| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <math.h> | 
 | #include <stdio.h> | 
 |  | 
 | #include "./av1_rtcd.h" | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_mem/aom_mem.h" | 
 | #include "aom_ports/bitops.h" | 
 | #include "aom_ports/mem.h" | 
 | #include "aom_ports/system_state.h" | 
 |  | 
 | #include "av1/common/common.h" | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/mvref_common.h" | 
 | #include "av1/common/pred_common.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/reconinter.h" | 
 | #include "av1/common/reconintra.h" | 
 | #include "av1/common/seg_common.h" | 
 |  | 
 | #include "av1/encoder/av1_quantize.h" | 
 | #include "av1/encoder/cost.h" | 
 | #include "av1/encoder/encodemb.h" | 
 | #include "av1/encoder/encodemv.h" | 
 | #include "av1/encoder/encoder.h" | 
 | #include "av1/encoder/mcomp.h" | 
 | #include "av1/encoder/ratectrl.h" | 
 | #include "av1/encoder/rd.h" | 
 | #include "av1/encoder/tokenize.h" | 
 |  | 
 | #define RD_THRESH_POW 1.25 | 
 |  | 
 | // Factor to weigh the rate for switchable interp filters. | 
 | #define SWITCHABLE_INTERP_RATE_FACTOR 1 | 
 |  | 
 | // The baseline rd thresholds for breaking out of the rd loop for | 
 | // certain modes are assumed to be based on 8x8 blocks. | 
 | // This table is used to correct for block size. | 
 | // The factors here are << 2 (2 = x0.5, 32 = x8 etc). | 
 | static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = { | 
 | #if CONFIG_CB4X4 | 
 |   2,  2,  2, | 
 | #endif | 
 |   2,  3,  3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, | 
 | #if CONFIG_EXT_PARTITION | 
 |   48, 48, 64 | 
 | #endif  // CONFIG_EXT_PARTITION | 
 | }; | 
 |  | 
 | static void fill_mode_costs(AV1_COMP *cpi) { | 
 |   const FRAME_CONTEXT *const fc = cpi->common.fc; | 
 |   int i, j; | 
 |  | 
 |   for (i = 0; i < INTRA_MODES; ++i) | 
 |     for (j = 0; j < INTRA_MODES; ++j) | 
 |       av1_cost_tokens(cpi->y_mode_costs[i][j], av1_kf_y_mode_prob[i][j], | 
 |                       av1_intra_mode_tree); | 
 |  | 
 |   for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) | 
 |     av1_cost_tokens(cpi->mbmode_cost[i], fc->y_mode_prob[i], | 
 |                     av1_intra_mode_tree); | 
 |  | 
 |   for (i = 0; i < INTRA_MODES; ++i) | 
 |     av1_cost_tokens(cpi->intra_uv_mode_cost[i], fc->uv_mode_prob[i], | 
 |                     av1_intra_mode_tree); | 
 |  | 
 |   for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) | 
 |     av1_cost_tokens(cpi->switchable_interp_costs[i], | 
 |                     fc->switchable_interp_prob[i], av1_switchable_interp_tree); | 
 |  | 
 | #if CONFIG_PALETTE | 
 |   for (i = 0; i < PALETTE_BLOCK_SIZES; ++i) { | 
 |     av1_cost_tokens(cpi->palette_y_size_cost[i], | 
 |                     av1_default_palette_y_size_prob[i], av1_palette_size_tree); | 
 |     av1_cost_tokens(cpi->palette_uv_size_cost[i], | 
 |                     av1_default_palette_uv_size_prob[i], av1_palette_size_tree); | 
 |   } | 
 |  | 
 |   for (i = 0; i < PALETTE_SIZES; ++i) { | 
 |     for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) { | 
 |       av1_cost_tokens(cpi->palette_y_color_cost[i][j], | 
 |                       av1_default_palette_y_color_index_prob[i][j], | 
 |                       av1_palette_color_index_tree[i]); | 
 |       av1_cost_tokens(cpi->palette_uv_color_cost[i][j], | 
 |                       av1_default_palette_uv_color_index_prob[i][j], | 
 |                       av1_palette_color_index_tree[i]); | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_PALETTE | 
 |  | 
 |   for (i = 0; i < MAX_TX_DEPTH; ++i) | 
 |     for (j = 0; j < TX_SIZE_CONTEXTS; ++j) | 
 |       av1_cost_tokens(cpi->tx_size_cost[i][j], fc->tx_size_probs[i][j], | 
 |                       av1_tx_size_tree[i]); | 
 |  | 
 | #if CONFIG_EXT_TX | 
 |   for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { | 
 |     int s; | 
 |     for (s = 1; s < EXT_TX_SETS_INTER; ++s) { | 
 |       if (use_inter_ext_tx_for_txsize[s][i]) { | 
 |         av1_cost_tokens(cpi->inter_tx_type_costs[s][i], | 
 |                         fc->inter_ext_tx_prob[s][i], av1_ext_tx_inter_tree[s]); | 
 |       } | 
 |     } | 
 |     for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { | 
 |       if (use_intra_ext_tx_for_txsize[s][i]) { | 
 |         for (j = 0; j < INTRA_MODES; ++j) | 
 |           av1_cost_tokens(cpi->intra_tx_type_costs[s][i][j], | 
 |                           fc->intra_ext_tx_prob[s][i][j], | 
 |                           av1_ext_tx_intra_tree[s]); | 
 |       } | 
 |     } | 
 |   } | 
 | #else | 
 |   for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { | 
 |     for (j = 0; j < TX_TYPES; ++j) | 
 |       av1_cost_tokens(cpi->intra_tx_type_costs[i][j], | 
 |                       fc->intra_ext_tx_prob[i][j], av1_ext_tx_tree); | 
 |   } | 
 |   for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { | 
 |     av1_cost_tokens(cpi->inter_tx_type_costs[i], fc->inter_ext_tx_prob[i], | 
 |                     av1_ext_tx_tree); | 
 |   } | 
 | #endif  // CONFIG_EXT_TX | 
 | #if CONFIG_EXT_INTRA | 
 | #if CONFIG_INTRA_INTERP | 
 |   for (i = 0; i < INTRA_FILTERS + 1; ++i) | 
 |     av1_cost_tokens(cpi->intra_filter_cost[i], fc->intra_filter_probs[i], | 
 |                     av1_intra_filter_tree); | 
 | #endif  // CONFIG_INTRA_INTERP | 
 | #endif  // CONFIG_EXT_INTRA | 
 | #if CONFIG_LOOP_RESTORATION | 
 |   av1_cost_tokens(cpi->switchable_restore_cost, fc->switchable_restore_prob, | 
 |                   av1_switchable_restore_tree); | 
 | #endif  // CONFIG_LOOP_RESTORATION | 
 | #if CONFIG_GLOBAL_MOTION | 
 |   av1_cost_tokens(cpi->gmtype_cost, fc->global_motion_types_prob, | 
 |                   av1_global_motion_types_tree); | 
 | #endif  // CONFIG_GLOBAL_MOTION | 
 | } | 
 |  | 
 | void av1_fill_token_costs(av1_coeff_cost *c, | 
 |                           av1_coeff_probs_model (*p)[PLANE_TYPES]) { | 
 |   int i, j, k, l; | 
 |   TX_SIZE t; | 
 |   for (t = 0; t < TX_SIZES; ++t) | 
 |     for (i = 0; i < PLANE_TYPES; ++i) | 
 |       for (j = 0; j < REF_TYPES; ++j) | 
 |         for (k = 0; k < COEF_BANDS; ++k) | 
 |           for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { | 
 |             aom_prob probs[ENTROPY_NODES]; | 
 |             av1_model_to_full_probs(p[t][i][j][k][l], probs); | 
