref; |
| best_pickmode->best_pred_filter = mi->interp_filters; |
| best_pickmode->best_tx_size = mi->tx_size; |
| best_pickmode->best_ref_frame = mi->ref_frame[0]; |
| best_pickmode->best_second_ref_frame = mi->ref_frame[1]; |
| best_pickmode->best_mode_skip_txfm = search_state->this_rdc.skip_txfm; |
| best_pickmode->best_mode_initial_skip_flag = |
| (nonskip_rdc->rate == INT_MAX && search_state->this_rdc.skip_txfm); |
| if (!best_pickmode->best_mode_skip_txfm) { |
| memcpy(best_pickmode->blk_skip, txfm_info->blk_skip, |
| sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| |
| static INLINE int subpel_select(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int_mv *mv, MV ref_mv, FULLPEL_MV start_mv, |
| bool fullpel_performed_well) { |
| const int frame_lowmotion = cpi->rc.avg_frame_low_motion; |
| const int reduce_mv_pel_precision_highmotion = |
| cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion; |
| |
| // Reduce MV precision for higher int MV value & frame-level motion |
| if (reduce_mv_pel_precision_highmotion >= 3) { |
| int mv_thresh = 4; |
| const int is_low_resoln = |
| (cpi->common.width * cpi->common.height <= 320 * 240); |
| mv_thresh = (bsize > BLOCK_32X32) ? 2 : (bsize > BLOCK_16X16) ? 4 : 6; |
| if (frame_lowmotion > 0 && frame_lowmotion < 40) mv_thresh = 12; |
| mv_thresh = (is_low_resoln) ? mv_thresh >> 1 : mv_thresh; |
| if (abs(mv->as_fullmv.row) >= mv_thresh || |
| abs(mv->as_fullmv.col) >= mv_thresh) |
| return HALF_PEL; |
| } else if (reduce_mv_pel_precision_highmotion >= 1) { |
| int mv_thresh; |
| const int th_vals[2][3] = { { 4, 8, 10 }, { 4, 6, 8 } }; |
| const int th_idx = reduce_mv_pel_precision_highmotion - 1; |
| assert(th_idx >= 0 && th_idx < 2); |
| if (frame_lowmotion > 0 && frame_lowmotion < 40) |
| mv_thresh = 12; |
| else |
| mv_thresh = (bsize >= BLOCK_32X32) ? th_vals[th_idx][0] |
| : (bsize >= BLOCK_16X16) ? th_vals[th_idx][1] |
| : th_vals[th_idx][2]; |
| if (abs(mv->as_fullmv.row) >= (mv_thresh << 1) || |
| abs(mv->as_fullmv.col) >= (mv_thresh << 1)) |
| return FULL_PEL; |
| else if (abs(mv->as_fullmv.row) >= mv_thresh || |
| abs(mv->as_fullmv.col) >= mv_thresh) |
| return HALF_PEL; |
| } |
| // Reduce MV precision for relatively static (e.g. background), low-complex |
| // large areas |
| if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 2) { |
| const int qband = x->qindex >> (QINDEX_BITS - 2); |
| assert(qband < 4); |
| if (x->content_state_sb.source_sad_nonrd <= kVeryLowSad && |
| bsize > BLOCK_16X16 && qband != 0) { |
| if (x->source_variance < 500) |
| return FULL_PEL; |
| else if (x->source_variance < 5000) |
| return HALF_PEL; |
| } |
| } else if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 1) { |
| if (fullpel_performed_well && ref_mv.row == 0 && ref_mv.col == 0 && |
| start_mv.row == 0 && start_mv.col == 0) |
| return HALF_PEL; |
| } |
| return cpi->sf.mv_sf.subpel_force_stop; |
| } |
| |
| static bool use_aggressive_subpel_search_method(MACROBLOCK *x, |
| bool use_adaptive_subpel_search, |
| bool fullpel_performed_well) { |
| if (!use_adaptive_subpel_search) return false; |
| const int qband = x->qindex >> (QINDEX_BITS - 2); |
| assert(qband < 4); |
| if ((qband > 0) && (fullpel_performed_well || |
| (x->content_state_sb.source_sad_nonrd <= kLowSad) || |
| (x->source_variance < 100))) |
| return true; |
| return false; |
| } |
| |
| /*!\brief Runs Motion Estimation for a specific block and specific ref frame. |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Finds the best Motion Vector by running Motion Estimation for a specific |
| * block and a specific reference frame. Exits early if RDCost of Full Pel part |
| * exceeds best RD Cost fund so far |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the |
| * data for the current macroblock |
| * \param[in] bsize Current block size |
| * \param[in] mi_row Row index in 4x4 units |
| * \param[in] mi_col Column index in 4x4 units |
| * \param[in] tmp_mv Pointer to best found New MV |
| * \param[in] rate_mv Pointer to Rate of the best new MV |
| * \param[in] best_rd_sofar RD Cost of the best mode found so far |
| * \param[in] use_base_mv Flag, indicating that tmp_mv holds |
| * specific MV to start the search with |
| * |
| * \return Returns 0 if ME was terminated after Full Pel Search because too |
| * high RD Cost. Otherwise returns 1. Best New MV is placed into \c tmp_mv. |
| * Rate estimation for this vector is placed to \c rate_mv |
| */ |
| static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int_mv *tmp_mv, int *rate_mv, |
| int64_t best_rd_sofar, int use_base_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const SPEED_FEATURES *sf = &cpi->sf; |
| MB_MODE_INFO *mi = xd->mi[0]; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; |
| int step_param = (sf->rt_sf.fullpel_search_step_param) |
| ? sf->rt_sf.fullpel_search_step_param |
| : cpi->mv_search_params.mv_step_param; |
| FULLPEL_MV start_mv; |
| const int ref = mi->ref_frame[0]; |
| const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv; |
| MV center_mv; |
| int dis; |
| int rv = 0; |
| int cost_list[5]; |
| int search_subpel = 1; |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, ref); |
| |
| if (scaled_ref_frame) { |
| int plane; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (plane = 0; plane < MAX_MB_PLANE; plane++) |
| backup_yv12[plane] = xd->plane[plane].pre[0]; |
| av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL, |
| num_planes); |
| } |
| |
| start_mv = get_fullmv_from_mv(&ref_mv); |
| |
| if (!use_base_mv) |
| center_mv = ref_mv; |
| else |
| center_mv = tmp_mv->as_mv; |
| |
| const SEARCH_METHODS search_method = sf->mv_sf.search_method; |
| const search_site_config *src_search_sites = |
| av1_get_search_site_config(cpi, x, search_method); |
| FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; |
| av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, ¢er_mv, |
| src_search_sites, |
| /*fine_search_interval=*/0); |
| |
| const unsigned int full_var_rd = av1_full_pixel_search( |
| start_mv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list), |
| &tmp_mv->as_fullmv, NULL); |
| |
| // calculate the bit cost on motion vector |
| MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv); |
| |
| *rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| |
| // TODO(kyslov) Account for Rate Mode! |
| rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar); |
| |
| if (rv && search_subpel) { |
| SUBPEL_MOTION_SEARCH_PARAMS ms_params; |
| av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, |
| cost_list); |
| const bool fullpel_performed_well = |
| (bsize == BLOCK_64X64 && full_var_rd * 40 < 62267 * 7) || |
| (bsize == BLOCK_32X32 && full_var_rd * 8 < 42380) || |
| (bsize == BLOCK_16X16 && full_var_rd * 8 < 10127); |
| if (sf->rt_sf.reduce_mv_pel_precision_highmotion || |
| sf->rt_sf.reduce_mv_pel_precision_lowcomplex) |
| ms_params.forced_stop = subpel_select(cpi, x, bsize, tmp_mv, ref_mv, |
| start_mv, fullpel_performed_well); |
| |
| MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv); |
| assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv)); |
| // adaptively downgrade subpel search method based on block properties |
| if (use_aggressive_subpel_search_method( |
| x, sf->rt_sf.use_adaptive_subpel_search, fullpel_performed_well)) |
| av1_find_best_sub_pixel_tree_pruned_more(xd, cm, &ms_params, |
| subpel_start_mv, &tmp_mv->as_mv, |
| &dis, &x->pred_sse[ref], NULL); |
| else |
| cpi->mv_search_params.find_fractional_mv_step( |
| xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis, |
| &x->pred_sse[ref], NULL); |
| *rate_mv = |
| av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| } |
| |
| if (scaled_ref_frame) { |
| for (int plane = 0; plane < MAX_MB_PLANE; plane++) |
| xd->plane[plane].pre[0] = backup_yv12[plane]; |
| } |
| // The final MV can not be equal to the reference MV as this will trigger an |
| // assert later. This can happen if both NEAREST and NEAR modes were skipped. |
| rv = (tmp_mv->as_mv.col != ref_mv.col || tmp_mv->as_mv.row != ref_mv.row); |
| return rv; |
| } |
| |
| /*!\brief Searches for the best New Motion Vector. |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Finds the best Motion Vector by doing Motion Estimation. Uses reduced |
| * complexity ME for non-LAST frames or calls \c combined_motion_search |
| * for LAST reference frame |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the |
| * data for the current macroblock |
| * \param[in] frame_mv Array that holds MVs for all modes |
| * and ref frames |
| * \param[in] ref_frame Reference frame for which to find |
| * the best New MVs |
| * \param[in] gf_temporal_ref Flag, indicating temporal reference |
| * for GOLDEN frame |
| * \param[in] bsize Current block size |
| * \param[in] mi_row Row index in 4x4 units |
| * \param[in] mi_col Column index in 4x4 units |
| * \param[in] rate_mv Pointer to Rate of the best new MV |
| * \param[in] best_rdc Pointer to the RD Cost for the best |
| * mode found so far |
| * |
| * \return Returns -1 if the search was not done, otherwise returns 0. |
| * Best New MV is placed into \c frame_mv array, Rate estimation for this |
| * vector is placed to \c rate_mv |
| */ |
| static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x, |
| int_mv frame_mv[][REF_FRAMES], |
| MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_mv, |
| RD_STATS *best_rdc) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| AV1_COMMON *cm = &cpi->common; |
| int_mv *this_ref_frm_newmv = &frame_mv[NEWMV][ref_frame]; |
| if (ref_frame > LAST_FRAME && cpi->oxcf.rc_cfg.mode == AOM_CBR && |
| gf_temporal_ref) { |
| int tmp_sad; |
| int dis; |
| |
| if (bsize < BLOCK_16X16) return -1; |
| |
| tmp_sad = av1_int_pro_motion_estimation( |
| cpi, x, bsize, mi_row, mi_col, |
| &x->mbmi_ext.ref_mv_stack[ref_frame][0].this_mv.as_mv); |
| |
| if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1; |
| |
| this_ref_frm_newmv->as_int = mi->mv[0].as_int; |
| int_mv best_mv = mi->mv[0]; |
| best_mv.as_mv.row >>= 3; |
| best_mv.as_mv.col >>= 3; |
| MV ref_mv = av1_get_ref_mv(x, 0).as_mv; |
| this_ref_frm_newmv->as_mv.row >>= 3; |
| this_ref_frm_newmv->as_mv.col >>= 3; |
| |
| SUBPEL_MOTION_SEARCH_PARAMS ms_params; |
| av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, NULL); |
| if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion || |
| cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex) { |
| FULLPEL_MV start_mv = { .row = 0, .col = 0 }; |
| ms_params.forced_stop = |
| subpel_select(cpi, x, bsize, &best_mv, ref_mv, start_mv, false); |
| } |
| MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv); |
| assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, start_mv)); |
| cpi->mv_search_params.find_fractional_mv_step( |
| xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis, |
| &x->pred_sse[ref_frame], NULL); |
| this_ref_frm_newmv->as_int = best_mv.as_int; |
| |
| // When NEWMV is same as ref_mv from the drl, it is preferred to code the |
| // MV as NEARESTMV or NEARMV. In this case, NEWMV needs to be skipped to |
| // avoid an assert failure at a later stage. The scenario can occur if |
| // NEARESTMV was not evaluated for ALTREF. |
| if (this_ref_frm_newmv->as_mv.col == ref_mv.col && |
| this_ref_frm_newmv->as_mv.row == ref_mv.row) |
| return -1; |
| |
| *rate_mv = av1_mv_bit_cost(&this_ref_frm_newmv->as_mv, &ref_mv, |
