|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "third_party/googletest/src/googletest/include/gtest/gtest.h" | 
|  |  | 
|  | #include "./av1_rtcd.h" | 
|  | #include "./aom_dsp_rtcd.h" | 
|  | #include "test/acm_random.h" | 
|  | #include "test/clear_system_state.h" | 
|  | #include "test/register_state_check.h" | 
|  | #include "test/util.h" | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/scan.h" | 
|  | #include "aom/aom_integer.h" | 
|  | #include "aom_dsp/inv_txfm.h" | 
|  |  | 
|  | using libaom_test::ACMRandom; | 
|  |  | 
|  | namespace { | 
|  | const double kInvSqrt2 = 0.707106781186547524400844362104; | 
|  |  | 
|  | void reference_idct_1d(const double *in, double *out, int size) { | 
|  | for (int n = 0; n < size; ++n) { | 
|  | out[n] = 0; | 
|  | for (int k = 0; k < size; ++k) { | 
|  | if (k == 0) | 
|  | out[n] += kInvSqrt2 * in[k] * cos(PI * (2 * n + 1) * k / (2 * size)); | 
|  | else | 
|  | out[n] += in[k] * cos(PI * (2 * n + 1) * k / (2 * size)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef void (*IdctFuncRef)(const double *in, double *out, int size); | 
|  | typedef void (*IdctFunc)(const tran_low_t *in, tran_low_t *out); | 
|  |  | 
|  | class TransTestBase { | 
|  | public: | 
|  | virtual ~TransTestBase() {} | 
|  |  | 
|  | protected: | 
|  | void RunInvAccuracyCheck() { | 
|  | tran_low_t *input = new tran_low_t[txfm_size_]; | 
|  | tran_low_t *output = new tran_low_t[txfm_size_]; | 
|  | double *ref_input = new double[txfm_size_]; | 
|  | double *ref_output = new double[txfm_size_]; | 
|  |  | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 5000; | 
|  | for (int ti = 0; ti < count_test_block; ++ti) { | 
|  | for (int ni = 0; ni < txfm_size_; ++ni) { | 
|  | input[ni] = rnd.Rand8() - rnd.Rand8(); | 
|  | ref_input[ni] = static_cast<double>(input[ni]); | 
|  | } | 
|  |  | 
|  | fwd_txfm_(input, output); | 
|  | fwd_txfm_ref_(ref_input, ref_output, txfm_size_); | 
|  |  | 
|  | for (int ni = 0; ni < txfm_size_; ++ni) { | 
|  | EXPECT_LE( | 
|  | abs(output[ni] - static_cast<tran_low_t>(round(ref_output[ni]))), | 
|  | max_error_); | 
|  | } | 
|  | } | 
|  |  | 
|  | delete[] input; | 
|  | delete[] output; | 
|  | delete[] ref_input; | 
|  | delete[] ref_output; | 
|  | } | 
|  |  | 
|  | double max_error_; | 
|  | int txfm_size_; | 
|  | IdctFunc fwd_txfm_; | 
|  | IdctFuncRef fwd_txfm_ref_; | 
|  | }; | 
|  |  | 
|  | typedef std::tr1::tuple<IdctFunc, IdctFuncRef, int, int> IdctParam; | 
|  | class AV1InvTxfm : public TransTestBase, | 
|  | public ::testing::TestWithParam<IdctParam> { | 
|  | public: | 
|  | virtual void SetUp() { | 
|  | fwd_txfm_ = GET_PARAM(0); | 
|  | fwd_txfm_ref_ = GET_PARAM(1); | 
|  | txfm_size_ = GET_PARAM(2); | 
|  | max_error_ = GET_PARAM(3); | 
|  | } | 
|  | virtual void TearDown() {} | 
|  | }; | 
|  |  | 
|  | TEST_P(AV1InvTxfm, RunInvAccuracyCheck) { RunInvAccuracyCheck(); } | 
|  |  | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | C, AV1InvTxfm, | 
|  | ::testing::Values(IdctParam(&aom_idct4_c, &reference_idct_1d, 4, 1), | 
|  | IdctParam(&aom_idct8_c, &reference_idct_1d, 8, 2), | 
|  | IdctParam(&aom_idct16_c, &reference_idct_1d, 16, 4), | 