 |             av1_cost_tokens((int *)c[t][i][j][k][0][l], probs, av1_coef_tree); | 
 |             av1_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs, | 
 |                                  av1_coef_tree); | 
 |             assert(c[t][i][j][k][0][l][EOB_TOKEN] == | 
 |                    c[t][i][j][k][1][l][EOB_TOKEN]); | 
 |           } | 
 | } | 
 |  | 
 | // Values are now correlated to quantizer. | 
 | static int sad_per_bit16lut_8[QINDEX_RANGE]; | 
 | static int sad_per_bit4lut_8[QINDEX_RANGE]; | 
 |  | 
 | #if CONFIG_HIGHBITDEPTH | 
 | static int sad_per_bit16lut_10[QINDEX_RANGE]; | 
 | static int sad_per_bit4lut_10[QINDEX_RANGE]; | 
 | static int sad_per_bit16lut_12[QINDEX_RANGE]; | 
 | static int sad_per_bit4lut_12[QINDEX_RANGE]; | 
 | #endif | 
 |  | 
 | static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range, | 
 |                             aom_bit_depth_t bit_depth) { | 
 |   int i; | 
 |   // Initialize the sad lut tables using a formulaic calculation for now. | 
 |   // This is to make it easier to resolve the impact of experimental changes | 
 |   // to the quantizer tables. | 
 |   for (i = 0; i < range; i++) { | 
 |     const double q = av1_convert_qindex_to_q(i, bit_depth); | 
 |     bit16lut[i] = (int)(0.0418 * q + 2.4107); | 
 |     bit4lut[i] = (int)(0.063 * q + 2.742); | 
 |   } | 
 | } | 
 |  | 
 | void av1_init_me_luts(void) { | 
 |   init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE, | 
 |                   AOM_BITS_8); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE, | 
 |                   AOM_BITS_10); | 
 |   init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE, | 
 |                   AOM_BITS_12); | 
 | #endif | 
 | } | 
 |  | 
 | static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, | 
 |                                          8,  8,  4,  4,  2,  2,  1,  0 }; | 
 | static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { | 
 |   128, 144, 128, 128, 144, | 
 | #if CONFIG_EXT_REFS | 
 |   // TODO(zoeliu): To adjust further following factor values. | 
 |   128, 128, 128 | 
 |   // TODO(weitinglin): We should investigate if the values should be the same | 
 |   //                   as the value used by OVERLAY frame | 
 |   , | 
 |   144 | 
 | #endif  // CONFIG_EXT_REFS | 
 | }; | 
 |  | 
 | int av1_compute_rd_mult(const AV1_COMP *cpi, int qindex) { | 
 |   const int64_t q = av1_dc_quant(qindex, 0, cpi->common.bit_depth); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   int64_t rdmult = 0; | 
 |   switch (cpi->common.bit_depth) { | 
 |     case AOM_BITS_8: rdmult = 88 * q * q / 24; break; | 
 |     case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4); break; | 
 |     case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8); break; | 
 |     default: | 
 |       assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
 |       return -1; | 
 |   } | 
 | #else | 
 |   int64_t rdmult = 88 * q * q / 24; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { | 
 |     const GF_GROUP *const gf_group = &cpi->twopass.gf_group; | 
 |     const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index]; | 
 |     const int boost_index = AOMMIN(15, (cpi->rc.gfu_boost / 100)); | 
 |  | 
 |     rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7; | 
 |     rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); | 
 |   } | 
 |   if (rdmult < 1) rdmult = 1; | 
 |   return (int)rdmult; | 
 | } | 
 |  | 
 | static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) { | 
 |   double q; | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   switch (bit_depth) { | 
 |     case AOM_BITS_8: q = av1_dc_quant(qindex, 0, AOM_BITS_8) / 4.0; break; | 
 |     case AOM_BITS_10: q = av1_dc_quant(qindex, 0, AOM_BITS_10) / 16.0; break; | 
 |     case AOM_BITS_12: q = av1_dc_quant(qindex, 0, AOM_BITS_12) / 64.0; break; | 
 |     default: | 
 |       assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
 |       return -1; | 
 |   } | 
 | #else | 
 |   (void)bit_depth; | 
 |   q = av1_dc_quant(qindex, 0, AOM_BITS_8) / 4.0; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 |   // TODO(debargha): Adjust the function below. | 
 |   return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8); | 
 | } | 
 |  | 
 | void av1_initialize_me_consts(const AV1_COMP *cpi, MACROBLOCK *x, int qindex) { | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   switch (cpi->common.bit_depth) { | 
 |     case AOM_BITS_8: | 
 |       x->sadperbit16 = sad_per_bit16lut_8[qindex]; | 
 |       x->sadperbit4 = sad_per_bit4lut_8[qindex]; | 
 |       break; | 
 |     case AOM_BITS_10: | 
 |       x->sadperbit16 = sad_per_bit16lut_10[qindex]; | 
 |       x->sadperbit4 = sad_per_bit4lut_10[qindex]; | 
 |       break; | 
 |     case AOM_BITS_12: | 
 |       x->sadperbit16 = sad_per_bit16lut_12[qindex]; | 
 |       x->sadperbit4 = sad_per_bit4lut_12[qindex]; | 
 |       break; | 
 |     default: | 
 |       assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
 |   } | 
 | #else | 
 |   (void)cpi; | 
 |   x->sadperbit16 = sad_per_bit16lut_8[qindex]; | 
 |   x->sadperbit4 = sad_per_bit4lut_8[qindex]; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 | } | 
 |  | 
 | static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd) { | 
 |   int i, bsize, segment_id; | 
 |  | 
 |   for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { | 
 |     const int qindex = | 
 |         clamp(av1_get_qindex(&cm->seg, segment_id, cm->base_qindex) + | 
 |                   cm->y_dc_delta_q, | 
 |               0, MAXQ); | 
 |     const int q = compute_rd_thresh_factor(qindex, cm->bit_depth); | 
 |  | 
 |     for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) { | 
 |       // Threshold here seems unnecessarily harsh but fine given actual | 
 |       // range of values used for cpi->sf.thresh_mult[]. | 
 |       const int t = q * rd_thresh_block_size_factor[bsize]; | 
 |       const int thresh_max = INT_MAX / t; | 
 |  | 
 | #if CONFIG_CB4X4 | 
 |       for (i = 0; i < MAX_MODES; ++i) | 
 |         rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max | 
 |                                                  ? rd->thresh_mult[i] * t / 4 | 
 |                                                  : INT_MAX; | 
 | #else | 
 |       if (bsize >= BLOCK_8X8) { | 
 |         for (i = 0; i < MAX_MODES; ++i) | 