| x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &frame_mv[NEWMV][ref_frame], rate_mv, |
| best_rdc->rdcost, 0)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void estimate_single_ref_frame_costs(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, |
| const ModeCosts *mode_costs, |
| int segment_id, BLOCK_SIZE bsize, |
| unsigned int *ref_costs_single) { |
| int seg_ref_active = |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); |
| if (seg_ref_active) { |
| memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); |
| } else { |
| int intra_inter_ctx = av1_get_intra_inter_context(xd); |
| ref_costs_single[INTRA_FRAME] = |
| mode_costs->intra_inter_cost[intra_inter_ctx][0]; |
| unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1]; |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT && |
| is_comp_ref_allowed(bsize)) { |
| const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); |
| base_cost += mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1]; |
| } |
| ref_costs_single[LAST_FRAME] = base_cost; |
| ref_costs_single[GOLDEN_FRAME] = base_cost; |
| ref_costs_single[ALTREF_FRAME] = base_cost; |
| // add cost for last, golden, altref |
| ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[0][0][0]; |
| ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][0][1]; |
| ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][1][0]; |
| ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][0][1]; |
| ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][2][0]; |
| } |
| } |
| |
| static INLINE void set_force_skip_flag(const AV1_COMP *const cpi, |
| MACROBLOCK *const x, unsigned int sse, |
| int *force_skip) { |
| if (x->txfm_search_params.tx_mode_search_type == TX_MODE_SELECT && |
| cpi->sf.rt_sf.tx_size_level_based_on_qstep && |
| cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) { |
| const int qstep = x->plane[AOM_PLANE_Y].dequant_QTX[1] >> (x->e_mbd.bd - 5); |
| const unsigned int qstep_sq = qstep * qstep; |
| // If the sse is low for low source variance blocks, mark those as |
| // transform skip. |
| // Note: Though qstep_sq is based on ac qstep, the threshold is kept |
| // low so that reliable early estimate of tx skip can be obtained |
| // through its comparison with sse. |
| if (sse < qstep_sq && x->source_variance < qstep_sq && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0) |
| *force_skip = 1; |
| } |
| } |
| |
| #define CAP_TX_SIZE_FOR_BSIZE_GT32(tx_mode_search_type, bsize) \ |
| (((tx_mode_search_type) != ONLY_4X4 && (bsize) > BLOCK_32X32) ? true : false) |
| #define TX_SIZE_FOR_BSIZE_GT32 (TX_16X16) |
| |
| static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *const x, unsigned int var, |
| unsigned int sse, int *force_skip) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TX_SIZE tx_size; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| if (txfm_params->tx_mode_search_type == TX_MODE_SELECT) { |
| int multiplier = 8; |
| unsigned int var_thresh = 0; |
| unsigned int is_high_var = 1; |
| // Use quantizer based thresholds to determine transform size. |
| if (cpi->sf.rt_sf.tx_size_level_based_on_qstep) { |
| const int qband = x->qindex >> (QINDEX_BITS - 2); |
| const int mult[4] = { 8, 7, 6, 5 }; |
| assert(qband < 4); |
| multiplier = mult[qband]; |
| const int qstep = x->plane[AOM_PLANE_Y].dequant_QTX[1] >> (xd->bd - 5); |
| const unsigned int qstep_sq = qstep * qstep; |
| var_thresh = qstep_sq * 2; |
| if (cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) { |
| // If the sse is low for low source variance blocks, mark those as |
| // transform skip. |
| // Note: Though qstep_sq is based on ac qstep, the threshold is kept |
| // low so that reliable early estimate of tx skip can be obtained |
| // through its comparison with sse. |
| if (sse < qstep_sq && x->source_variance < qstep_sq && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0) |
| *force_skip = 1; |
| // Further lower transform size based on aq mode only if residual |
| // variance is high. |
| is_high_var = (var >= var_thresh); |
| } |
| } |
| // Choose larger transform size for blocks where dc component is dominant or |
| // the ac component is low. |
| if (sse > ((var * multiplier) >> 2) || (var < var_thresh)) |
| tx_size = |
| AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); |
| else |
| tx_size = TX_8X8; |
| |
| if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
| cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && is_high_var) |
| tx_size = TX_8X8; |
| else if (tx_size > TX_16X16) |
| tx_size = TX_16X16; |
| } else { |
| tx_size = |
| AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); |
| } |
| |
| if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize)) |
| tx_size = TX_SIZE_FOR_BSIZE_GT32; |
| |
| return AOMMIN(tx_size, TX_16X16); |
| } |
| |
| static void block_variance(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int w, int h, |
| unsigned int *sse, int *sum, int block_size, |
| uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) { |
| int k = 0; |
| *sse = 0; |
| *sum = 0; |
| |
| // This function is called for block sizes >= BLOCK_32x32. As per the design |
| // the aom_get_var_sse_sum_8x8_quad() processes four 8x8 blocks (in a 8x32) |
| // per call. Hence the width and height of the block need to be at least 8 and |
| // 32 samples respectively. |
| assert(w >= 32); |
| assert(h >= 8); |
| for (int row = 0; row < h; row += block_size) { |
| for (int col = 0; col < w; col += 32) { |
| aom_get_var_sse_sum_8x8_quad(src + src_stride * row + col, src_stride, |
| ref + ref_stride * row + col, ref_stride, |
| &sse8x8[k], &sum8x8[k], sse, sum, |
| &var8x8[k]); |
| k += 4; |
| } |
| } |
| } |
| |
| static void block_variance_16x16_dual(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, int w, |
| int h, unsigned int *sse, int *sum, |
| int block_size, uint32_t *sse16x16, |
| uint32_t *var16x16) { |
| int k = 0; |
| *sse = 0; |
| *sum = 0; |
| // This function is called for block sizes >= BLOCK_32x32. As per the design |
| // the aom_get_var_sse_sum_16x16_dual() processes four 16x16 blocks (in a |
| // 16x32) per call. Hence the width and height of the block need to be at |
| // least 16 and 32 samples respectively. |
| assert(w >= 32); |
| assert(h >= 16); |
| for (int row = 0; row < h; row += block_size) { |
| for (int col = 0; col < w; col += 32) { |
| aom_get_var_sse_sum_16x16_dual(src + src_stride * row + col, src_stride, |
| ref + ref_stride * row + col, ref_stride, |
| &sse16x16[k], sse, sum, &var16x16[k]); |
| k += 2; |
| } |
| } |
| } |
| |
| static void calculate_variance(int bw, int bh, TX_SIZE tx_size, |
| unsigned int *sse_i, int *sum_i, |
| unsigned int *var_o, unsigned int *sse_o, |
| int *sum_o) { |
| const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; |
| const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); |
| const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); |
| int row, col, k = 0; |
| |
| for (row = 0; row < nh; row += 2) { |
| for (col = 0; col < nw; col += 2) { |
| sse_o[k] = sse_i[row * nw + col] + sse_i[row * nw + col + 1] + |
| sse_i[(row + 1) * nw + col] + sse_i[(row + 1) * nw + col + 1]; |
| sum_o[k] = sum_i[row * nw + col] + sum_i[row * nw + col + 1] + |
| sum_i[(row + 1) * nw + col] + sum_i[(row + 1) * nw + col + 1]; |
| var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >> |
| (b_width_log2_lookup[unit_size] + |
| b_height_log2_lookup[unit_size] + 6)); |
| k++; |
| } |
| } |
| } |
| |
| // Adjust the ac_thr according to speed, width, height and normalized sum |
| static int ac_thr_factor(int speed, int width, int height, int norm_sum) { |
| if (speed >= 8 && norm_sum < 5) { |
| if (width <= 640 && height <= 480) |
| return 4; |
| else |
| return 2; |
| } |
| return 1; |
| } |
| |
| // Sets early_term flag based on chroma planes prediction |
| static INLINE void set_early_term_based_on_uv_plane( |
| AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, MACROBLOCKD *xd, int mi_row, |
| int mi_col, int *early_term, int num_blk, const unsigned int *sse_tx, |
| const unsigned int *var_tx, int sum, unsigned int var, unsigned int sse) { |
| AV1_COMMON *const cm = &cpi->common; |
| struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; |
| const uint32_t dc_quant = p->dequant_QTX[0]; |
| const uint32_t ac_quant = p->dequant_QTX[1]; |
| const int64_t dc_thr = dc_quant * dc_quant >> 6; |
| int64_t ac_thr = ac_quant * ac_quant >> 6; |
| const int bw = b_width_log2_lookup[bsize]; |
| const int bh = b_height_log2_lookup[bsize]; |
| int ac_test = 1; |
| int dc_test = 1; |
| const int norm_sum = abs(sum) >> (bw + bh); |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && |
| cpi->oxcf.speed > 5) |
| ac_thr = av1_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level, |
| norm_sum, cpi->svc.temporal_layer_id); |
| else |
| ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum); |
| #else |
| ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum); |
| |
| #endif |
| |
| for (int k = 0; k < num_blk; k++) { |
| // Check if all ac coefficients can be quantized to zero. |
| if (!(var_tx[k] < ac_thr || var == 0)) { |
| ac_test = 0; |
| break; |
| } |
| // Check if dc coefficient can be quantized to zero. |
| if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { |
| dc_test = 0; |
| break; |
| } |
| } |
| |
| // Check if chroma can be skipped based on ac and dc test flags. |
| if (ac_test && dc_test) { |
| int skip_uv[2] = { 0 }; |
| unsigned int var_uv[2]; |
| unsigned int sse_uv[2]; |
| // Transform skipping test in UV planes. |
| for (int plane = AOM_PLANE_U; plane <= AOM_PLANE_V; plane++) { |
| int j = plane - 1; |
| skip_uv[j] = 1; |
| if (x->color_sensitivity[COLOR_SENS_IDX(plane)]) { |
| skip_uv[j] = 0; |
| struct macroblock_plane *const puv = &x->plane[plane]; |
| struct macroblockd_plane *const puvd = &xd->plane[plane]; |
| const BLOCK_SIZE uv_bsize = get_plane_block_size( |
| bsize, puvd->subsampling_x, puvd->subsampling_y); |
| // Adjust these thresholds for UV. |
| const int64_t uv_dc_thr = |
| (puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3; |
| const int64_t uv_ac_thr = |
| (puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| plane, plane); |
| var_uv[j] = cpi->ppi->fn_ptr[uv_bsize].vf(puv->src.buf, puv->src.stride, |
| puvd->dst.buf, |
| puvd->dst.stride, &sse_uv[j]); |
| if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) && |
| (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j])) |
| skip_uv[j] = 1; |
| else |
| break; |
| } |
| } |
| if (skip_uv[0] & skip_uv[1]) { |
| *early_term = 1; |
| } |
| } |
| } |
| |
| static INLINE void calc_rate_dist_block_param(AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, |
| int calculate_rd, int *early_term, |
| BLOCK_SIZE bsize, |
| unsigned int sse) { |
| if (calculate_rd) { |
| if (!*early_term) { |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| |
| model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, rd_stats->sse, bw * bh, |
| &rd_stats->rate, &rd_stats->dist); |
| } |
| |
| if (*early_term) { |
| rd_stats->rate = 0; |
| rd_stats->dist = sse << 4; |
| } |
| } |
| } |
| |
| static void model_skip_for_sb_y_large_64(AV1_COMP *cpi, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, MACROBLOCK *x, |
| MACROBLOCKD *xd, RD_STATS *rd_stats, |
| int *early_term, int calculate_rd, |
| int64_t best_sse, |
| unsigned int *var_output, |