|  | IdctParam(&aom_idct32_c, &reference_idct_1d, 32, 6))); | 
|  |  | 
|  | #if CONFIG_AV1_ENCODER | 
|  | typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); | 
|  | typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); | 
|  | typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, InvTxfmFunc, TX_SIZE, int> | 
|  | PartialInvTxfmParam; | 
|  | #if !CONFIG_ADAPT_SCAN | 
|  | const int kMaxNumCoeffs = 1024; | 
|  | #endif | 
|  | class AV1PartialIDctTest | 
|  | : public ::testing::TestWithParam<PartialInvTxfmParam> { | 
|  | public: | 
|  | virtual ~AV1PartialIDctTest() {} | 
|  | virtual void SetUp() { | 
|  | ftxfm_ = GET_PARAM(0); | 
|  | full_itxfm_ = GET_PARAM(1); | 
|  | partial_itxfm_ = GET_PARAM(2); | 
|  | tx_size_ = GET_PARAM(3); | 
|  | last_nonzero_ = GET_PARAM(4); | 
|  | } | 
|  |  | 
|  | virtual void TearDown() { libaom_test::ClearSystemState(); } | 
|  |  | 
|  | protected: | 
|  | int last_nonzero_; | 
|  | TX_SIZE tx_size_; | 
|  | FwdTxfmFunc ftxfm_; | 
|  | InvTxfmFunc full_itxfm_; | 
|  | InvTxfmFunc partial_itxfm_; | 
|  | }; | 
|  |  | 
|  | #if !CONFIG_ADAPT_SCAN | 
|  | TEST_P(AV1PartialIDctTest, RunQuantCheck) { | 
|  | int size; | 
|  | switch (tx_size_) { | 
|  | case TX_4X4: size = 4; break; | 
|  | case TX_8X8: size = 8; break; | 
|  | case TX_16X16: size = 16; break; | 
|  | case TX_32X32: size = 32; break; | 
|  | default: FAIL() << "Wrong Size!"; break; | 
|  | } | 
|  | DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]); | 
|  |  | 
|  | const int count_test_block = 1000; | 
|  | const int block_size = size * size; | 
|  |  | 
|  | DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]); | 
|  |  | 
|  | int max_error = 0; | 
|  | for (int m = 0; m < count_test_block; ++m) { | 
|  | // clear out destination buffer | 
|  | memset(dst1, 0, sizeof(*dst1) * block_size); | 
|  | memset(dst2, 0, sizeof(*dst2) * block_size); | 
|  | memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); | 
|  | memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); | 
|  |  | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  |  | 
|  | for (int n = 0; n < count_test_block; ++n) { | 
|  | // Initialize a test block with input range [-255, 255]. | 
|  | if (n == 0) { | 
|  | for (int j = 0; j < block_size; ++j) input_extreme_block[j] = 255; | 
|  | } else if (n == 1) { | 
|  | for (int j = 0; j < block_size; ++j) input_extreme_block[j] = -255; | 
|  | } else { | 
|  | for (int j = 0; j < block_size; ++j) { | 
|  | input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; | 
|  | } | 
|  | } | 
|  |  | 
|  | ftxfm_(input_extreme_block, output_ref_block, size); | 
|  |  | 
|  | // quantization with maximum allowed step sizes | 
|  | test_coef_block1[0] = (output_ref_block[0] / 1336) * 1336; | 
|  | for (int j = 1; j < last_nonzero_; ++j) | 
|  | test_coef_block1[get_scan((const AV1_COMMON *)NULL, tx_size_, DCT_DCT, | 
|  | 0) | 
|  | ->scan[j]] = (output_ref_block[j] / 1828) * 1828; | 
|  | } | 
|  |  | 
|  | ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); | 
|  | ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block1, dst2, size)); | 
|  |  | 
|  | for (int j = 0; j < block_size; ++j) { | 
|  | const int diff = dst1[j] - dst2[j]; | 