 |           rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max | 
 |                                                    ? rd->thresh_mult[i] * t / 4 | 
 |                                                    : INT_MAX; | 
 |       } else { | 
 |         for (i = 0; i < MAX_REFS; ++i) | 
 |           rd->threshes[segment_id][bsize][i] = | 
 |               rd->thresh_mult_sub8x8[i] < thresh_max | 
 |                   ? rd->thresh_mult_sub8x8[i] * t / 4 | 
 |                   : INT_MAX; | 
 |       } | 
 | #endif | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_set_mvcost(MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, int ref, | 
 |                     int ref_mv_idx) { | 
 |   MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; | 
 |   int8_t rf_type = av1_ref_frame_type(x->e_mbd.mi[0]->mbmi.ref_frame); | 
 |   int nmv_ctx = av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], | 
 |                             mbmi_ext->ref_mv_stack[rf_type], ref, ref_mv_idx); | 
 |   (void)ref_frame; | 
 |   x->mvcost = x->mv_cost_stack[nmv_ctx]; | 
 |   x->nmvjointcost = x->nmv_vec_cost[nmv_ctx]; | 
 |   x->mvsadcost = x->mvcost; | 
 |   x->nmvjointsadcost = x->nmvjointcost; | 
 | } | 
 |  | 
 | void av1_initialize_rd_consts(AV1_COMP *cpi) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCK *const x = &cpi->td.mb; | 
 |   RD_OPT *const rd = &cpi->rd; | 
 |   int i; | 
 |   int nmv_ctx; | 
 |  | 
 |   aom_clear_system_state(); | 
 |  | 
 |   rd->RDDIV = RDDIV_BITS;  // In bits (to multiply D by 128). | 
 |   rd->RDMULT = av1_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q); | 
 |  | 
 |   set_error_per_bit(x, rd->RDMULT); | 
 |  | 
 |   set_block_thresholds(cm, rd); | 
 |  | 
 |   for (nmv_ctx = 0; nmv_ctx < NMV_CONTEXTS; ++nmv_ctx) { | 
 |     av1_build_nmv_cost_table( | 
 |         x->nmv_vec_cost[nmv_ctx], | 
 |         cm->allow_high_precision_mv ? x->nmvcost_hp[nmv_ctx] | 
 |                                     : x->nmvcost[nmv_ctx], | 
 |         &cm->fc->nmvc[nmv_ctx], cm->allow_high_precision_mv); | 
 |   } | 
 |   x->mvcost = x->mv_cost_stack[0]; | 
 |   x->nmvjointcost = x->nmv_vec_cost[0]; | 
 |   x->mvsadcost = x->mvcost; | 
 |   x->nmvjointsadcost = x->nmvjointcost; | 
 |  | 
 |   if (cpi->oxcf.pass != 1) { | 
 |     av1_fill_token_costs(x->token_costs, cm->fc->coef_probs); | 
 |  | 
 |     if (cpi->sf.partition_search_type != VAR_BASED_PARTITION || | 
 |         cm->frame_type == KEY_FRAME) { | 
 | #if CONFIG_EXT_PARTITION_TYPES | 
 |       for (i = 0; i < PARTITION_PLOFFSET; ++i) | 
 |         av1_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i], | 
 |                         av1_partition_tree); | 
 |       for (; i < PARTITION_CONTEXTS_PRIMARY; ++i) | 
 |         av1_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i], | 
 |                         av1_ext_partition_tree); | 
 | #else | 
 |       for (i = 0; i < PARTITION_CONTEXTS_PRIMARY; ++i) | 
 |         av1_cost_tokens(cpi->partition_cost[i], cm->fc->partition_prob[i], | 
 |                         av1_partition_tree); | 
 | #endif  // CONFIG_EXT_PARTITION_TYPES | 
 | #if CONFIG_UNPOISON_PARTITION_CTX | 
 |       for (; i < PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES; ++i) { | 
 |         aom_prob p = cm->fc->partition_prob[i][PARTITION_VERT]; | 
 |         assert(p > 0); | 
 |         cpi->partition_cost[i][PARTITION_NONE] = INT_MAX; | 
 |         cpi->partition_cost[i][PARTITION_HORZ] = INT_MAX; | 
 |         cpi->partition_cost[i][PARTITION_VERT] = av1_cost_bit(p, 0); | 
 |         cpi->partition_cost[i][PARTITION_SPLIT] = av1_cost_bit(p, 1); | 
 |       } | 
 |       for (; i < PARTITION_CONTEXTS_PRIMARY + 2 * PARTITION_BLOCK_SIZES; ++i) { | 
 |         aom_prob p = cm->fc->partition_prob[i][PARTITION_HORZ]; | 
 |         assert(p > 0); | 
 |         cpi->partition_cost[i][PARTITION_NONE] = INT_MAX; | 
 |         cpi->partition_cost[i][PARTITION_HORZ] = av1_cost_bit(p, 0); | 
 |         cpi->partition_cost[i][PARTITION_VERT] = INT_MAX; | 
 |         cpi->partition_cost[i][PARTITION_SPLIT] = av1_cost_bit(p, 1); | 
 |       } | 
 |       cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_NONE] = INT_MAX; | 
 |       cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_HORZ] = INT_MAX; | 
 |       cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_VERT] = INT_MAX; | 
 |       cpi->partition_cost[PARTITION_CONTEXTS][PARTITION_SPLIT] = 0; | 
 | #endif  // CONFIG_UNPOISON_PARTITION_CTX | 
 |     } | 
 |  | 
 |     fill_mode_costs(cpi); | 
 |  | 
 |     if (!frame_is_intra_only(cm)) { | 
 |       for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) { | 
 |         cpi->newmv_mode_cost[i][0] = av1_cost_bit(cm->fc->newmv_prob[i], 0); | 
 |         cpi->newmv_mode_cost[i][1] = av1_cost_bit(cm->fc->newmv_prob[i], 1); | 
 |       } | 
 |  | 
 |       for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) { | 
 |         cpi->zeromv_mode_cost[i][0] = av1_cost_bit(cm->fc->zeromv_prob[i], 0); | 
 |         cpi->zeromv_mode_cost[i][1] = av1_cost_bit(cm->fc->zeromv_prob[i], 1); | 
 |       } | 
 |  | 
 |       for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) { | 
 |         cpi->refmv_mode_cost[i][0] = av1_cost_bit(cm->fc->refmv_prob[i], 0); | 
 |         cpi->refmv_mode_cost[i][1] = av1_cost_bit(cm->fc->refmv_prob[i], 1); | 
 |       } | 
 |  | 
 |       for (i = 0; i < DRL_MODE_CONTEXTS; ++i) { | 
 |         cpi->drl_mode_cost0[i][0] = av1_cost_bit(cm->fc->drl_prob[i], 0); | 
 |         cpi->drl_mode_cost0[i][1] = av1_cost_bit(cm->fc->drl_prob[i], 1); | 
 |       } | 
 | #if CONFIG_EXT_INTER | 
 |       for (i = 0; i < INTER_MODE_CONTEXTS; ++i) | 
 |         av1_cost_tokens((int *)cpi->inter_compound_mode_cost[i], | 
 |                         cm->fc->inter_compound_mode_probs[i], | 
 |                         av1_inter_compound_mode_tree); | 
 | #if CONFIG_INTERINTRA | 
 |       for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) | 
 |         av1_cost_tokens((int *)cpi->interintra_mode_cost[i], | 
 |                         cm->fc->interintra_mode_prob[i], | 
 |                         av1_interintra_mode_tree); | 
 | #endif  // CONFIG_INTERINTRA | 
 | #endif  // CONFIG_EXT_INTER | 
 | #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |       for (i = BLOCK_8X8; i < BLOCK_SIZES; i++) { | 