| unsigned int var_prune_threshold) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| int test_skip = 1; |
| unsigned int var; |
| int sum; |
| const int bw = b_width_log2_lookup[bsize]; |
| const int bh = b_height_log2_lookup[bsize]; |
| unsigned int sse16x16[64] = { 0 }; |
| unsigned int var16x16[64] = { 0 }; |
| assert(xd->mi[0]->tx_size == TX_16X16); |
| assert(bsize > BLOCK_32X32); |
| |
| // Calculate variance for whole partition, and also save 16x16 blocks' |
| // variance to be used in following transform skipping test. |
| block_variance_16x16_dual(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, 4 << bw, 4 << bh, &sse, &sum, 16, |
| sse16x16, var16x16); |
| |
| var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); |
| if (var_output) { |
| *var_output = var; |
| if (*var_output > var_prune_threshold) { |
| return; |
| } |
| } |
| |
| rd_stats->sse = sse; |
| // Skipping test |
| *early_term = 0; |
| set_force_skip_flag(cpi, x, sse, early_term); |
| // The code below for setting skip flag assumes transform size of at least |
| // 8x8, so force this lower limit on transform. |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search && |
| early_term_inter_search_with_sse( |
| cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse, |
| mi->mode)) |
| test_skip = 0; |
| |
| if (*early_term) test_skip = 0; |
| |
| // Evaluate if the partition block is a skippable block in Y plane. |
| if (test_skip) { |
| const unsigned int *sse_tx = sse16x16; |
| const unsigned int *var_tx = var16x16; |
| const unsigned int num_block = (1 << (bw + bh - 2)) >> 2; |
| set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col, |
| early_term, num_block, sse_tx, var_tx, sum, |
| var, sse); |
| } |
| calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize, |
| sse); |
| } |
| |
| static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, MACROBLOCK *x, |
| MACROBLOCKD *xd, RD_STATS *rd_stats, |
| int *early_term, int calculate_rd, |
| int64_t best_sse, |
| unsigned int *var_output, |
| unsigned int var_prune_threshold) { |
| if (x->force_zeromv_skip_for_blk) { |
| *early_term = 1; |
| rd_stats->rate = 0; |
| rd_stats->dist = 0; |
| rd_stats->sse = 0; |
| return; |
| } |
| |
| // For block sizes greater than 32x32, the transform size is always 16x16. |
| // This function avoids calling calculate_variance() for tx_size 16x16 cases |
| // by directly populating variance at tx_size level from |
| // block_variance_16x16_dual() function. |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize)) { |
| xd->mi[0]->tx_size = TX_SIZE_FOR_BSIZE_GT32; |
| model_skip_for_sb_y_large_64(cpi, bsize, mi_row, mi_col, x, xd, rd_stats, |
| early_term, calculate_rd, best_sse, var_output, |
| var_prune_threshold); |
| return; |
| } |
| |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| int test_skip = 1; |
| unsigned int var; |
| int sum; |
| |
| const int bw = b_width_log2_lookup[bsize]; |
| const int bh = b_height_log2_lookup[bsize]; |
| unsigned int sse8x8[256] = { 0 }; |
| int sum8x8[256] = { 0 }; |
| unsigned int var8x8[256] = { 0 }; |
| TX_SIZE tx_size; |
| |
| // Calculate variance for whole partition, and also save 8x8 blocks' variance |
| // to be used in following transform skipping test. |
| block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8); |
| var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); |
| if (var_output) { |
| *var_output = var; |
| if (*var_output > var_prune_threshold) { |
| return; |
| } |
| } |
| |
| rd_stats->sse = sse; |
| // Skipping test |
| *early_term = 0; |
| tx_size = calculate_tx_size(cpi, bsize, x, var, sse, early_term); |
| assert(tx_size <= TX_16X16); |
| // The code below for setting skip flag assumes transform size of at least |
| // 8x8, so force this lower limit on transform. |
| if (tx_size < TX_8X8) tx_size = TX_8X8; |
| xd->mi[0]->tx_size = tx_size; |
| |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search && |
| early_term_inter_search_with_sse( |
| cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse, |
| mi->mode)) |
| test_skip = 0; |
| |
| if (*early_term) test_skip = 0; |
| |
| // Evaluate if the partition block is a skippable block in Y plane. |
| if (test_skip) { |
| unsigned int sse16x16[64] = { 0 }; |
| int sum16x16[64] = { 0 }; |
| unsigned int var16x16[64] = { 0 }; |
| const unsigned int *sse_tx = sse8x8; |
| const unsigned int *var_tx = var8x8; |
| unsigned int num_blks = 1 << (bw + bh - 2); |
| |
| if (tx_size >= TX_16X16) { |
| calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, |
| sum16x16); |
| sse_tx = sse16x16; |
| var_tx = var16x16; |
| num_blks = num_blks >> 2; |
| } |
| set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col, |
| early_term, num_blks, sse_tx, var_tx, sum, |
| var, sse); |
| } |
| calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize, |
| sse); |
| } |
| |
| static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| RD_STATS *rd_stats, unsigned int *var_out, |
| int calculate_rd, int *early_term) { |
| if (x->force_zeromv_skip_for_blk && early_term != NULL) { |
| *early_term = 1; |
| rd_stats->rate = 0; |
| rd_stats->dist = 0; |
| rd_stats->sse = 0; |
| } |
| |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| const int ref = xd->mi[0]->ref_frame[0]; |
| |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| |
| unsigned int var = cpi->ppi->fn_ptr[bsize].vf( |
| p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); |
| int force_skip = 0; |
| xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse, &force_skip); |
| if (var_out) { |
| *var_out = var; |
| } |
| |
| if (calculate_rd && (!force_skip || ref == INTRA_FRAME)) { |
| const int bwide = block_size_wide[bsize]; |
| const int bhigh = block_size_high[bsize]; |
| model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate, |
| &dist); |
| } else { |
| rate = INT_MAX; // this will be overwritten later with av1_block_yrd |
| dist = INT_MAX; |
| } |
| rd_stats->sse = sse; |
| x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); |
| |
| if (force_skip && ref > INTRA_FRAME) { |
| rate = 0; |
| dist = (int64_t)sse << 4; |
| } |
| |
| assert(rate >= 0); |
| |
| rd_stats->skip_txfm = (rate == 0); |
| rate = AOMMIN(rate, INT_MAX); |
| rd_stats->rate = rate; |
| rd_stats->dist = dist; |
| } |
| |
| static INLINE int get_drl_cost(PREDICTION_MODE this_mode, int ref_mv_idx, |
| const MB_MODE_INFO_EXT *mbmi_ext, |
| const int (*const drl_mode_cost0)[2], |
| int8_t ref_frame_type) { |
| int cost = 0; |
| if (this_mode == NEWMV || this_mode == NEW_NEWMV) { |
| for (int idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| cost += drl_mode_cost0[drl_ctx][ref_mv_idx != idx]; |
| if (ref_mv_idx == idx) return cost; |
| } |
| } |
| return cost; |
| } |
| |
| if (have_nearmv_in_inter_mode(this_mode)) { |
| for (int idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| cost += drl_mode_cost0[drl_ctx][ref_mv_idx != (idx - 1)]; |
| if (ref_mv_idx == (idx - 1)) return cost; |
| } |
| } |
| return cost; |
| } |
| return cost; |
| } |
| |
| static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode, |
| int16_t mode_context) { |
| if (is_inter_compound_mode(mode)) { |
| return mode_costs |
| ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; |
| } |
| |
| int mode_cost = 0; |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| |
| assert(is_inter_mode(mode)); |
| |
| if (mode == NEWMV) { |
| mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| |
| if (mode == GLOBALMV) { |
| mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; |
| return mode_cost; |
| } |
| } |
| } |
| |
| static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode, |
| RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row, |
| int mv_col, int speed, uint32_t spatial_variance, |
| CONTENT_STATE_SB content_state_sb) { |
| // Bias against MVs associated with NEWMV mode that are very different from |
| // top/left neighbors. |
| if (this_mode == NEWMV) { |
| int al_mv_average_row; |
| int al_mv_average_col; |
| int row_diff, col_diff; |
| int above_mv_valid = 0; |
| int left_mv_valid = 0; |
| int above_row = INVALID_MV_ROW_COL, above_col = INVALID_MV_ROW_COL; |
| int left_row = INVALID_MV_ROW_COL, left_col = INVALID_MV_ROW_COL; |
| if (bsize >= BLOCK_64X64 && content_state_sb.source_sad_nonrd != kHighSad && |
| spatial_variance < 300 && |
| (mv_row > 16 || mv_row < -16 || mv_col > 16 || mv_col < -16)) { |
| this_rdc->rdcost = this_rdc->rdcost << 2; |
| return; |
| } |
| if (xd->above_mbmi) { |
| above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV; |
| above_row = xd->above_mbmi->mv[0].as_mv.row; |
| above_col = xd->above_mbmi->mv[0].as_mv.col; |
| } |
| if (xd->left_mbmi) { |
| left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV; |
| left_row = xd->left_mbmi->mv[0].as_mv.row; |
| left_col = xd->left_mbmi->mv[0].as_mv.col; |
| } |
| if (above_mv_valid && left_mv_valid) { |
| al_mv_average_row = (above_row + left_row + 1) >> 1; |
| al_mv_average_col = (above_col + left_col + 1) >> 1; |
| } else if (above_mv_valid) { |
| al_mv_average_row = above_row; |
| al_mv_average_col = above_col; |
| } else if (left_mv_valid) { |
| al_mv_average_row = left_row; |
| al_mv_average_col = left_col; |
| } else { |
| al_mv_average_row = al_mv_average_col = 0; |
| } |
| row_diff = al_mv_average_row - mv_row; |
| col_diff = al_mv_average_col - mv_col; |
| if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) { |
| if (bsize >= BLOCK_32X32) |
| this_rdc->rdcost = this_rdc->rdcost << 1; |
| else |
| this_rdc->rdcost = 5 * this_rdc->rdcost >> 2; |
| } |
| } else { |
| // Bias for speed >= 8 for low spatial variance. |
| if (speed >= 8 && spatial_variance < 150 && |
| (mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64)) |
| this_rdc->rdcost = 5 * this_rdc->rdcost >> 2; |
| } |
| } |
| |
| static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| MV_REFERENCE_FRAME ref_frame, |
| THR_MODES best_mode_idx, |
| PREDICTION_MODE mode) { |
| const THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; |
| const BLOCK_SIZE min_size = AOMMAX(bsize - 3, BLOCK_4X4); |
| const BLOCK_SIZE max_size = AOMMIN(bsize + 6, BLOCK_128X128); |
| for (BLOCK_SIZE bs = min_size; bs <= max_size; bs += 3) { |
| int *freq_fact = &x->thresh_freq_fact[bs][thr_mode_idx]; |
| if (thr_mode_idx == best_mode_idx) { |
| *freq_fact -= (*freq_fact >> 4); |
| } else { |
| *freq_fact = |
| AOMMIN(*freq_fact + RD_THRESH_INC, |
| cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); |
| } |
| } |
| } |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| static void av1_pickmode_ctx_den_update( |
| AV1_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig, |
| unsigned int ref_frame_cost[REF_FRAMES], |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int reuse_inter_pred, |
| BEST_PICKMODE *bp) { |
| ctx_den->zero_last_cost_orig = zero_last_cost_orig; |
| ctx_den->ref_frame_cost = ref_frame_cost; |
| ctx_den->frame_mv = frame_mv; |
| ctx_den->reuse_inter_pred = reuse_inter_pred; |
| ctx_den->best_tx_size = bp->best_tx_size; |
| ctx_den->best_mode = bp->best_mode; |
| ctx_den->best_ref_frame = bp->best_ref_frame; |
| ctx_den->best_pred_filter = bp->best_pred_filter; |
| ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm; |
| } |
| |
| static void recheck_zeromv_after_denoising( |
| AV1_COMP *cpi, MB_MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd, |
