blob: adfbd434c8a57119ef98e5282572db5ce93486fe [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h> // AVX2
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/x86/synonyms_avx2.h"
static AOM_FORCE_INLINE void aggregate_and_store_sum(uint32_t res[4],
__m256i sum_ref0,
__m256i sum_ref1,
__m256i sum_ref2,
__m256i sum_ref3) {
__m128i sum;
// In sum_ref-i the result is saved in the first 4 bytes and the other 4
// bytes are zeroed.
// merge sum_ref0 and sum_ref1 also sum_ref2 and sum_ref3
// 0, 0, 1, 1
sum_ref0 = _mm256_castps_si256(_mm256_shuffle_ps(
_mm256_castsi256_ps(sum_ref0), _mm256_castsi256_ps(sum_ref1),
_MM_SHUFFLE(2, 0, 2, 0)));
// 2, 2, 3, 3
sum_ref2 = _mm256_castps_si256(_mm256_shuffle_ps(
_mm256_castsi256_ps(sum_ref2), _mm256_castsi256_ps(sum_ref3),
_MM_SHUFFLE(2, 0, 2, 0)));
// sum adjacent 32 bit integers
sum_ref0 = _mm256_hadd_epi32(sum_ref0, sum_ref2);
// add the low 128 bit to the high 128 bit
sum = _mm_add_epi32(_mm256_castsi256_si128(sum_ref0),
_mm256_extractf128_si256(sum_ref0, 1));
_mm_storeu_si128((__m128i *)(res), sum);
}
static AOM_FORCE_INLINE void aom_sadMxNx4d_avx2(
int M, int N, const uint8_t *src, int src_stride,
const uint8_t *const ref[4], int ref_stride, uint32_t res[4]) {
__m256i src_reg, ref0_reg, ref1_reg, ref2_reg, ref3_reg;
__m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3;
int i, j;
const uint8_t *ref0, *ref1, *ref2, *ref3;
ref0 = ref[0];
ref1 = ref[1];
ref2 = ref[2];
ref3 = ref[3];
sum_ref0 = _mm256_setzero_si256();
sum_ref2 = _mm256_setzero_si256();
sum_ref1 = _mm256_setzero_si256();
sum_ref3 = _mm256_setzero_si256();
for (i = 0; i < N; i++) {
for (j = 0; j < M; j += 32) {
// load src and all refs
src_reg = _mm256_loadu_si256((const __m256i *)(src + j));
ref0_reg = _mm256_loadu_si256((const __m256i *)(ref0 + j));
ref1_reg = _mm256_loadu_si256((const __m256i *)(ref1 + j));
ref2_reg = _mm256_loadu_si256((const __m256i *)(ref2 + j));
ref3_reg = _mm256_loadu_si256((const __m256i *)(ref3 + j));
// sum of the absolute differences between every ref-i to src
ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg);
// sum every ref-i
sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg);
}
src += src_stride;
ref0 += ref_stride;
ref1 += ref_stride;
ref2 += ref_stride;
ref3 += ref_stride;
}
aggregate_and_store_sum(res, sum_ref0, sum_ref1, sum_ref2, sum_ref3);
}
static AOM_FORCE_INLINE void aom_sadMxNx3d_avx2(
int M, int N, const uint8_t *src, int src_stride,
const uint8_t *const ref[4], int ref_stride, uint32_t res[4]) {
__m256i src_reg, ref0_reg, ref1_reg, ref2_reg;
__m256i sum_ref0, sum_ref1, sum_ref2;
int i, j;
const uint8_t *ref0, *ref1, *ref2;
ref0 = ref[0];
ref1 = ref[1];
ref2 = ref[2];
sum_ref0 = _mm256_setzero_si256();
sum_ref2 = _mm256_setzero_si256();