 |         av1_cost_tokens((int *)cpi->motion_mode_cost[i], | 
 |                         cm->fc->motion_mode_prob[i], av1_motion_mode_tree); | 
 |       } | 
 | #if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION | 
 |       for (i = BLOCK_8X8; i < BLOCK_SIZES; i++) { | 
 |         cpi->motion_mode_cost1[i][0] = av1_cost_bit(cm->fc->obmc_prob[i], 0); | 
 |         cpi->motion_mode_cost1[i][1] = av1_cost_bit(cm->fc->obmc_prob[i], 1); | 
 |       } | 
 | #endif  // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION | 
 | #endif  // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { | 
 |   // NOTE: The tables below must be of the same size. | 
 |  | 
 |   // The functions described below are sampled at the four most significant | 
 |   // bits of x^2 + 8 / 256. | 
 |  | 
 |   // Normalized rate: | 
 |   // This table models the rate for a Laplacian source with given variance | 
 |   // when quantized with a uniform quantizer with given stepsize. The | 
 |   // closed form expression is: | 
 |   // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], | 
 |   // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), | 
 |   // and H(x) is the binary entropy function. | 
 |   static const int rate_tab_q10[] = { | 
 |     65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, | 
 |     4044,  3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, | 
 |     3133,  3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, | 
 |     2290,  2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, | 
 |     1608,  1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, | 
 |     911,   864,  821,  781,  745,  680,  623,  574,  530,  490,  455,  424, | 
 |     395,   345,  304,  269,  239,  213,  190,  171,  154,  126,  104,  87, | 
 |     73,    61,   52,   44,   38,   28,   21,   16,   12,   10,   8,    6, | 
 |     5,     3,    2,    1,    1,    1,    0,    0, | 
 |   }; | 
 |   // Normalized distortion: | 
 |   // This table models the normalized distortion for a Laplacian source | 
 |   // with given variance when quantized with a uniform quantizer | 
 |   // with given stepsize. The closed form expression is: | 
 |   // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) | 
 |   // where x = qpstep / sqrt(variance). | 
 |   // Note the actual distortion is Dn * variance. | 
 |   static const int dist_tab_q10[] = { | 
 |     0,    0,    1,    1,    1,    2,    2,    2,    3,    3,    4,    5, | 
 |     5,    6,    7,    7,    8,    9,    11,   12,   13,   15,   16,   17, | 
 |     18,   21,   24,   26,   29,   31,   34,   36,   39,   44,   49,   54, | 
 |     59,   64,   69,   73,   78,   88,   97,   106,  115,  124,  133,  142, | 
 |     151,  167,  184,  200,  215,  231,  245,  260,  274,  301,  327,  351, | 
 |     375,  397,  418,  439,  458,  495,  528,  559,  587,  613,  637,  659, | 
 |     680,  717,  749,  777,  801,  823,  842,  859,  874,  899,  919,  936, | 
 |     949,  960,  969,  977,  983,  994,  1001, 1006, 1010, 1013, 1015, 1017, | 
 |     1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, | 
 |   }; | 
 |   static const int xsq_iq_q10[] = { | 
 |     0,      4,      8,      12,     16,     20,     24,     28,     32, | 
 |     40,     48,     56,     64,     72,     80,     88,     96,     112, | 
 |     128,    144,    160,    176,    192,    208,    224,    256,    288, | 
 |     320,    352,    384,    416,    448,    480,    544,    608,    672, | 
 |     736,    800,    864,    928,    992,    1120,   1248,   1376,   1504, | 
 |     1632,   1760,   1888,   2016,   2272,   2528,   2784,   3040,   3296, | 
 |     3552,   3808,   4064,   4576,   5088,   5600,   6112,   6624,   7136, | 
 |     7648,   8160,   9184,   10208,  11232,  12256,  13280,  14304,  15328, | 
 |     16352,  18400,  20448,  22496,  24544,  26592,  28640,  30688,  32736, | 
 |     36832,  40928,  45024,  49120,  53216,  57312,  61408,  65504,  73696, | 
 |     81888,  90080,  98272,  106464, 114656, 122848, 131040, 147424, 163808, | 
 |     180192, 196576, 212960, 229344, 245728, | 
 |   }; | 
 |   const int tmp = (xsq_q10 >> 2) + 8; | 
 |   const int k = get_msb(tmp) - 3; | 
 |   const int xq = (k << 3) + ((tmp >> k) & 0x7); | 
 |   const int one_q10 = 1 << 10; | 
 |   const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); | 
 |   const int b_q10 = one_q10 - a_q10; | 
 |   *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; | 
 |   *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; | 
 | } | 
 |  | 
 | void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2, | 
 |                                   unsigned int qstep, int *rate, | 
 |                                   int64_t *dist) { | 
 |   // This function models the rate and distortion for a Laplacian | 
 |   // source with given variance when quantized with a uniform quantizer | 
 |   // with given stepsize. The closed form expressions are in: | 
 |   // Hang and Chen, "Source Model for transform video coder and its | 
 |   // application - Part I: Fundamental Theory", IEEE Trans. Circ. | 
 |   // Sys. for Video Tech., April 1997. | 
 |   if (var == 0) { | 
 |     *rate = 0; | 
 |     *dist = 0; | 
 |   } else { | 
 |     int d_q10, r_q10; | 
 |     static const uint32_t MAX_XSQ_Q10 = 245727; | 
 |     const uint64_t xsq_q10_64 = | 
 |         (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; | 
 |     const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10); | 
 |     model_rd_norm(xsq_q10, &r_q10, &d_q10); | 
 |     *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT); | 
 |     *dist = (var * (int64_t)d_q10 + 512) >> 10; | 
 |   } | 
 | } | 
 |  | 
 | static void get_entropy_contexts_plane( | 
 |     BLOCK_SIZE plane_bsize, TX_SIZE tx_size, const struct macroblockd_plane *pd, | 
 |     ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE], | 
 |     ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]) { | 
 |   const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; | 
 |   const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0]; | 
 |   const ENTROPY_CONTEXT *const above = pd->above_context; | 
 |   const ENTROPY_CONTEXT *const left = pd->left_context; | 
 |  | 
 |   int i; | 
 |  | 
 | #if CONFIG_CB4X4 | 
 |   switch (tx_size) { | 
 |     case TX_2X2: | 
 |       memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); | 