| AV1_DENOISER_DECISION decision, AV1_PICKMODE_CTX_DEN *ctx_den, |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_STATS *best_rdc, |
| BEST_PICKMODE *best_pickmode, BLOCK_SIZE bsize, int mi_row, int mi_col) { |
| // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on |
| // denoised result. Only do this under noise conditions, and if rdcost of |
| // ZEROMV on original source is not significantly higher than rdcost of best |
| // mode. |
| if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow && |
| ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) && |
| ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) || |
| (ctx_den->best_ref_frame == GOLDEN_FRAME && |
| cpi->svc.number_spatial_layers == 1 && |
| decision == FILTER_ZEROMV_BLOCK))) { |
| // Check if we should pick ZEROMV on denoised signal. |
| AV1_COMMON *const cm = &cpi->common; |
| RD_STATS this_rdc; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| |
| mi->mode = GLOBALMV; |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME); |
| mi->mv[0].as_int = 0; |
| mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); |
| xd->plane[AOM_PLANE_Y].pre[0] = yv12_mb[LAST_FRAME][AOM_PLANE_Y]; |
| av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); |
| unsigned int var; |
| model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, &var, 1, NULL); |
| |
| const int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame); |
| this_rdc.rate += cost_mv_ref(mode_costs, GLOBALMV, mode_ctx); |
| |
| this_rdc.rate += ctx_den->ref_frame_cost[LAST_FRAME]; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| txfm_info->skip_txfm = this_rdc.skip_txfm; |
| // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source |
| // is higher than best_ref mode (on original source). |
| if (this_rdc.rdcost > best_rdc->rdcost) { |
| this_rdc = *best_rdc; |
| mi->mode = best_pickmode->best_mode; |
| mi->ref_frame[0] = best_pickmode->best_ref_frame; |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME); |
| mi->interp_filters = best_pickmode->best_pred_filter; |
| if (best_pickmode->best_ref_frame == INTRA_FRAME) { |
| mi->mv[0].as_int = INVALID_MV; |
| } else { |
| mi->mv[0].as_int = ctx_den |
| ->frame_mv[best_pickmode->best_mode] |
| [best_pickmode->best_ref_frame] |
| .as_int; |
| if (ctx_den->reuse_inter_pred) { |
| xd->plane[AOM_PLANE_Y].pre[0] = yv12_mb[GOLDEN_FRAME][AOM_PLANE_Y]; |
| av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); |
| } |
| } |
| mi->tx_size = best_pickmode->best_tx_size; |
| txfm_info->skip_txfm = best_pickmode->best_mode_skip_txfm; |
| } else { |
| ctx_den->best_ref_frame = LAST_FRAME; |
| *best_rdc = this_rdc; |
| } |
| } |
| } |
| #endif // CONFIG_AV1_TEMPORAL_DENOISING |
| |
| /*!\brief Searches for the best interpolation filter |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Iterates through subset of possible interpolation filters (EIGHTTAP_REGULAR, |
| * EIGTHTAP_SMOOTH, MULTITAP_SHARP, depending on FILTER_SEARCH_SIZE) and selects |
| * the one that gives lowest RD cost. RD cost is calculated using curvfit model. |
| * Support for dual filters (different filters in the x & y directions) is |
| * allowed if sf.interp_sf.disable_dual_filter = 0. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the |
| * data for the current macroblock |
| * \param[in] this_rdc Pointer to calculated RD Cost |
| * \param[in] inter_pred_params_sr Pointer to structure holding parameters of |
| inter prediction for single reference |
| * \param[in] mi_row Row index in 4x4 units |
| * \param[in] mi_col Column index in 4x4 units |
| * \param[in] tmp_buffer Pointer to a temporary buffer for |
| * prediction re-use |
| * \param[in] bsize Current block size |
| * \param[in] reuse_inter_pred Flag, indicating prediction re-use |
| * \param[out] this_mode_pred Pointer to store prediction buffer |
| * for prediction re-use |
| * \param[out] this_early_term Flag, indicating that transform can be |
| * skipped |
| * \param[out] var The residue variance of the current |
| * predictor. |
| * \param[in] use_model_yrd_large Flag, indicating special logic to handle |
| * large blocks |
| * \param[in] best_sse Best sse so far. |
| * \param[in] is_single_pred Flag, indicating single mode. |
| * |
| * \remark Nothing is returned. Instead, calculated RD cost is placed to |
| * \c this_rdc and best filter is placed to \c mi->interp_filters. In case |
| * \c reuse_inter_pred flag is set, this function also outputs |
| * \c this_mode_pred. Also \c this_early_temp is set if transform can be |
| * skipped |
| */ |
| static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc, |
| InterPredParams *inter_pred_params_sr, int mi_row, |
| int mi_col, PRED_BUFFER *tmp_buffer, |
| BLOCK_SIZE bsize, int reuse_inter_pred, |
| PRED_BUFFER **this_mode_pred, |
| int *this_early_term, unsigned int *var, |
| int use_model_yrd_large, int64_t best_sse, |
| int is_single_pred) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| const int bw = block_size_wide[bsize]; |
| int dim_factor = |
| (cpi->sf.interp_sf.disable_dual_filter == 0) ? FILTER_SEARCH_SIZE : 1; |
| RD_STATS pf_rd_stats[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 }; |
| TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 }; |
| PRED_BUFFER *current_pred = *this_mode_pred; |
| int best_skip = 0; |
| int best_early_term = 0; |
| int64_t best_cost = INT64_MAX; |
| int best_filter_index = -1; |
| |
| SubpelParams subpel_params; |
| // Initialize inter prediction params at mode level for single reference |
| // mode. |
| if (is_single_pred) |
| init_inter_mode_params(&mi->mv[0].as_mv, inter_pred_params_sr, |
| &subpel_params, xd->block_ref_scale_factors[0], |
| pd->pre->width, pd->pre->height); |
| for (int filter_idx = 0; filter_idx < FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE; |
| ++filter_idx) { |
| int64_t cost; |
| if (cpi->sf.interp_sf.disable_dual_filter && |
| filters_ref_set[filter_idx].as_filters.x_filter != |
| filters_ref_set[filter_idx].as_filters.y_filter) |
| continue; |
| |
| mi->interp_filters.as_int = filters_ref_set[filter_idx].as_int; |
| if (is_single_pred) |
| av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr, |
| &subpel_params); |
| else |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| unsigned int curr_var = UINT_MAX; |
| if (use_model_yrd_large) |
| model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, |
| &pf_rd_stats[filter_idx], this_early_term, 1, |
| best_sse, &curr_var, UINT_MAX); |
| else |
| model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[filter_idx], &curr_var, |
| 1, NULL); |
| pf_rd_stats[filter_idx].rate += av1_get_switchable_rate( |
| x, xd, cm->features.interp_filter, cm->seq_params->enable_dual_filter); |
| cost = RDCOST(x->rdmult, pf_rd_stats[filter_idx].rate, |
| pf_rd_stats[filter_idx].dist); |
| pf_tx_size[filter_idx] = mi->tx_size; |
| if (cost < best_cost) { |
| *var = curr_var; |
| best_filter_index = filter_idx; |
| best_cost = cost; |
| best_skip = pf_rd_stats[filter_idx].skip_txfm; |
| best_early_term = *this_early_term; |
| if (reuse_inter_pred) { |
| if (*this_mode_pred != current_pred) { |
| free_pred_buffer(*this_mode_pred); |
| *this_mode_pred = current_pred; |
| } |
| current_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)]; |
| pd->dst.buf = current_pred->data; |
| pd->dst.stride = bw; |
| } |
| } |
| } |
| assert(best_filter_index >= 0 && |
| best_filter_index < dim_factor * FILTER_SEARCH_SIZE); |
| if (reuse_inter_pred && *this_mode_pred != current_pred) |
| free_pred_buffer(current_pred); |
| |
| mi->interp_filters.as_int = filters_ref_set[best_filter_index].as_int; |
| mi->tx_size = pf_tx_size[best_filter_index]; |
| this_rdc->rate = pf_rd_stats[best_filter_index].rate; |
| this_rdc->dist = pf_rd_stats[best_filter_index].dist; |
| this_rdc->sse = pf_rd_stats[best_filter_index].sse; |
| this_rdc->skip_txfm = (best_skip || best_early_term); |
| *this_early_term = best_early_term; |
| if (reuse_inter_pred) { |
| pd->dst.buf = (*this_mode_pred)->data; |
| pd->dst.stride = (*this_mode_pred)->stride; |
| } else if (best_filter_index < dim_factor * FILTER_SEARCH_SIZE - 1) { |
| if (is_single_pred) |
| av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr, |
| &subpel_params); |
| else |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| } |
| } |
| #if !CONFIG_REALTIME_ONLY |
| |
| static AOM_INLINE int is_warped_mode_allowed(const AV1_COMP *cpi, |
| MACROBLOCK *const x, |
| const MB_MODE_INFO *mbmi) { |
| const FeatureFlags *const features = &cpi->common.features; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| if (cpi->sf.inter_sf.extra_prune_warped) return 0; |
| if (has_second_ref(mbmi)) return 0; |
| MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; |
| |
| if (features->switchable_motion_mode) { |
| // Determine which motion modes to search if more than SIMPLE_TRANSLATION |
| // is allowed. |
| last_motion_mode_allowed = motion_mode_allowed( |
| xd->global_motion, xd, mbmi, features->allow_warped_motion); |
| } |
| |
| if (last_motion_mode_allowed == WARPED_CAUSAL) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void calc_num_proj_ref(AV1_COMP *cpi, MACROBLOCK *x, MB_MODE_INFO *mi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const FeatureFlags *const features = &cm->features; |
| |
| mi->num_proj_ref = 1; |
| WARP_SAMPLE_INFO *const warp_sample_info = |
| &x->warp_sample_info[mi->ref_frame[0]]; |
| int *pts0 = warp_sample_info->pts; |
| int *pts_inref0 = warp_sample_info->pts_inref; |
| MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; |
| |
| if (features->switchable_motion_mode) { |
| // Determine which motion modes to search if more than SIMPLE_TRANSLATION |
| // is allowed. |
| last_motion_mode_allowed = motion_mode_allowed( |
| xd->global_motion, xd, mi, features->allow_warped_motion); |
| } |
| |
| if (last_motion_mode_allowed == WARPED_CAUSAL) { |
| if (warp_sample_info->num < 0) { |
| warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0); |
| } |
| mi->num_proj_ref = warp_sample_info->num; |
| } |
| } |
| |
| static void search_motion_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int *this_early_term, int use_model_yrd_large, |
| int *rate_mv, int64_t best_sse) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const FeatureFlags *const features = &cm->features; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| RD_STATS pf_rd_stats[MOTION_MODE_SEARCH_SIZE] = { 0 }; |
| int best_skip = 0; |
| int best_early_term = 0; |
| int64_t best_cost = INT64_MAX; |
| int best_mode_index = -1; |
| const int interp_filter = features->interp_filter; |
| |
| const MOTION_MODE motion_modes[MOTION_MODE_SEARCH_SIZE] = { |
| SIMPLE_TRANSLATION, WARPED_CAUSAL |
| }; |
| int mode_search_size = is_warped_mode_allowed(cpi, x, mi) ? 2 : 1; |
| |
| WARP_SAMPLE_INFO *const warp_sample_info = |
| &x->warp_sample_info[mi->ref_frame[0]]; |
| int *pts0 = warp_sample_info->pts; |
| int *pts_inref0 = warp_sample_info->pts_inref; |
| |
| const int total_samples = mi->num_proj_ref; |
| if (total_samples == 0) { |
| // Do not search WARPED_CAUSAL if there are no samples to use to determine |
| // warped parameters. |
| mode_search_size = 1; |
| } |
| |
| const MB_MODE_INFO base_mbmi = *mi; |
| MB_MODE_INFO best_mbmi; |
| |
| for (int mode_index = 0; mode_index < mode_search_size; ++mode_index) { |
| int64_t cost = INT64_MAX; |
| MOTION_MODE motion_mode = motion_modes[mode_index]; |