sum_ref1 = _mm256_setzero_si256();
for (i = 0; i < N; i++) {
for (j = 0; j < M; j += 32) {
// load src and all refs
src_reg = _mm256_loadu_si256((const __m256i *)(src + j));
ref0_reg = _mm256_loadu_si256((const __m256i *)(ref0 + j));
ref1_reg = _mm256_loadu_si256((const __m256i *)(ref1 + j));
ref2_reg = _mm256_loadu_si256((const __m256i *)(ref2 + j));
// sum of the absolute differences between every ref-i to src
ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
// sum every ref-i
sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
}
src += src_stride;
ref0 += ref_stride;
ref1 += ref_stride;
ref2 += ref_stride;
}
aggregate_and_store_sum(res, sum_ref0, sum_ref1, sum_ref2,
_mm256_setzero_si256());
}
#define SADMXN_AVX2(m, n) \
void aom_sad##m##x##n##x4d_avx2(const uint8_t *src, int src_stride, \
const uint8_t *const ref[4], int ref_stride, \
uint32_t res[4]) { \
aom_sadMxNx4d_avx2(m, n, src, src_stride, ref, ref_stride, res); \
} \
void aom_sad##m##x##n##x3d_avx2(const uint8_t *src, int src_stride, \
const uint8_t *const ref[4], int ref_stride, \
uint32_t res[4]) { \
aom_sadMxNx3d_avx2(m, n, src, src_stride, ref, ref_stride, res); \
}
SADMXN_AVX2(32, 8)
SADMXN_AVX2(32, 16)
SADMXN_AVX2(32, 32)
SADMXN_AVX2(32, 64)
SADMXN_AVX2(64, 16)
SADMXN_AVX2(64, 32)
SADMXN_AVX2(64, 64)
SADMXN_AVX2(64, 128)
SADMXN_AVX2(128, 64)
SADMXN_AVX2(128, 128)
#define SAD_SKIP_MXN_AVX2(m, n) \
void aom_sad_skip_##m##x##n##x4d_avx2(const uint8_t *src, int src_stride, \
const uint8_t *const ref[4], \
int ref_stride, uint32_t res[4]) { \
aom_sadMxNx4d_avx2(m, ((n) >> 1), src, 2 * src_stride, ref, \
2 * ref_stride, res); \
res[0] <<= 1; \
res[1] <<= 1; \
res[2] <<= 1; \
res[3] <<= 1; \
}
SAD_SKIP_MXN_AVX2(32, 8)
SAD_SKIP_MXN_AVX2(32, 16)
SAD_SKIP_MXN_AVX2(32, 32)
SAD_SKIP_MXN_AVX2(32, 64)
SAD_SKIP_MXN_AVX2(64, 16)
SAD_SKIP_MXN_AVX2(64, 32)
SAD_SKIP_MXN_AVX2(64, 64)
SAD_SKIP_MXN_AVX2(64, 128)
SAD_SKIP_MXN_AVX2(128, 64)
SAD_SKIP_MXN_AVX2(128, 128)
static AOM_FORCE_INLINE void aom_sad16xNx3d_avx2(int N, const uint8_t *src,
int src_stride,
const uint8_t *const ref[4],
int ref_stride,
uint32_t res[4]) {
__m256i src_reg, ref0_reg, ref1_reg, ref2_reg;
__m256i sum_ref0, sum_ref1, sum_ref2;
const uint8_t *ref0, *ref1, *ref2;
assert(N % 2 == 0);
ref0 = ref[0];
ref1 = ref[1];
ref2 = ref[2];
sum_ref0 = _mm256_setzero_si256();
sum_ref2 = _mm256_setzero_si256();
sum_ref1 = _mm256_setzero_si256();
for (int i = 0; i < N; i += 2) {
// load src and all refs
src_reg = yy_loadu2_128(src + src_stride, src);
ref0_reg = yy_loadu2_128(ref0 + ref_stride, ref0);
ref1_reg = yy_loadu2_128(ref1 + ref_stride, ref1);
ref2_reg = yy_loadu2_128(ref2 + ref_stride, ref2);
// sum of the absolute differences between every ref-i to src
ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
// sum every ref-i
sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
src += 2 * src_stride;
ref0 += 2 * ref_stride;
ref1 += 2 * ref_stride;
ref2 += 2 * ref_stride;
}
aggregate_and_store_sum(res, sum_ref0, sum_ref1, sum_ref2,
_mm256_setzero_si256());
}
static AOM_FORCE_INLINE void aom_sad16xNx4d_avx2(int N, const uint8_t *src,
int src_stride,
const uint8_t *const ref[4],
int ref_stride,
uint32_t res[4]) {
__m256i src_reg, ref0_reg, ref1_reg, ref2_reg, ref3_reg;
__m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3;
const uint8_t *ref0, *ref1, *ref2, *ref3;
assert(N % 2 == 0);
ref0 = ref[0];
ref1 = ref[1];
ref2 = ref[2];
ref3 = ref[3];
sum_ref0 = _mm256_setzero_si256();
sum_ref2 = _mm256_setzero_si256();
sum_ref1 = _mm256_setzero_si256();
sum_ref3 = _mm256_setzero_si256();
for (int i = 0; i < N; i += 2) {
// load src and all refs
src_reg = yy_loadu2_128(src + src_stride, src);
ref0_reg = yy_loadu2_128(ref0 + ref_stride, ref0);
ref1_reg = yy_loadu2_128(ref1 + ref_stride, ref1);
ref2_reg = yy_loadu2_128(ref2 + ref_stride, ref2);
ref3_reg = yy_loadu2_128(ref3 + ref_stride, ref3);
// sum of the absolute differences between every ref-i to src
ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg);
// sum every ref-i
sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg);
src += 2 * src_stride;
ref0 += 2 * ref_stride;
ref1 += 2 * ref_stride;
ref2 += 2 * ref_stride;
ref3 += 2 * ref_stride;
}
aggregate_and_store_sum(res, sum_ref0, sum_ref1, sum_ref2, sum_ref3);
}
#define SAD16XNX3_AVX2(n) \
void aom_sad16x##n##x3d_avx2(const uint8_t *src, int src_stride, \
const uint8_t *const ref[4], int ref_stride, \
uint32_t res[4]) { \
aom_sad16xNx3d_avx2(n, src, src_stride, ref, ref_stride, res); \
}
#define SAD16XNX4_AVX2(n) \
void aom_sad16x##n##x4d_avx2(const uint8_t *src, int src_stride, \
const uint8_t *const ref[4], int ref_stride, \
uint32_t res[4]) { \
aom_sad16xNx4d_avx2(n, src, src_stride, ref, ref_stride, res); \
}
SAD16XNX4_AVX2(32)
SAD16XNX4_AVX2(16)
SAD16XNX4_AVX2(8)
SAD16XNX3_AVX2(32)
SAD16XNX3_AVX2(16)
SAD16XNX3_AVX2(8)
#if !CONFIG_REALTIME_ONLY
SAD16XNX3_AVX2(64)
SAD16XNX3_AVX2(4)
SAD16XNX4_AVX2(64)
SAD16XNX4_AVX2(4)
#endif // !CONFIG_REALTIME_ONLY
#define SAD_SKIP_16XN_AVX2(n) \
void aom_sad_skip_16x##n##x4d_avx2(const uint8_t *src, int src_stride, \
const uint8_t *const ref[4], \
int ref_stride, uint32_t res[4]) { \
aom_sad16xNx4d_avx2(((n) >> 1), src, 2 * src_stride, ref, 2 * ref_stride, \
res); \
res[0] <<= 1; \
res[1] <<= 1; \
res[2] <<= 1; \
res[3] <<= 1; \
}
SAD_SKIP_16XN_AVX2(32)
SAD_SKIP_16XN_AVX2(16)
SAD_SKIP_16XN_AVX2(8)
#if !CONFIG_REALTIME_ONLY
SAD_SKIP_16XN_AVX2(64)
SAD_SKIP_16XN_AVX2(4)
#endif // !CONFIG_REALTIME_ONLY