 |       memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); | 
 |       break; | 
 |     case TX_4X4: | 
 |       for (i = 0; i < num_4x4_w; i += 2) | 
 |         t_above[i] = !!*(const uint16_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 2) | 
 |         t_left[i] = !!*(const uint16_t *)&left[i]; | 
 |       break; | 
 |     case TX_8X8: | 
 |       for (i = 0; i < num_4x4_w; i += 4) | 
 |         t_above[i] = !!*(const uint32_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 4) | 
 |         t_left[i] = !!*(const uint32_t *)&left[i]; | 
 |       break; | 
 |     case TX_16X16: | 
 |       for (i = 0; i < num_4x4_w; i += 8) | 
 |         t_above[i] = !!*(const uint64_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 8) | 
 |         t_left[i] = !!*(const uint64_t *)&left[i]; | 
 |       break; | 
 |     case TX_32X32: | 
 |       for (i = 0; i < num_4x4_w; i += 16) | 
 |         t_above[i] = | 
 |             !!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]); | 
 |       for (i = 0; i < num_4x4_h; i += 16) | 
 |         t_left[i] = | 
 |             !!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]); | 
 |       break; | 
 | #if CONFIG_TX64X64 | 
 |     case TX_64X64: | 
 |       for (i = 0; i < num_4x4_w; i += 32) | 
 |         t_above[i] = | 
 |             !!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8] | | 
 |                *(const uint64_t *)&above[i + 16] | | 
 |                *(const uint64_t *)&above[i + 24]); | 
 |       for (i = 0; i < num_4x4_h; i += 32) | 
 |         t_left[i] = | 
 |             !!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8] | | 
 |                *(const uint64_t *)&left[i + 16] | | 
 |                *(const uint64_t *)&left[i + 24]); | 
 |       break; | 
 | #endif  // CONFIG_TX64X64 | 
 |     case TX_4X8: | 
 |       for (i = 0; i < num_4x4_w; i += 2) | 
 |         t_above[i] = !!*(const uint16_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 4) | 
 |         t_left[i] = !!*(const uint32_t *)&left[i]; | 
 |       break; | 
 |     case TX_8X4: | 
 |       for (i = 0; i < num_4x4_w; i += 4) | 
 |         t_above[i] = !!*(const uint32_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 2) | 
 |         t_left[i] = !!*(const uint16_t *)&left[i]; | 
 |       break; | 
 |     case TX_8X16: | 
 |       for (i = 0; i < num_4x4_w; i += 4) | 
 |         t_above[i] = !!*(const uint32_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 8) | 
 |         t_left[i] = !!*(const uint64_t *)&left[i]; | 
 |       break; | 
 |     case TX_16X8: | 
 |       for (i = 0; i < num_4x4_w; i += 8) | 
 |         t_above[i] = !!*(const uint64_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 4) | 
 |         t_left[i] = !!*(const uint32_t *)&left[i]; | 
 |       break; | 
 |     case TX_16X32: | 
 |       for (i = 0; i < num_4x4_w; i += 8) | 
 |         t_above[i] = !!*(const uint64_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 16) | 
 |         t_left[i] = | 
 |             !!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]); | 
 |       break; | 
 |     case TX_32X16: | 
 |       for (i = 0; i < num_4x4_w; i += 16) | 
 |         t_above[i] = | 
 |             !!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]); | 
 |       for (i = 0; i < num_4x4_h; i += 8) | 
 |         t_left[i] = !!*(const uint64_t *)&left[i]; | 
 |       break; | 
 |  | 
 |     default: assert(0 && "Invalid transform size."); break; | 
 |   } | 
 |   return; | 
 | #endif | 
 |  | 
 |   switch (tx_size) { | 
 |     case TX_4X4: | 
 |       memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); | 
 |       memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); | 
 |       break; | 
 |     case TX_8X8: | 
 |       for (i = 0; i < num_4x4_w; i += 2) | 
 |         t_above[i] = !!*(const uint16_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 2) | 
 |         t_left[i] = !!*(const uint16_t *)&left[i]; | 
 |       break; | 
 |     case TX_16X16: | 
 |       for (i = 0; i < num_4x4_w; i += 4) | 
 |         t_above[i] = !!*(const uint32_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 4) | 
 |         t_left[i] = !!*(const uint32_t *)&left[i]; | 
 |       break; | 
 |     case TX_32X32: | 
 |       for (i = 0; i < num_4x4_w; i += 8) | 
 |         t_above[i] = !!*(const uint64_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 8) | 
 |         t_left[i] = !!*(const uint64_t *)&left[i]; | 
 |       break; | 
 | #if CONFIG_TX64X64 | 
 |     case TX_64X64: | 
 |       for (i = 0; i < num_4x4_w; i += 16) | 
 |         t_above[i] = | 
 |             !!(*(const uint64_t *)&above[i] | *(const uint64_t *)&above[i + 8]); | 
 |       for (i = 0; i < num_4x4_h; i += 16) | 
 |         t_left[i] = | 
 |             !!(*(const uint64_t *)&left[i] | *(const uint64_t *)&left[i + 8]); | 
 |       break; | 
 | #endif  // CONFIG_TX64X64 | 
 |     case TX_4X8: | 
 |       memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); | 
 |       for (i = 0; i < num_4x4_h; i += 2) | 
 |         t_left[i] = !!*(const uint16_t *)&left[i]; | 
 |       break; | 
 |     case TX_8X4: | 
 |       for (i = 0; i < num_4x4_w; i += 2) | 
 |         t_above[i] = !!*(const uint16_t *)&above[i]; | 
 |       memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); | 
 |       break; | 
 |     case TX_8X16: | 
 |       for (i = 0; i < num_4x4_w; i += 2) | 
 |         t_above[i] = !!*(const uint16_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 4) | 
 |         t_left[i] = !!*(const uint32_t *)&left[i]; | 
 |       break; | 
 |     case TX_16X8: | 
 |       for (i = 0; i < num_4x4_w; i += 4) | 
 |         t_above[i] = !!*(const uint32_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 2) | 
 |         t_left[i] = !!*(const uint16_t *)&left[i]; | 
 |       break; | 
 |     case TX_16X32: | 
 |       for (i = 0; i < num_4x4_w; i += 4) | 
 |         t_above[i] = !!*(const uint32_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 8) | 
 |         t_left[i] = !!*(const uint64_t *)&left[i]; | 
 |       break; | 
 |     case TX_32X16: | 
 |       for (i = 0; i < num_4x4_w; i += 8) | 
 |         t_above[i] = !!*(const uint64_t *)&above[i]; | 
 |       for (i = 0; i < num_4x4_h; i += 4) | 
 |         t_left[i] = !!*(const uint32_t *)&left[i]; | 
 |       break; | 
 |     default: assert(0 && "Invalid transform size."); break; | 