| *mi = base_mbmi; |
| mi->motion_mode = motion_mode; |
| if (motion_mode == SIMPLE_TRANSLATION) { |
| mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); |
| |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| if (use_model_yrd_large) |
| model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, |
| &pf_rd_stats[mode_index], this_early_term, 1, |
| best_sse, NULL, UINT_MAX); |
| else |
| model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[mode_index], NULL, 1, |
| NULL); |
| pf_rd_stats[mode_index].rate += |
| av1_get_switchable_rate(x, xd, cm->features.interp_filter, |
| cm->seq_params->enable_dual_filter); |
| cost = RDCOST(x->rdmult, pf_rd_stats[mode_index].rate, |
| pf_rd_stats[mode_index].dist); |
| } else if (motion_mode == WARPED_CAUSAL) { |
| int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| mi->wm_params.wmtype = DEFAULT_WMTYPE; |
| mi->interp_filters = |
| av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter)); |
| |
| memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); |
| memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); |
| // Select the samples according to motion vector difference |
| if (mi->num_proj_ref > 1) { |
| mi->num_proj_ref = av1_selectSamples(&mi->mv[0].as_mv, pts, pts_inref, |
| mi->num_proj_ref, bsize); |
| } |
| |
| // Compute the warped motion parameters with a least squares fit |
| // using the collected samples |
| if (!av1_find_projection(mi->num_proj_ref, pts, pts_inref, bsize, |
| mi->mv[0].as_mv.row, mi->mv[0].as_mv.col, |
| &mi->wm_params, mi_row, mi_col)) { |
| if (mi->mode == NEWMV) { |
| const int_mv mv0 = mi->mv[0]; |
| const WarpedMotionParams wm_params0 = mi->wm_params; |
| const int num_proj_ref0 = mi->num_proj_ref; |
| |
| const int_mv ref_mv = av1_get_ref_mv(x, 0); |
| SUBPEL_MOTION_SEARCH_PARAMS ms_params; |
| av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, |
| &ref_mv.as_mv, NULL); |
| |
| // Refine MV in a small range. |
| av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0, |
| total_samples, cpi->sf.mv_sf.warp_search_method, |
| cpi->sf.mv_sf.warp_search_iters); |
| if (mi->mv[0].as_int == ref_mv.as_int) { |
| continue; |
| } |
| |
| if (mv0.as_int != mi->mv[0].as_int) { |
| // Keep the refined MV and WM parameters. |
| int tmp_rate_mv = av1_mv_bit_cost( |
| &mi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost, |
| x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); |
| *rate_mv = tmp_rate_mv; |
| } else { |
| // Restore the old MV and WM parameters. |
| mi->mv[0] = mv0; |
| mi->wm_params = wm_params0; |
| mi->num_proj_ref = num_proj_ref0; |
| } |
| } |
| // Build the warped predictor |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| AOM_PLANE_Y, av1_num_planes(cm) - 1); |
| if (use_model_yrd_large) |
| model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, |
| &pf_rd_stats[mode_index], this_early_term, |
| 1, best_sse, NULL, UINT_MAX); |
| else |
| model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[mode_index], NULL, |
| 1, NULL); |
| |
| pf_rd_stats[mode_index].rate += |
| mode_costs->motion_mode_cost[bsize][mi->motion_mode]; |
| cost = RDCOST(x->rdmult, pf_rd_stats[mode_index].rate, |
| pf_rd_stats[mode_index].dist); |
| } else { |
| cost = INT64_MAX; |
| } |
| } |
| if (cost < best_cost) { |
| best_mode_index = mode_index; |
| best_cost = cost; |
| best_skip = pf_rd_stats[mode_index].skip_txfm; |
| best_early_term = *this_early_term; |
| best_mbmi = *mi; |
| } |
| } |
| assert(best_mode_index >= 0 && best_mode_index < FILTER_SEARCH_SIZE); |
| |
| *mi = best_mbmi; |
| this_rdc->rate = pf_rd_stats[best_mode_index].rate; |
| this_rdc->dist = pf_rd_stats[best_mode_index].dist; |
| this_rdc->sse = pf_rd_stats[best_mode_index].sse; |
| this_rdc->skip_txfm = (best_skip || best_early_term); |
| *this_early_term = best_early_term; |
| if (best_mode_index < FILTER_SEARCH_SIZE - 1) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #define COLLECT_NON_SQR_STAT 0 |
| |
| #if COLLECT_NONRD_PICK_MODE_STAT |
| |
| static AOM_INLINE void print_stage_time(const char *stage_name, |
| int64_t stage_time, |
| int64_t total_time) { |
| printf(" %s: %ld (%f%%)\n", stage_name, stage_time, |
| 100 * stage_time / (float)total_time); |
| } |
| |
| static void print_time(const mode_search_stat_nonrd *const ms_stat, |
| BLOCK_SIZE bsize, int mi_rows, int mi_cols, int mi_row, |
| int mi_col) { |
| if ((mi_row + mi_size_high[bsize] >= mi_rows) && |
| (mi_col + mi_size_wide[bsize] >= mi_cols)) { |
| int64_t total_time = 0l; |
| int32_t total_blocks = 0; |
| for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) { |
| total_time += ms_stat->total_block_times[bs]; |
| total_blocks += ms_stat->num_blocks[bs]; |
| } |
| |
| printf("\n"); |
| for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) { |
| if (ms_stat->num_blocks[bs] == 0) { |
| continue; |
| } |
| if (!COLLECT_NON_SQR_STAT && block_size_wide[bs] != block_size_high[bs]) { |
| continue; |
| } |
| |
| printf("BLOCK_%dX%d Num %d, Time: %ld (%f%%), Avg_time %f:\n", |
| block_size_wide[bs], block_size_high[bs], ms_stat->num_blocks[bs], |
| ms_stat->total_block_times[bs], |
| 100 * ms_stat->total_block_times[bs] / (float)total_time, |
| (float)ms_stat->total_block_times[bs] / ms_stat->num_blocks[bs]); |
| for (int j = 0; j < MB_MODE_COUNT; j++) { |
| if (ms_stat->nonskipped_search_times[bs][j] == 0) { |
| continue; |
| } |
| |
| int64_t total_mode_time = ms_stat->nonskipped_search_times[bs][j]; |
| printf(" Mode %d, %d/%d tps %f\n", j, |
| ms_stat->num_nonskipped_searches[bs][j], |
| ms_stat->num_searches[bs][j], |
| ms_stat->num_nonskipped_searches[bs][j] > 0 |
| ? (float)ms_stat->nonskipped_search_times[bs][j] / |
| ms_stat->num_nonskipped_searches[bs][j] |
| : 0l); |
| if (j >= INTER_MODE_START) { |
| total_mode_time = ms_stat->ms_time[bs][j] + ms_stat->ifs_time[bs][j] + |
| ms_stat->model_rd_time[bs][j] + |
| ms_stat->txfm_time[bs][j]; |
| print_stage_time("Motion Search Time", ms_stat->ms_time[bs][j], |
| total_time); |
| print_stage_time("Filter Search Time", ms_stat->ifs_time[bs][j], |
| total_time); |
| print_stage_time("Model RD Time", ms_stat->model_rd_time[bs][j], |
| total_time); |
| print_stage_time("Tranfm Search Time", ms_stat->txfm_time[bs][j], |
| total_time); |
| } |
| print_stage_time("Total Mode Time", total_mode_time, total_time); |
| } |
| printf("\n"); |
| } |
| printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks); |
| } |
| } |
| #endif // COLLECT_NONRD_PICK_MODE_STAT |
| |
| static bool should_prune_intra_modes_using_neighbors( |
| const MACROBLOCKD *xd, bool enable_intra_mode_pruning_using_neighbors, |
| PREDICTION_MODE this_mode, PREDICTION_MODE above_mode, |
| PREDICTION_MODE left_mode) { |
| if (!enable_intra_mode_pruning_using_neighbors) return false; |
| |
| // Avoid pruning of DC_PRED as it is the most probable mode to win as per the |
| // statistics generated for nonrd intra mode evaluations. |
| if (this_mode == DC_PRED) return false; |
| |
| // Enable the pruning for current mode only if it is not the winner mode of |
| // both the neighboring blocks (left/top). |
| return xd->up_available && this_mode != above_mode && xd->left_available && |
| this_mode != left_mode; |
| } |
| |
| void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| RD_STATS this_rdc, best_rdc; |
| struct estimate_block_intra_args args; |
| init_estimate_block_intra_args(&args, cpi, x); |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| mi->tx_size = |
| AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); |
| assert(IMPLIES(xd->lossless[mi->segment_id], mi->tx_size == TX_4X4)); |
| const BLOCK_SIZE tx_bsize = txsize_to_bsize[mi->tx_size]; |
| |
| // If the current block size is the same as the transform block size, enable |
| // mode pruning based on the best SAD so far. |
| if (cpi->sf.rt_sf.prune_intra_mode_using_best_sad_so_far && bsize == tx_bsize) |
| args.prune_mode_based_on_sad = true; |
| |
| int *bmode_costs; |
| PREDICTION_MODE best_mode = DC_PRED; |
| const MB_MODE_INFO *above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *left_mi = xd->left_mbmi; |
| const PREDICTION_MODE A = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE L = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[A]; |
| const int left_ctx = intra_mode_context[L]; |
| const unsigned int source_variance = x->source_variance; |
| bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx]; |
| |
| av1_invalid_rd_stats(&best_rdc); |
| av1_invalid_rd_stats(&this_rdc); |
| |
| init_mbmi_nonrd(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm); |
| mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV; |
| |
| // Change the limit of this loop to add other intra prediction |
| // mode tests. |
| for (int mode_index = 0; mode_index < RTC_INTRA_MODES; ++mode_index) { |
| PREDICTION_MODE this_mode = intra_mode_list[mode_index]; |
| |
| // As per the statistics generated for intra mode evaluation in the nonrd |
| // path, it is found that the probability of H_PRED mode being the winner is |
| // very low when the best mode so far is V_PRED (out of DC_PRED and V_PRED). |
| // If V_PRED is the winner mode out of DC_PRED and V_PRED, it could imply |
| // the presence of a vertically dominant pattern. Hence, H_PRED mode is not |
| // evaluated. |
| if (cpi->sf.rt_sf.prune_h_pred_using_best_mode_so_far && |
| this_mode == H_PRED && best_mode == V_PRED) |
| continue; |
| |
| if (should_prune_intra_modes_using_neighbors( |
| xd, cpi->sf.rt_sf.enable_intra_mode_pruning_using_neighbors, |
| this_mode, A, L)) { |
| // Prune V_PRED and H_PRED if source variance of the block is less than |
| // or equal to 50. The source variance threshold is obtained empirically. |
| if ((this_mode == V_PRED || this_mode == H_PRED) && source_variance <= 50) |
| continue; |
| |
| // As per the statistics, probability of SMOOTH_PRED being the winner is |
| // low when best mode so far is DC_PRED (out of DC_PRED, V_PRED and |
| // H_PRED). Hence, SMOOTH_PRED mode is not evaluated. |
| if (best_mode == DC_PRED && this_mode == SMOOTH_PRED) continue; |
| } |
| |
| this_rdc.dist = this_rdc.rate = 0; |
| args.mode = this_mode; |
| args.skippable = 1; |
| args.rdc = &this_rdc; |
| mi->mode = this_mode; |
| av1_foreach_transformed_block_in_plane(xd, bsize, AOM_PLANE_Y, |
| av1_estimate_block_intra, &args); |
| |
| if (this_rdc.rate == INT_MAX) continue; |
| |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| if (args.skippable) { |
| this_rdc.rate = x->mode_costs.skip_txfm_cost[skip_ctx][1]; |
| } else { |
| this_rdc.rate += x->mode_costs.skip_txfm_cost[skip_ctx][0]; |
| } |
| this_rdc.rate += bmode_costs[this_mode]; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = this_rdc; |
| best_mode = this_mode; |
| if (!this_rdc.skip_txfm) { |
| memset(ctx->blk_skip, 0, |
| sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| } |
| |
| mi->mode = best_mode; |
| // Keep DC for UV since mode test is based on Y channel only. |
| mi->uv_mode = UV_DC_PRED; |
| *rd_cost = best_rdc; |
| |
| // For lossless: always force the skip flags off. |
| // Even though the blk_skip is set to 0 above in the rdcost comparison, |
| // do it here again in case the above logic changes. |
| if (is_lossless_requested(&cpi->oxcf.rc_cfg)) { |
| x->txfm_search_info.skip_txfm = 0; |
| memset(ctx->blk_skip, 0, |
| sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| store_coding_context_nonrd(x, ctx, mi->mode); |