|  | const int error = diff * diff; | 
|  | if (max_error < error) max_error = error; | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(0, max_error) | 
|  | << "Error: partial inverse transform produces different results"; | 
|  | } | 
|  |  | 
|  | TEST_P(AV1PartialIDctTest, ResultsMatch) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | int size; | 
|  | switch (tx_size_) { | 
|  | case TX_4X4: size = 4; break; | 
|  | case TX_8X8: size = 8; break; | 
|  | case TX_16X16: size = 16; break; | 
|  | case TX_32X32: size = 32; break; | 
|  | default: FAIL() << "Wrong Size!"; break; | 
|  | } | 
|  | DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]); | 
|  | const int count_test_block = 1000; | 
|  | const int max_coeff = 32766 / 4; | 
|  | const int block_size = size * size; | 
|  | int max_error = 0; | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | // clear out destination buffer | 
|  | memset(dst1, 0, sizeof(*dst1) * block_size); | 
|  | memset(dst2, 0, sizeof(*dst2) * block_size); | 
|  | memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); | 
|  | memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); | 
|  | int max_energy_leftover = max_coeff * max_coeff; | 
|  | for (int j = 0; j < last_nonzero_; ++j) { | 
|  | int16_t coef = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) * | 
|  | (rnd.Rand16() - 32768) / 65536); | 
|  | max_energy_leftover -= coef * coef; | 
|  | if (max_energy_leftover < 0) { | 
|  | max_energy_leftover = 0; | 
|  | coef = 0; | 
|  | } | 
|  | test_coef_block1[get_scan((const AV1_COMMON *)NULL, tx_size_, DCT_DCT, 0) | 
|  | ->scan[j]] = coef; | 
|  | } | 
|  |  | 
|  | memcpy(test_coef_block2, test_coef_block1, | 
|  | sizeof(*test_coef_block2) * block_size); | 
|  |  | 
|  | ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); | 
|  | ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block2, dst2, size)); | 
|  |  | 
|  | for (int j = 0; j < block_size; ++j) { | 
|  | const int diff = dst1[j] - dst2[j]; | 
|  | const int error = diff * diff; | 
|  | if (max_error < error) max_error = error; | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(0, max_error) | 
|  | << "Error: partial inverse transform produces different results"; | 
|  | } | 
|  | #endif | 
|  | using std::tr1::make_tuple; | 
|  |  | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | C, AV1PartialIDctTest, | 
|  | ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, | 
|  | &aom_idct32x32_34_add_c, TX_32X32, 34), | 
|  | make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, | 
|  | &aom_idct32x32_1_add_c, TX_32X32, 1), | 
|  | make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_c, | 
|  | &aom_idct16x16_10_add_c, TX_16X16, 10), | 
|  | make_tuple(&aom_fdct16x16_c, &aom_idct16x16_256_add_c, | 
|  | &aom_idct16x16_1_add_c, TX_16X16, 1), | 
|  | make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c, | 
|  | &aom_idct8x8_12_add_c, TX_8X8, 12), | 
|  | make_tuple(&aom_fdct8x8_c, &aom_idct8x8_64_add_c, | 
|  | &aom_idct8x8_1_add_c, TX_8X8, 1), | 
|  | make_tuple(&aom_fdct4x4_c, &aom_idct4x4_16_add_c, | 
|  | &aom_idct4x4_1_add_c, TX_4X4, 1))); | 
|  | #endif  // CONFIG_AV1_ENCODER | 
|  | }  // namespace |