 |   } | 
 | } | 
 |  | 
 | void av1_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size, | 
 |                               const struct macroblockd_plane *pd, | 
 |                               ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE], | 
 |                               ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]) { | 
 |   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); | 
 |   get_entropy_contexts_plane(plane_bsize, tx_size, pd, t_above, t_left); | 
 | } | 
 |  | 
 | void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, | 
 |                  int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { | 
 |   int i; | 
 |   int zero_seen = 0; | 
 |   int best_index = 0; | 
 |   int best_sad = INT_MAX; | 
 |   int this_sad = INT_MAX; | 
 |   int max_mv = 0; | 
 |   uint8_t *src_y_ptr = x->plane[0].src.buf; | 
 |   uint8_t *ref_y_ptr; | 
 |   int num_mv_refs = 0; | 
 |   MV pred_mv[MAX_MV_REF_CANDIDATES + 1]; | 
 |   if (cpi->sf.adaptive_motion_search && block_size < x->max_partition_size) { | 
 |     pred_mv[num_mv_refs] = x->pred_mv[ref_frame]; | 
 |     num_mv_refs++; | 
 |   } | 
 |   if (x->mbmi_ext->ref_mv_count[ref_frame] > 0) { | 
 |     pred_mv[num_mv_refs] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv; | 
 |     num_mv_refs++; | 
 |   } | 
 |   if (x->mbmi_ext->ref_mv_count[ref_frame] > 1) { | 
 |     if (x->mbmi_ext->ref_mvs[ref_frame][0].as_int != | 
 |         x->mbmi_ext->ref_mvs[ref_frame][1].as_int) { | 
 |       pred_mv[num_mv_refs] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv; | 
 |       num_mv_refs++; | 
 |     } | 
 |   } | 
 |   assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); | 
 |   // Get the sad for each candidate reference mv. | 
 |   for (i = 0; i < num_mv_refs; ++i) { | 
 |     const MV *this_mv = &pred_mv[i]; | 
 |     int fp_row, fp_col; | 
 |     fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; | 
 |     fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; | 
 |     max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); | 
 |  | 
 |     if (fp_row == 0 && fp_col == 0 && zero_seen) continue; | 
 |     zero_seen |= (fp_row == 0 && fp_col == 0); | 
 |  | 
 |     ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col]; | 
 |     // Find sad for current vector. | 
 |     this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride, | 
 |                                            ref_y_ptr, ref_y_stride); | 
 |     // Note if it is the best so far. | 
 |     if (this_sad < best_sad) { | 
 |       best_sad = this_sad; | 
 |       best_index = i; | 
 |     } | 
 |   } | 
 |  | 
 |   // Note the index of the mv that worked best in the reference list. | 
 |   x->mv_best_ref_index[ref_frame] = best_index; | 
 |   x->max_mv_context[ref_frame] = max_mv; | 
 |   x->pred_mv_sad[ref_frame] = best_sad; | 
 | } | 
 |  | 
 | void av1_setup_pred_block(const MACROBLOCKD *xd, | 
 |                           struct buf_2d dst[MAX_MB_PLANE], | 
 |                           const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, | 
 |                           const struct scale_factors *scale, | 
 |                           const struct scale_factors *scale_uv) { | 
 |   int i; | 
 |  | 
 |   dst[0].buf = src->y_buffer; | 
 |   dst[0].stride = src->y_stride; | 
 |   dst[1].buf = src->u_buffer; | 
 |   dst[2].buf = src->v_buffer; | 
 |   dst[1].stride = dst[2].stride = src->uv_stride; | 
 |  | 
 |   for (i = 0; i < MAX_MB_PLANE; ++i) { | 
 |     setup_pred_plane(dst + i, xd->mi[0]->mbmi.sb_type, dst[i].buf, | 
 |                      i ? src->uv_crop_width : src->y_crop_width, | 
 |                      i ? src->uv_crop_height : src->y_crop_height, | 
 |                      dst[i].stride, mi_row, mi_col, i ? scale_uv : scale, | 
 |                      xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); | 
 |   } | 
 | } | 
 |  | 
 | int av1_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block, | 
 |                             int stride) { | 
 |   const int bw = b_width_log2_lookup[plane_bsize]; | 
 |   const int y = 4 * (raster_block >> bw); | 
 |   const int x = 4 * (raster_block & ((1 << bw) - 1)); | 
 |   return y * stride + x; | 
 | } | 
 |  | 
 | int16_t *av1_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block, | 
 |                                        int16_t *base) { | 
 |   const int stride = block_size_wide[plane_bsize]; | 
 |   return base + av1_raster_block_offset(plane_bsize, raster_block, stride); | 
 | } | 
 |  | 
 | YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi, | 
 |                                              int ref_frame) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1]; | 
 |   const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame); | 
 |   return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX) | 
 |              ? &cm->buffer_pool->frame_bufs[scaled_idx].buf | 
 |              : NULL; | 
 | } | 
 |  | 
 | #if CONFIG_DUAL_FILTER | 
 | int av1_get_switchable_rate(const AV1_COMP *cpi, const MACROBLOCKD *xd) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   if (cm->interp_filter == SWITCHABLE) { | 
 |     const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |     int inter_filter_cost = 0; | 
 |     int dir; | 
 |  | 
 |     for (dir = 0; dir < 2; ++dir) { | 
 |       if (has_subpel_mv_component(xd->mi[0], xd, dir) || | 
 |           (mbmi->ref_frame[1] > INTRA_FRAME && | 
 |            has_subpel_mv_component(xd->mi[0], xd, dir + 2))) { | 
 |         const int ctx = av1_get_pred_context_switchable_interp(xd, dir); | 
 |         inter_filter_cost += | 
 |             cpi->switchable_interp_costs[ctx][mbmi->interp_filter[dir]]; | 
 |       } | 
 |     } | 
 |     return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; | 
 |   } else { | 
 |     return 0; | 
 |   } | 
 | } | 
 | #else | 
 | int av1_get_switchable_rate(const AV1_COMP *cpi, const MACROBLOCKD *xd) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   if (cm->interp_filter == SWITCHABLE) { | 
 |     const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |     const int ctx = av1_get_pred_context_switchable_interp(xd); | 
 |     return SWITCHABLE_INTERP_RATE_FACTOR * | 
 |            cpi->switchable_interp_costs[ctx][mbmi->interp_filter]; | 
 |   } | 