| #else |
| store_coding_context_nonrd(x, ctx); |
| #endif // CONFIG_INTERNAL_STATS |
| } |
| |
| static AOM_INLINE int is_same_gf_and_last_scale(AV1_COMMON *cm) { |
| struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME); |
| struct scale_factors *const sf_golden = |
| get_ref_scale_factors(cm, GOLDEN_FRAME); |
| return ((sf_last->x_scale_fp == sf_golden->x_scale_fp) && |
| (sf_last->y_scale_fp == sf_golden->y_scale_fp)); |
| } |
| |
| static AOM_INLINE void get_ref_frame_use_mask(AV1_COMP *cpi, MACROBLOCK *x, |
| MB_MODE_INFO *mi, int mi_row, |
| int mi_col, int bsize, |
| int gf_temporal_ref, |
| int use_ref_frame[], |
| int *force_skip_low_temp_var) { |
| AV1_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); |
| |
| // When the ref_frame_config is used to set the reference frame structure |
| // then the usage of alt_ref is determined by the ref_frame_flags |
| // (and not the speed feature use_nonrd_altref_frame). |
| int use_alt_ref_frame = cpi->ppi->rtc_ref.set_ref_frame_config || |
| cpi->sf.rt_sf.use_nonrd_altref_frame; |
| |
| int use_golden_ref_frame = 1; |
| int use_last_ref_frame = 1; |
| |
| // When the ref_frame_config is used to set the reference frame structure: |
| // check if LAST is used as a reference. And only remove golden and altref |
| // references below if last is used as a reference. |
| if (cpi->ppi->rtc_ref.set_ref_frame_config) |
| use_last_ref_frame = |
| cpi->ref_frame_flags & AOM_LAST_FLAG ? use_last_ref_frame : 0; |
| |
| // frame_since_golden is not used when user sets the referene structure. |
| if (!cpi->ppi->rtc_ref.set_ref_frame_config && use_last_ref_frame && |
| cpi->rc.frames_since_golden == 0 && gf_temporal_ref) { |
| use_golden_ref_frame = 0; |
| } |
| |
| if (use_last_ref_frame && cpi->sf.rt_sf.short_circuit_low_temp_var && |
| x->nonrd_prune_ref_frame_search) { |
| if (is_small_sb) |
| *force_skip_low_temp_var = av1_get_force_skip_low_temp_var_small_sb( |
| &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); |
| else |
| *force_skip_low_temp_var = av1_get_force_skip_low_temp_var( |
| &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); |
| // If force_skip_low_temp_var is set, skip golden reference. |
| if (*force_skip_low_temp_var) { |
| use_golden_ref_frame = 0; |
| use_alt_ref_frame = 0; |
| } |
| } |
| |
| if (use_last_ref_frame && |
| (x->nonrd_prune_ref_frame_search > 2 || x->force_zeromv_skip_for_blk || |
| (x->nonrd_prune_ref_frame_search > 1 && bsize > BLOCK_64X64))) { |
| use_golden_ref_frame = 0; |
| use_alt_ref_frame = 0; |
| } |
| |
| if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) { |
| use_golden_ref_frame = 1; |
| use_alt_ref_frame = 0; |
| } |
| |
| // Skip golden/altref reference if color is set, on flat blocks with motion. |
| // For screen: always skip golden/alt (if color_sensitivity_sb_g/alt is set) |
| // except when x->nonrd_prune_ref_frame_search = 0. This latter flag |
| // may be set in the variance partition when golden is a much better |
| // reference than last, in which case it may not be worth skipping |
| // golden/altref completely. |
| // Condition on use_last_ref to make sure there remains at least one |
| // reference. |
| if (use_last_ref_frame && |
| ((cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| x->nonrd_prune_ref_frame_search != 0) || |
| (x->source_variance < 200 && |
| x->content_state_sb.source_sad_nonrd >= kLowSad))) { |
| if (x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 || |
| x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_V)] == 1) |
| use_golden_ref_frame = 0; |
| if (x->color_sensitivity_sb_alt[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 || |
| x->color_sensitivity_sb_alt[COLOR_SENS_IDX(AOM_PLANE_V)] == 1) |
| use_alt_ref_frame = 0; |
| } |
| |
| // For non-screen: if golden and altref are not being selected as references |
| // (use_golden_ref_frame/use_alt_ref_frame = 0) check to allow golden back |
| // based on the sad of nearest/nearmv of LAST ref. If this block sad is large, |
| // keep golden as reference. Only do this for the agrressive pruning mode and |
| // avoid it when color is set for golden reference. |
| if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && |
| (cpi->ref_frame_flags & AOM_LAST_FLAG) && !use_golden_ref_frame && |
| !use_alt_ref_frame && x->pred_mv_sad[LAST_FRAME] != INT_MAX && |
| x->nonrd_prune_ref_frame_search > 2 && |
| x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 && |
| x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_V)] == 0) { |
| int thr = (cm->width * cm->height >= 640 * 360) ? 100 : 150; |
| int pred = x->pred_mv_sad[LAST_FRAME] >> |
| (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| if (pred > thr) use_golden_ref_frame = 1; |
| } |
| |
| use_alt_ref_frame = |
| cpi->ref_frame_flags & AOM_ALT_FLAG ? use_alt_ref_frame : 0; |
| use_golden_ref_frame = |
| cpi->ref_frame_flags & AOM_GOLD_FLAG ? use_golden_ref_frame : 0; |
| |
| // For spatial layers: enable golden ref if it is set by user and |
| // corresponds to the lower spatial layer. |
| if (cpi->svc.spatial_layer_id > 0 && (cpi->ref_frame_flags & AOM_GOLD_FLAG) && |
| x->content_state_sb.source_sad_nonrd < kHighSad) { |
| const int buffslot_golden = |
| cpi->ppi->rtc_ref.ref_idx[GOLDEN_FRAME - LAST_FRAME]; |
| if (cpi->ppi->rtc_ref.buffer_time_index[buffslot_golden] == |
| cpi->svc.current_superframe) |
| use_golden_ref_frame = 1; |
| } |
| |
| use_ref_frame[ALTREF_FRAME] = use_alt_ref_frame; |
| use_ref_frame[GOLDEN_FRAME] = use_golden_ref_frame; |
| use_ref_frame[LAST_FRAME] = use_last_ref_frame; |
| // For now keep this assert on, but we should remove it for svc mode, |
| // as the user may want to generate an intra-only frame (no inter-modes). |
| // Remove this assert in subsequent CL when nonrd_pickmode is tested for the |
| // case of intra-only frame (no references enabled). |
| assert(use_last_ref_frame || use_golden_ref_frame || use_alt_ref_frame); |
| } |
| |
| static AOM_INLINE int is_filter_search_enabled_blk( |
| AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int segment_id, int cb_pred_filter_search, InterpFilter *filt_select) { |
| const AV1_COMMON *const cm = &cpi->common; |
| // filt search disabled |
| if (!cpi->sf.rt_sf.use_nonrd_filter_search) return 0; |
| // filt search purely based on mode properties |
| if (!cb_pred_filter_search) return 1; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int enable_interp_search = 0; |
| if (!(xd->left_mbmi && xd->above_mbmi)) { |
| // neighbors info unavailable |
| enable_interp_search = 2; |
| } else if (!(is_inter_block(xd->left_mbmi) && |
| is_inter_block(xd->above_mbmi))) { |
| // neighbor is INTRA |
| enable_interp_search = 2; |
| } else if (xd->left_mbmi->interp_filters.as_int != |
| xd->above_mbmi->interp_filters.as_int) { |
| // filters are different |
| enable_interp_search = 2; |
| } else if ((cb_pred_filter_search == 1) && |
| (xd->left_mbmi->interp_filters.as_filters.x_filter != |
| EIGHTTAP_REGULAR)) { |
| // not regular |
| enable_interp_search = 2; |
| } else { |
| // enable prediction based on chessboard pattern |
| if (xd->left_mbmi->interp_filters.as_filters.x_filter == EIGHTTAP_SMOOTH) |
| *filt_select = EIGHTTAP_SMOOTH; |
| const int bsl = mi_size_wide_log2[bsize]; |
| enable_interp_search = |
| (bool)((((mi_row + mi_col) >> bsl) + |
| get_chessboard_index(cm->current_frame.frame_number)) & |
| 0x1); |
| if (cyclic_refresh_segment_id_boosted(segment_id)) enable_interp_search = 1; |
| } |
| return enable_interp_search; |
| } |
| |
| static AOM_INLINE int skip_mode_by_threshold( |
| PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, int_mv mv, |
| int frames_since_golden, const int *const rd_threshes, |
| const int *const rd_thresh_freq_fact, int64_t best_cost, int best_skip, |
| int extra_shift) { |
| int skip_this_mode = 0; |
| const THR_MODES mode_index = mode_idx[ref_frame][INTER_OFFSET(mode)]; |
| int64_t mode_rd_thresh = |
| best_skip ? ((int64_t)rd_threshes[mode_index]) << (extra_shift + 1) |
| : ((int64_t)rd_threshes[mode_index]) << extra_shift; |
| |
| // Increase mode_rd_thresh value for non-LAST for improved encoding |
| // speed |
| if (ref_frame != LAST_FRAME) { |
| mode_rd_thresh = mode_rd_thresh << 1; |
| if (ref_frame == GOLDEN_FRAME && frames_since_golden > 4) |
| mode_rd_thresh = mode_rd_thresh << (extra_shift + 1); |
| } |
| |
| if (rd_less_than_thresh(best_cost, mode_rd_thresh, |
| rd_thresh_freq_fact[mode_index])) |
| if (mv.as_int != 0) skip_this_mode = 1; |
| |
| return skip_this_mode; |
| } |
| |
| static AOM_INLINE int skip_mode_by_low_temp( |
| PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize, |
| CONTENT_STATE_SB content_state_sb, int_mv mv, int force_skip_low_temp_var) { |
| // Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var |
| // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped |
| // later. |
| if (force_skip_low_temp_var && ref_frame != LAST_FRAME && mv.as_int != 0) { |
| return 1; |
| } |
| |
| if (content_state_sb.source_sad_nonrd != kHighSad && bsize >= BLOCK_64X64 && |
| force_skip_low_temp_var && mode == NEWMV) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE int skip_mode_by_bsize_and_ref_frame( |
| PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize, |
| int extra_prune, unsigned int sse_zeromv_norm, int more_prune) { |
| const unsigned int thresh_skip_golden = 500; |
| |
| if (ref_frame != LAST_FRAME && sse_zeromv_norm < thresh_skip_golden && |
| mode == NEWMV) |
| return 1; |
| |
| if (bsize == BLOCK_128X128 && mode == NEWMV) return 1; |
| |
| // Skip testing non-LAST if this flag is set. |
| if (extra_prune) { |
| if (extra_prune > 1 && ref_frame != LAST_FRAME && |
| (bsize > BLOCK_16X16 && mode == NEWMV)) |
| return 1; |
| |
| if (ref_frame != LAST_FRAME && mode == NEARMV) return 1; |
| |
| if (more_prune && bsize >= BLOCK_32X32 && mode == NEARMV) return 1; |
| } |
| return 0; |
| } |
| |
| static void set_color_sensitivity(AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int y_sad, |
| unsigned int source_variance, |
| struct buf_2d yv12_mb[MAX_MB_PLANE]) { |
| const int subsampling_x = cpi->common.seq_params->subsampling_x; |
| const int subsampling_y = cpi->common.seq_params->subsampling_y; |
| int shift = 3; |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| cpi->rc.high_source_sad) { |
| shift = 6; |
| } |
| NOISE_LEVEL noise_level = kLow; |
| int norm_sad = |
| y_sad >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); |
| unsigned int thresh_spatial = (cpi->common.width > 1920) ? 5000 : 1000; |
| // If the spatial source variance is high and the normalized y_sad |
| // is low, then y-channel is likely good for mode estimation, so keep |
| // color_sensitivity off. For low noise content for now, since there is |
| // some bdrate regression for noisy color clip. |
| if (cpi->noise_estimate.enabled) |
| noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate); |
| if (noise_level == kLow && source_variance > thresh_spatial && |
| cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && norm_sad < 50) { |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] = 0; |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] = 0; |
| return; |
| } |
| const int num_planes = av1_num_planes(&cpi->common); |
| |
| for (int plane = AOM_PLANE_U; plane < num_planes; ++plane) { |