 |   return 0; | 
 | } | 
 | #endif | 
 |  | 
 | void av1_set_rd_speed_thresholds(AV1_COMP *cpi) { | 
 |   int i; | 
 |   RD_OPT *const rd = &cpi->rd; | 
 |   SPEED_FEATURES *const sf = &cpi->sf; | 
 |  | 
 |   // Set baseline threshold values. | 
 |   for (i = 0; i < MAX_MODES; ++i) rd->thresh_mult[i] = cpi->oxcf.mode == 0; | 
 |  | 
 |   if (sf->adaptive_rd_thresh) { | 
 |     rd->thresh_mult[THR_NEARESTMV] = 300; | 
 | #if CONFIG_EXT_REFS | 
 |     rd->thresh_mult[THR_NEARESTL2] = 300; | 
 |     rd->thresh_mult[THR_NEARESTL3] = 300; | 
 |     rd->thresh_mult[THR_NEARESTB] = 300; | 
 | #endif  // CONFIG_EXT_REFS | 
 |     rd->thresh_mult[THR_NEARESTA] = 300; | 
 |     rd->thresh_mult[THR_NEARESTG] = 300; | 
 |   } else { | 
 |     rd->thresh_mult[THR_NEARESTMV] = 0; | 
 | #if CONFIG_EXT_REFS | 
 |     rd->thresh_mult[THR_NEARESTL2] = 0; | 
 |     rd->thresh_mult[THR_NEARESTL3] = 0; | 
 |     rd->thresh_mult[THR_NEARESTB] = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |     rd->thresh_mult[THR_NEARESTA] = 0; | 
 |     rd->thresh_mult[THR_NEARESTG] = 0; | 
 |   } | 
 |  | 
 |   rd->thresh_mult[THR_DC] += 1000; | 
 |  | 
 |   rd->thresh_mult[THR_NEWMV] += 1000; | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_NEWL2] += 1000; | 
 |   rd->thresh_mult[THR_NEWL3] += 1000; | 
 |   rd->thresh_mult[THR_NEWB] += 1000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_NEWA] += 1000; | 
 |   rd->thresh_mult[THR_NEWG] += 1000; | 
 |  | 
 |   rd->thresh_mult[THR_NEARMV] += 1000; | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_NEARL2] += 1000; | 
 |   rd->thresh_mult[THR_NEARL3] += 1000; | 
 |   rd->thresh_mult[THR_NEARB] += 1000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_NEARA] += 1000; | 
 |   rd->thresh_mult[THR_NEARG] += 1000; | 
 |  | 
 |   rd->thresh_mult[THR_ZEROMV] += 2000; | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_ZEROL2] += 2000; | 
 |   rd->thresh_mult[THR_ZEROL3] += 2000; | 
 |   rd->thresh_mult[THR_ZEROB] += 2000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_ZEROG] += 2000; | 
 |   rd->thresh_mult[THR_ZEROA] += 2000; | 
 |  | 
 |   rd->thresh_mult[THR_TM] += 1000; | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |  | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] += 1000; | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] += 1000; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] += 1000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] += 1000; | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] += 1000; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] += 1000; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] += 1000; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] += 1000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #else  // CONFIG_EXT_INTER | 
 |  | 
 |   rd->thresh_mult[THR_COMP_NEARESTLA] += 1000; | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEARESTL2A] += 1000; | 
 |   rd->thresh_mult[THR_COMP_NEARESTL3A] += 1000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEARESTGA] += 1000; | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEARESTLB] += 1000; | 
 |   rd->thresh_mult[THR_COMP_NEARESTL2B] += 1000; | 
 |   rd->thresh_mult[THR_COMP_NEARESTL3B] += 1000; | 
 |   rd->thresh_mult[THR_COMP_NEARESTGB] += 1000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |  | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARLA] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARESTLA] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARLA] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEWLA] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARESTLA] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEWLA] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARLA] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEWLA] += 2000; | 
 |   rd->thresh_mult[THR_COMP_ZERO_ZEROLA] += 2500; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARL2A] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARESTL2A] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARL2A] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEWL2A] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARL2A] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEWL2A] += 2000; | 
 |   rd->thresh_mult[THR_COMP_ZERO_ZEROL2A] += 2500; | 
 |  | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARL3A] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARESTL3A] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARL3A] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEWL3A] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARL3A] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEWL3A] += 2000; | 
 |   rd->thresh_mult[THR_COMP_ZERO_ZEROL3A] += 2500; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARGA] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARESTGA] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARGA] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEWGA] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARESTGA] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEWGA] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARGA] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEWGA] += 2000; | 
 |   rd->thresh_mult[THR_COMP_ZERO_ZEROGA] += 2500; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARLB] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARESTLB] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARLB] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEWLB] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARESTLB] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEWLB] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARLB] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEWLB] += 2000; | 
 |   rd->thresh_mult[THR_COMP_ZERO_ZEROLB] += 2500; | 
 |  | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARL2B] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARESTL2B] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARL2B] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEWL2B] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARL2B] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEWL2B] += 2000; | 
 |   rd->thresh_mult[THR_COMP_ZERO_ZEROL2B] += 2500; | 
 |  | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARL3B] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARESTL3B] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARL3B] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEWL3B] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARL3B] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEWL3B] += 2000; | 
 |   rd->thresh_mult[THR_COMP_ZERO_ZEROL3B] += 2500; | 
 |  | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEARGB] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARESTGB] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEARGB] += 1200; | 
 |   rd->thresh_mult[THR_COMP_NEAREST_NEWGB] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARESTGB] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEAR_NEWGB] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEARGB] += 1700; | 
 |   rd->thresh_mult[THR_COMP_NEW_NEWGB] += 2000; | 
 |   rd->thresh_mult[THR_COMP_ZERO_ZEROGB] += 2500; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #else  // CONFIG_EXT_INTER | 
 |  | 
 |   rd->thresh_mult[THR_COMP_NEARLA] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEWLA] += 2000; | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEARL2A] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEWL2A] += 2000; | 
 |   rd->thresh_mult[THR_COMP_NEARL3A] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEWL3A] += 2000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEARGA] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEWGA] += 2000; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_NEARLB] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEWLB] += 2000; | 
 |   rd->thresh_mult[THR_COMP_NEARL2B] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEWL2B] += 2000; | 
 |   rd->thresh_mult[THR_COMP_NEARL3B] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEWL3B] += 2000; | 
 |   rd->thresh_mult[THR_COMP_NEARGB] += 1500; | 
 |   rd->thresh_mult[THR_COMP_NEWGB] += 2000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   rd->thresh_mult[THR_COMP_ZEROLA] += 2500; | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_ZEROL2A] += 2500; | 
 |   rd->thresh_mult[THR_COMP_ZEROL3A] += 2500; | 
 | #endif  // CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_ZEROGA] += 2500; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_ZEROLB] += 2500; | 
 |   rd->thresh_mult[THR_COMP_ZEROL2B] += 2500; | 
 |   rd->thresh_mult[THR_COMP_ZEROL3B] += 2500; | 
 |   rd->thresh_mult[THR_COMP_ZEROGB] += 2500; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #endif  // CONFIG_EXT_INTER | 
 |  | 
 |   rd->thresh_mult[THR_H_PRED] += 2000; | 
 |   rd->thresh_mult[THR_V_PRED] += 2000; | 
 |   rd->thresh_mult[THR_D135_PRED] += 2500; | 
 |   rd->thresh_mult[THR_D207_PRED] += 2500; | 
 |   rd->thresh_mult[THR_D153_PRED] += 2500; | 
 |   rd->thresh_mult[THR_D63_PRED] += 2500; | 
 |   rd->thresh_mult[THR_D117_PRED] += 2500; | 
 |   rd->thresh_mult[THR_D45_PRED] += 2500; | 
 |  | 
 | #if CONFIG_EXT_INTER | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARL] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEWL] += 2000; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL2] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL2] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARL2] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEWL2] += 2000; | 
 |  | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_ZEROL3] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTL3] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARL3] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEWL3] += 2000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_ZEROG] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARG] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEWG] += 2000; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_ZEROB] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTB] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARB] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEWB] += 2000; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_ZEROA] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEARA] += 1500; | 
 |   rd->thresh_mult[THR_COMP_INTERINTRA_NEWA] += 2000; | 
 | #endif  // CONFIG_EXT_INTER | 
 | } | 
 |  | 
 | void av1_set_rd_speed_thresholds_sub8x8(AV1_COMP *cpi) { | 
 |   static const int thresh_mult[MAX_REFS] = { | 
 | #if CONFIG_EXT_REFS | 
 |     2500, | 
 |     2500, | 
 |     2500, | 
 |     2500, | 
 |     2500, | 
 |     2500, | 
 |     4500, | 
 |     4500, | 
 |     4500, | 
 |     4500, | 
 |     4500, | 
 |     4500, | 
 |     4500, | 
 |     4500, | 
 |     2500 | 
 | #else | 
 |     2500, | 
 |     2500, | 
 |     2500, | 
 |     4500, | 
 |     4500, | 
 |     2500 | 
 | #endif  // CONFIG_EXT_REFS | 
 |   }; | 
 |   RD_OPT *const rd = &cpi->rd; | 
 |   memcpy(rd->thresh_mult_sub8x8, thresh_mult, sizeof(thresh_mult)); | 
 | } | 
 |  | 
 | void av1_update_rd_thresh_fact(const AV1_COMMON *const cm, | 
 |                                int (*factor_buf)[MAX_MODES], int rd_thresh, | 
 |                                int bsize, int best_mode_index) { | 
 |   if (rd_thresh > 0) { | 
 | #if CONFIG_CB4X4 | 
 |     const int top_mode = MAX_MODES; | 
 | #else | 
 |     const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES; | 
 | #endif | 
 |     int mode; | 
 |     for (mode = 0; mode < top_mode; ++mode) { | 
 |       const BLOCK_SIZE min_size = AOMMAX(bsize - 1, BLOCK_4X4); | 
 |       const BLOCK_SIZE max_size = AOMMIN(bsize + 2, (int)cm->sb_size); | 
 |       BLOCK_SIZE bs; | 
 |       for (bs = min_size; bs <= max_size; ++bs) { | 
 |         int *const fact = &factor_buf[bs][mode]; | 
 |         if (mode == best_mode_index) { | 
 |           *fact -= (*fact >> 4); | 
 |         } else { | 
 |           *fact = AOMMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | int av1_get_intra_cost_penalty(int qindex, int qdelta, | 
 |                                aom_bit_depth_t bit_depth) { | 
 |   const int q = av1_dc_quant(qindex, qdelta, bit_depth); | 
 | #if CONFIG_HIGHBITDEPTH | 
 |   switch (bit_depth) { | 
 |     case AOM_BITS_8: return 20 * q; | 
 |     case AOM_BITS_10: return 5 * q; | 
 |     case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2); | 
 |     default: | 
 |       assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
 |       return -1; | 
 |   } | 
 | #else | 
 |   return 20 * q; | 
 | #endif  // CONFIG_HIGHBITDEPTH | 
 | } |