| if (x->color_sensitivity[COLOR_SENS_IDX(plane)] == 2 || |
| source_variance < 50) { |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const BLOCK_SIZE bs = |
| get_plane_block_size(bsize, subsampling_x, subsampling_y); |
| |
| const int uv_sad = cpi->ppi->fn_ptr[bs].sdf( |
| p->src.buf, p->src.stride, yv12_mb[plane].buf, yv12_mb[plane].stride); |
| |
| const int norm_uv_sad = |
| uv_sad >> (b_width_log2_lookup[bs] + b_height_log2_lookup[bs]); |
| x->color_sensitivity[COLOR_SENS_IDX(plane)] = |
| uv_sad > (y_sad >> shift) && norm_uv_sad > 40; |
| if (source_variance < 50 && norm_uv_sad > 100) |
| x->color_sensitivity[COLOR_SENS_IDX(plane)] = 1; |
| } |
| } |
| } |
| |
| static void setup_compound_prediction(const AV1_COMMON *cm, MACROBLOCK *x, |
| struct buf_2d yv12_mb[8][MAX_MB_PLANE], |
| const int *use_ref_frame_mask, |
| const MV_REFERENCE_FRAME *rf, |
| int *ref_mv_idx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| MV_REFERENCE_FRAME ref_frame_comp; |
| if (!use_ref_frame_mask[rf[1]]) { |
| // Need to setup pred_block, if it hasn't been done in find_predictors. |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, rf[1]); |
| const int num_planes = av1_num_planes(cm); |
| if (yv12 != NULL) { |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, rf[1]); |
| av1_setup_pred_block(xd, yv12_mb[rf[1]], yv12, sf, sf, num_planes); |
| } |
| } |
| ref_frame_comp = av1_ref_frame_type(rf); |
| mbmi_ext->mode_context[ref_frame_comp] = 0; |
| mbmi_ext->ref_mv_count[ref_frame_comp] = UINT8_MAX; |
| av1_find_mv_refs(cm, xd, mbmi, ref_frame_comp, mbmi_ext->ref_mv_count, |
| xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, |
| mbmi_ext->mode_context); |
| av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_comp); |
| *ref_mv_idx = mbmi->ref_mv_idx + 1; |
| } |
| |
| static void set_compound_mode(MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, |
| MV_REFERENCE_FRAME ref_frame2, int ref_mv_idx, |
| int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], |
| PREDICTION_MODE this_mode) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| mi->ref_frame[0] = ref_frame; |
| mi->ref_frame[1] = ref_frame2; |
| mi->compound_idx = 1; |
| mi->comp_group_idx = 0; |
| mi->interinter_comp.type = COMPOUND_AVERAGE; |
| MV_REFERENCE_FRAME ref_frame_comp = av1_ref_frame_type(mi->ref_frame); |
| if (this_mode == GLOBAL_GLOBALMV) { |
| frame_mv[this_mode][ref_frame].as_int = 0; |
| frame_mv[this_mode][ref_frame2].as_int = 0; |
| } else if (this_mode == NEAREST_NEARESTMV) { |
| frame_mv[this_mode][ref_frame].as_int = |
| xd->ref_mv_stack[ref_frame_comp][0].this_mv.as_int; |
| frame_mv[this_mode][ref_frame2].as_int = |
| xd->ref_mv_stack[ref_frame_comp][0].comp_mv.as_int; |
| } else if (this_mode == NEAR_NEARMV) { |
| frame_mv[this_mode][ref_frame].as_int = |
| xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].this_mv.as_int; |
| frame_mv[this_mode][ref_frame2].as_int = |
| xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].comp_mv.as_int; |
| } |
| } |
| |
| // Prune compound mode if the single mode variance is lower than a fixed |
| // percentage of the median value. |
| static bool skip_comp_based_on_var( |
| const unsigned int (*single_vars)[REF_FRAMES], BLOCK_SIZE bsize) { |
| unsigned int best_var = UINT_MAX; |
| for (int cur_mode_idx = 0; cur_mode_idx < RTC_INTER_MODES; cur_mode_idx++) { |
| for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { |
| best_var = AOMMIN(best_var, single_vars[cur_mode_idx][ref_idx]); |
| } |
| } |
| const unsigned int thresh_64 = (unsigned int)(0.57356805f * 8659); |
| const unsigned int thresh_32 = (unsigned int)(0.23964763f * 4281); |
| |
| // Currently, the thresh for 128 and 16 are not well-tuned. We are using the |
| // results from 64 and 32 as an heuristic. |
| switch (bsize) { |
| case BLOCK_128X128: return best_var < 4 * thresh_64; |
| case BLOCK_64X64: return best_var < thresh_64; |
| case BLOCK_32X32: return best_var < thresh_32; |
| case BLOCK_16X16: return best_var < thresh_32 / 4; |
| default: return false; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void fill_single_inter_mode_costs( |
| int (*single_inter_mode_costs)[REF_FRAMES], int num_inter_modes, |
| const REF_MODE *reference_mode_set, const ModeCosts *mode_costs, |
| const int16_t *mode_context) { |
| bool ref_frame_used[REF_FRAMES] = { false }; |
| for (int idx = 0; idx < num_inter_modes; idx++) { |
| ref_frame_used[reference_mode_set[idx].ref_frame] = true; |
| } |
| |
| for (int this_ref_frame = LAST_FRAME; this_ref_frame < REF_FRAMES; |
| this_ref_frame++) { |
| if (!ref_frame_used[this_ref_frame]) { |
| continue; |
| } |
| |
| const MV_REFERENCE_FRAME rf[2] = { this_ref_frame, NONE_FRAME }; |
| const int16_t mode_ctx = av1_mode_context_analyzer(mode_context, rf); |
| for (PREDICTION_MODE this_mode = NEARESTMV; this_mode <= NEWMV; |
| this_mode++) { |
| single_inter_mode_costs[INTER_OFFSET(this_mode)][this_ref_frame] = |
| cost_mv_ref(mode_costs, this_mode, mode_ctx); |
| } |
| } |
| } |
| |
| static AOM_INLINE bool is_globalmv_better( |
| PREDICTION_MODE this_mode, MV_REFERENCE_FRAME ref_frame, int rate_mv, |
| const ModeCosts *mode_costs, |
| const int (*single_inter_mode_costs)[REF_FRAMES], |
| const MB_MODE_INFO_EXT *mbmi_ext) { |
| const int globalmv_mode_cost = |
| single_inter_mode_costs[INTER_OFFSET(GLOBALMV)][ref_frame]; |
| int this_mode_cost = |
| rate_mv + single_inter_mode_costs[INTER_OFFSET(this_mode)][ref_frame]; |
| if (this_mode == NEWMV || this_mode == NEARMV) { |
| const MV_REFERENCE_FRAME rf[2] = { ref_frame, NONE_FRAME }; |
| this_mode_cost += get_drl_cost( |
| NEWMV, 0, mbmi_ext, mode_costs->drl_mode_cost0, av1_ref_frame_type(rf)); |
| } |
| return this_mode_cost > globalmv_mode_cost; |
| } |
| |
| // Set up the mv/ref_frames etc based on the comp_index. Returns 1 if it |
| // succeeds, 0 if it fails. |
| static AOM_INLINE int setup_compound_params_from_comp_idx( |
| const AV1_COMP *cpi, MACROBLOCK *x, struct buf_2d yv12_mb[8][MAX_MB_PLANE], |
| PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *ref_frame, |
| MV_REFERENCE_FRAME *ref_frame2, int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], |
| const int *use_ref_frame_mask, int comp_index, |
| bool comp_use_zero_zeromv_only, MV_REFERENCE_FRAME *last_comp_ref_frame, |
| BLOCK_SIZE bsize) { |
| const MV_REFERENCE_FRAME *rf = comp_ref_mode_set[comp_index].ref_frame; |
| int skip_gf = 0; |
| int skip_alt = 0; |
| *this_mode = comp_ref_mode_set[comp_index].pred_mode; |
| *ref_frame = rf[0]; |
| *ref_frame2 = rf[1]; |
| assert(*ref_frame == LAST_FRAME); |
| assert(*this_mode == GLOBAL_GLOBALMV || *this_mode == NEAREST_NEARESTMV); |
| if (x->source_variance < 50 && bsize > BLOCK_16X16) { |
| if (x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 || |
| x->color_sensitivity_sb_g[COLOR_SENS_IDX(AOM_PLANE_V)] == 1) |
| skip_gf = 1; |
| if (x->color_sensitivity_sb_alt[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 || |
| x->color_sensitivity_sb_alt[COLOR_SENS_IDX(AOM_PLANE_V)] == 1) |
| skip_alt = 1; |
| } |
| if (comp_use_zero_zeromv_only && *this_mode != GLOBAL_GLOBALMV) { |
| return 0; |
| } |
| if (*ref_frame2 == GOLDEN_FRAME && |
| (cpi->sf.rt_sf.ref_frame_comp_nonrd[0] == 0 || skip_gf || |
| !(cpi->ref_frame_flags & AOM_GOLD_FLAG))) { |
| return 0; |
| } else if (*ref_frame2 == LAST2_FRAME && |
| (cpi->sf.rt_sf.ref_frame_comp_nonrd[1] == 0 || |
| !(cpi->ref_frame_flags & AOM_LAST2_FLAG))) { |
| return 0; |
| } else if (*ref_frame2 == ALTREF_FRAME && |
| (cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 0 || skip_alt || |
| !(cpi->ref_frame_flags & AOM_ALT_FLAG))) { |
| return 0; |
| } |
| int ref_mv_idx = 0; |
| if (*last_comp_ref_frame != rf[1]) { |
| // Only needs to be done once per reference pair. |
| setup_compound_prediction(&cpi->common, x, yv12_mb, use_ref_frame_mask, rf, |
| &ref_mv_idx); |
| *last_comp_ref_frame = rf[1]; |
| } |
| set_compound_mode(x, *ref_frame, *ref_frame2, ref_mv_idx, frame_mv, |
| *this_mode); |
| if (*this_mode != GLOBAL_GLOBALMV && |
| frame_mv[*this_mode][*ref_frame].as_int == 0 && |
| frame_mv[*this_mode][*ref_frame2].as_int == 0) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static AOM_INLINE bool previous_mode_performed_poorly( |
| PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, |
| const unsigned int (*vars)[REF_FRAMES], |
| const int64_t (*uv_dist)[REF_FRAMES]) { |
| unsigned int best_var = UINT_MAX; |
| int64_t best_uv_dist = INT64_MAX; |
| for (int midx = 0; midx < RTC_INTER_MODES; midx++) { |
| best_var = AOMMIN(best_var, vars[midx][ref_frame]); |
| best_uv_dist = AOMMIN(best_uv_dist, uv_dist[midx][ref_frame]); |
| } |
| assert(best_var != UINT_MAX && "Invalid variance data."); |
| const float mult = 1.125f; |
| bool var_bad = mult * best_var < vars[INTER_OFFSET(mode)][ref_frame]; |
| if (uv_dist[INTER_OFFSET(mode)][ref_frame] < INT64_MAX && |
| best_uv_dist != uv_dist[INTER_OFFSET(mode)][ref_frame]) { |
| // If we have chroma info, then take it into account |
| var_bad &= mult * best_uv_dist < uv_dist[INTER_OFFSET(mode)][ref_frame]; |
| } |
| return var_bad; |
| } |
| |
| static AOM_INLINE bool prune_compoundmode_with_singlemode_var( |
| PREDICTION_MODE compound_mode, MV_REFERENCE_FRAME ref_frame, |
| MV_REFERENCE_FRAME ref_frame2, const int_mv (*frame_mv)[REF_FRAMES], |
| const uint8_t (*mode_checked)[REF_FRAMES], |
| const unsigned int (*vars)[REF_FRAMES], |
| const int64_t (*uv_dist)[REF_FRAMES]) { |
| const PREDICTION_MODE single_mode0 = compound_ref0_mode(compound_mode); |
| const PREDICTION_MODE single_mode1 = compound_ref1_mode(compound_mode); |
| |
| bool first_ref_valid = false, second_ref_valid = false; |
| bool first_ref_bad = false, second_ref_bad = false; |
| if (mode_checked[single_mode0][ref_frame] && |
| frame_mv[single_mode0][ref_frame].as_int == |
| frame_mv[compound_mode][ref_frame].as_int && |
| vars[INTER_OFFSET(single_mode0)][ref_frame] < UINT_MAX) { |
| first_ref_valid = true; |
| first_ref_bad = |
| previous_mode_performed_poorly(single_mode0, ref_frame, vars, uv_dist); |
| } |
| if (mode_checked[single_mode1][ref_frame2] && |
| frame_mv[single_mode1][ref_frame2].as_int == |
| frame_mv[compound_mode][ref_frame2].as_int && |
| vars[INTER_OFFSET(single_mode1)][ref_frame2] < UINT_MAX) { |
| second_ref_valid = true; |
| second_ref_bad = |
| previous_mode_performed_poorly(single_mode1, ref_frame2, vars, uv_dist); |
| } |
| if (first_ref_valid && second_ref_valid) { |
| return first_ref_bad && second_ref_bad; |
| } else if (first_ref_valid || second_ref_valid) { |
| return first_ref_bad || second_ref_bad; |
| } |
| return false; |
| } |
| |
| // Function to setup parameters used for inter mode evaluation in non-rd. |
| static AOM_FORCE_INLINE void set_params_nonrd_pick_inter_mode( |
| AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state, |
| RD_STATS *rd_cost, int *force_skip_low_temp_var, int *skip_pred_mv, |
| int mi_row, int mi_col, int gf_temporal_ref, unsigned char segment_id, |
| BLOCK_SIZE bsize |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| , |
| PICK_MODE_CONTEXT *ctx, int denoise_svc_pickmode |
| #endif |
| ) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| |
| // Initialize variance and distortion (chroma) for all modes and reference |
| // frames |
| for (int idx = 0; idx < RTC_INTER_MODES; idx++) { |
| for (int ref = 0; ref < REF_FRAMES; ref++) { |
| search_state->vars[idx][ref] = UINT_MAX; |
| search_state->uv_dist[idx][ref] = INT64_MAX; |
| } |
| } |
| |
| // Initialize values of color sensitivity with sb level color sensitivity |
| av1_copy(x->color_sensitivity, x->color_sensitivity_sb); |
| |
| init_best_pickmode(&search_state->best_pickmode); |
| |
| // Estimate cost for single reference frames |
| estimate_single_ref_frame_costs(cm, xd, mode_costs, segment_id, bsize, |
| search_state->ref_costs_single); |
| |
| // Reset flag to indicate modes evaluated |
| av1_zero(search_state->mode_checked); |
| |
| txfm_info->skip_txfm = 0; |
| |
| // Initialize mode decisions |
| av1_invalid_rd_stats(&search_state->best_rdc); |
| av1_invalid_rd_stats(&search_state->this_rdc); |
| av1_invalid_rd_stats(rd_cost); |
| for (int ref_idx = 0; ref_idx < REF_FRAMES; ++ref_idx) { |
| x->warp_sample_info[ref_idx].num = -1; |
| } |
| |
| mi->bsize = bsize; |
| mi->ref_frame[0] = NONE_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0) { |
| // if (cpi->ppi->use_svc) denoise_svc_pickmode = |
| // av1_denoise_svc_non_key(cpi); |
| if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode) |
| av1_denoiser_reset_frame_stats(ctx); |
| } |
| #endif |
| |
| // Populate predicated motion vectors for LAST_FRAME |
| if (cpi->ref_frame_flags & AOM_LAST_FLAG) |
| find_predictors(cpi, x, LAST_FRAME, search_state->frame_mv, |
| search_state->yv12_mb, bsize, *force_skip_low_temp_var, |
| x->force_zeromv_skip_for_blk); |
| |
| // Update mask to use all reference frame |
| get_ref_frame_use_mask(cpi, x, mi, mi_row, mi_col, bsize, gf_temporal_ref, |
| search_state->use_ref_frame_mask, |
| force_skip_low_temp_var); |
| |
| *skip_pred_mv = x->force_zeromv_skip_for_blk || |
| (x->nonrd_prune_ref_frame_search > 2 && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] != 2 && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] != 2); |
| |
| // Populate predicated motion vectors for other single reference frame |
| // Start at LAST_FRAME + 1. |
| for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME + 1; |
| ref_frame_iter <= ALTREF_FRAME; ++ref_frame_iter) { |
| if (search_state->use_ref_frame_mask[ref_frame_iter]) { |
| find_predictors(cpi, x, ref_frame_iter, search_state->frame_mv, |
| search_state->yv12_mb, bsize, *force_skip_low_temp_var, |
| *skip_pred_mv); |
| } |
| } |
| } |
| |
| // Function to check the inter mode can be skipped based on mode statistics and |
| // speed features settings. |
| static AOM_FORCE_INLINE bool skip_inter_mode_nonrd( |
| AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state, |
| int64_t *thresh_sad_pred, int *force_mv_inter_layer, int *is_single_pred, |
| PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *last_comp_ref_frame, |
| MV_REFERENCE_FRAME *ref_frame, MV_REFERENCE_FRAME *ref_frame2, int idx, |
| int_mv svc_mv, int force_skip_low_temp_var, unsigned int sse_zeromv_norm, |
| int num_inter_modes, unsigned char segment_id, BLOCK_SIZE bsize, |
| bool comp_use_zero_zeromv_only, bool check_globalmv) { |
| AV1_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| const SVC *const svc = &cpi->svc; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf; |
| |
| // Skip compound mode based on reference frame mask and type of the mode and |
| // for allowed compound modes, setup ref mv stack and reference frame. |
| if (idx >= num_inter_modes) { |
| const int comp_index = idx - num_inter_modes; |
| if (!setup_compound_params_from_comp_idx( |
| cpi, x, search_state->yv12_mb, this_mode, ref_frame, ref_frame2, |
| search_state->frame_mv, search_state->use_ref_frame_mask, |
| comp_index, comp_use_zero_zeromv_only, last_comp_ref_frame, |
| bsize)) { |
| return true; |
| } |
| *is_single_pred = 0; |
| } else { |
| *this_mode = ref_mode_set[idx].pred_mode; |
| *ref_frame = ref_mode_set[idx].ref_frame; |
| *ref_frame2 = NONE_FRAME; |
| } |
| |
| // Skip the single reference mode for which mode check flag is set. |
| if (*is_single_pred && search_state->mode_checked[*this_mode][*ref_frame]) { |
| return true; |
| } |
| |
| // Skip GLOBALMV mode if check_globalmv flag is not enabled. |
| if (!check_globalmv && *this_mode == GLOBALMV) { |
| return true; |
| } |
| |
| #if COLLECT_NONRD_PICK_MODE_STAT |
| aom_usec_timer_start(&x->ms_stat_nonrd.timer1); |
| x->ms_stat_nonrd.num_searches[bsize][*this_mode]++; |
| #endif |
| mi->mode = *this_mode; |
| mi->ref_frame[0] = *ref_frame; |
| mi->ref_frame[1] = *ref_frame2; |
| |
| // Skip the mode if use reference frame mask flag is not set. |
| if (!search_state->use_ref_frame_mask[*ref_frame]) return true; |
| |
| // Skip mode for some modes and reference frames when |
| // force_zeromv_skip_for_blk flag is true. |
| if (x->force_zeromv_skip_for_blk && |
| ((!(*this_mode == NEARESTMV && |
| search_state->frame_mv[*this_mode][*ref_frame].as_int == 0) && |
| *this_mode != GLOBALMV) || |
| *ref_frame != LAST_FRAME)) |
| return true; |
| |
| // Skip compound mode based on variance of previously evaluated single |
| // reference modes. |
| if (rt_sf->prune_compoundmode_with_singlemode_var && !*is_single_pred && |
| prune_compoundmode_with_singlemode_var( |
| *this_mode, *ref_frame, *ref_frame2, search_state->frame_mv, |
| search_state->mode_checked, search_state->vars, |
| search_state->uv_dist)) { |
| return true; |
| } |
| |
| *force_mv_inter_layer = 0; |
| if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 && |
| ((*ref_frame == LAST_FRAME && svc->skip_mvsearch_last) || |
| (*ref_frame == GOLDEN_FRAME && svc->skip_mvsearch_gf) || |
| (*ref_frame == ALTREF_FRAME && svc->skip_mvsearch_altref))) { |
| // Only test mode if NEARESTMV/NEARMV is (svc_mv.mv.col, svc_mv.mv.row), |
| // otherwise set NEWMV to (svc_mv.mv.col, svc_mv.mv.row). |
| // Skip newmv and filter search. |
| *force_mv_inter_layer = 1; |
| if (*this_mode == NEWMV) { |
| search_state->frame_mv[*this_mode][*ref_frame] = svc_mv; |
| } else if (search_state->frame_mv[*this_mode][*ref_frame].as_int != |
| svc_mv.as_int) { |
| return true; |
| } |
| } |
| |
| // If the segment reference frame feature is enabled then do nothing if the |
| // current ref frame is not allowed. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)(*ref_frame)) |
| return true; |
| |
| // For screen content: for base spatial layer only for now. |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && |
| cpi->svc.spatial_layer_id == 0) { |
| // If source_sad is computed: skip non-zero motion |
| // check for stationary (super)blocks. Otherwise if superblock |
| // has motion skip the modes with zero motion for flat blocks, |
| // and color is not set. |
| // For the latter condition: the same condition should apply |
| // to newmv if (0, 0), so this latter condition is repeated |
| // below after search_new_mv. |
| if (rt_sf->source_metrics_sb_nonrd) { |
| if ((search_state->frame_mv[*this_mode][*ref_frame].as_int != 0 && |
| x->content_state_sb.source_sad_nonrd == kZeroSad) || |
| (search_state->frame_mv[*this_mode][*ref_frame].as_int == 0 && |
| x->content_state_sb.source_sad_nonrd != kZeroSad && |
| ((x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0) || |
| cpi->rc.high_source_sad) && |
| x->source_variance == 0)) |
| return true; |
| } |
| // Skip NEWMV search for flat blocks. |
| if (*this_mode == NEWMV && x->source_variance < 100) return true; |
| // Skip non-LAST for color on flat blocks. |
| if (*ref_frame > LAST_FRAME && x->source_variance == 0 && |
| (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 || |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 1)) |
| return true; |
| } |
| |
| // Skip mode based on block size, reference frame mode and other block |
| // properties. |
| if (skip_mode_by_bsize_and_ref_frame( |
| *this_mode, *ref_frame, bsize, x->nonrd_prune_ref_frame_search, |
| sse_zeromv_norm, rt_sf->nonrd_aggressive_skip)) |
| return true; |
| |
| // Skip mode based on low temporal variance and souce sad. |
| if (skip_mode_by_low_temp(*this_mode, *ref_frame, bsize, x->content_state_sb, |
| search_state->frame_mv[*this_mode][*ref_frame], |
| force_skip_low_temp_var)) |
| return true; |
| |
| // Disable this drop out case if the ref frame segment level feature is |
| // enabled for this segment. This is to prevent the possibility that we |
| // end up unable to pick any mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { |
| // Check for skipping GOLDEN and ALTREF based pred_mv_sad. |
| if (rt_sf->nonrd_prune_ref_frame_search > 0 && |
| x->pred_mv_sad[*ref_frame] != INT_MAX && *ref_frame != LAST_FRAME) { |
| if ((int64_t)(x->pred_mv_sad[*ref_frame]) > *thresh_sad_pred) return true; |
| } |
| } |
| |
| // Check for skipping NEARMV based on pred_mv_sad. |
| if (*this_mode == NEARMV && x->pred_mv1_sad[*ref_frame] != INT_MAX && |
| x->pred_mv1_sad[*ref_frame] > (x->pred_mv0_sad[*ref_frame] << 1)) |
| return true; |
| |
| // Skip single reference mode based on rd threshold. |
| if (*is_single_pred) { |
| if (skip_mode_by_threshold( |
| *this_mode, *ref_frame, |
| search_state->frame_mv[*this_mode][*ref_frame], |
| cpi->rc.frames_since_golden, cpi->rd.threshes[segment_id][bsize], |
| x->thresh_freq_fact[bsize], search_state->best_rdc.rdcost, |
| search_state->best_pickmode.best_mode_skip_txfm, |
| (rt_sf->nonrd_aggressive_skip ? 1 : 0))) |
| return true; |
| } |
| return false; |
| } |
| |
| // Function to perform inter mode evaluation for non-rd |
| static AOM_FORCE_INLINE bool handle_inter_mode_nonrd( |
| AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state, |
| PICK_MODE_CONTEXT *ctx, PRED_BUFFER **this_mode_pred, |
| PRED_BUFFER *tmp_buffer, InterPredParams inter_pred_params_sr, |
| int *best_early_term, unsigned int *sse_zeromv_norm, bool *check_globalmv, |
| #if CONFIG_AV1_TEMPORAL_DENOISING |
| int64_t *zero_last_cost_orig, int denoise_svc_pickmode, |
| #endif |
| int idx, int force_mv_inter_layer, int is_single_pred, int skip_pred_mv, |
| int gf_temporal_ref, int use_model_yrd_large, int filter_search_enabled_blk, |
| BLOCK_SIZE bsize, PREDICTION_MODE this_mode, InterpFilter filt_select, |
| int cb_pred_filter_search, int reuse_inter_pred) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| const int bw = block_size_wide[bsize]; |
| const InterpFilter filter_ref = cm->features.interp_filter; |
| const InterpFilter default_interp_filter = EIGHTTAP_REGULAR; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf; |
| BEST_PICKMODE *const best_pickmode = &search_state->best_pickmode; |
| |
| MV_REFERENCE_FRAME ref_frame = mi->ref_frame[0]; |
| MV_REFERENCE_FRAME ref_frame2 = mi->ref_frame[1]; |
| int_mv *const this_mv = &search_state->frame_mv[this_mode][ref_frame]; |
| unsigned int var = UINT_MAX; |
| int this_early_term = 0; |
| int rate_mv = 0; |
| int is_skippable; |
| int skip_this_mv = 0; |
| unsigned int var_threshold = UINT_MAX; |
| PREDICTION_MODE this_best_mode; |
| RD_STATS nonskip_rdc; |
| av1_invalid_rd_stats(&nonskip_rdc); |
| |
| if (this_mode == NEWMV && !force_mv_inter_layer) { |
| #if COLLECT_NONRD_PICK_MODE_STAT |
| aom_usec_timer_start(&x->ms_stat_nonrd.timer2); |
| #endif |
| // Find the best motion vector for single/compound mode. |
| const bool skip_newmv = search_new_mv( |
| cpi, x, search_state->frame_mv, ref_frame, gf_temporal_ref, bsize, |
| mi_row, mi_col, &rate_mv, &search_state->best_rdc); |
| #if COLLECT_NONRD_PICK_MODE_STAT |
| aom_usec_timer_mark(&x->ms_stat_nonrd.timer2); |
| x->ms_stat_nonrd.ms_time[bsize][this_mode] += |
|