| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/tile_common.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/resize.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| |
| void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) { |
| av1_tile_set_row(tile, cm, row); |
| av1_tile_set_col(tile, cm, col); |
| } |
| |
| // Find smallest k>=0 such that (blk_size << k) >= target |
| static int tile_log2(int blk_size, int target) { |
| int k; |
| for (k = 0; (blk_size << k) < target; k++) { |
| } |
| return k; |
| } |
| |
| void av1_get_tile_limits(AV1_COMMON *const cm) { |
| int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); |
| int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); |
| int sb_cols = mi_cols >> cm->seq_params.mib_size_log2; |
| int sb_rows = mi_rows >> cm->seq_params.mib_size_log2; |
| |
| int sb_size_log2 = cm->seq_params.mib_size_log2 + MI_SIZE_LOG2; |
| cm->max_tile_width_sb = MAX_TILE_WIDTH >> sb_size_log2; |
| int max_tile_area_sb = MAX_TILE_AREA >> (2 * sb_size_log2); |
| |
| cm->min_log2_tile_cols = tile_log2(cm->max_tile_width_sb, sb_cols); |
| cm->max_log2_tile_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS)); |
| cm->max_log2_tile_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS)); |
| cm->min_log2_tiles = tile_log2(max_tile_area_sb, sb_cols * sb_rows); |
| cm->min_log2_tiles = AOMMAX(cm->min_log2_tiles, cm->min_log2_tile_cols); |
| } |
| |
| void av1_calculate_tile_cols(AV1_COMMON *const cm) { |
| int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); |
| int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); |
| int sb_cols = mi_cols >> cm->seq_params.mib_size_log2; |
| int sb_rows = mi_rows >> cm->seq_params.mib_size_log2; |
| int i; |
| |
| if (cm->uniform_tile_spacing_flag) { |
| int start_sb; |
| int size_sb = ALIGN_POWER_OF_TWO(sb_cols, cm->log2_tile_cols); |
| size_sb >>= cm->log2_tile_cols; |
| assert(size_sb > 0); |
| for (i = 0, start_sb = 0; start_sb < sb_cols; i++) { |
| cm->tile_col_start_sb[i] = start_sb; |
| start_sb += size_sb; |
| } |
| cm->tile_cols = i; |
| cm->tile_col_start_sb[i] = sb_cols; |
| cm->min_log2_tile_rows = AOMMAX(cm->min_log2_tiles - cm->log2_tile_cols, 0); |
| cm->max_tile_height_sb = sb_rows >> cm->min_log2_tile_rows; |
| |
| cm->tile_width = size_sb << cm->seq_params.mib_size_log2; |
| cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols); |
| } else { |
| int max_tile_area_sb = (sb_rows * sb_cols); |
| int widest_tile_sb = 1; |
| cm->log2_tile_cols = tile_log2(1, cm->tile_cols); |
| for (i = 0; i < cm->tile_cols; i++) { |
| int size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i]; |
| widest_tile_sb = AOMMAX(widest_tile_sb, size_sb); |
| } |
| if (cm->min_log2_tiles) { |
| max_tile_area_sb >>= (cm->min_log2_tiles + 1); |
| } |
| cm->max_tile_height_sb = AOMMAX(max_tile_area_sb / widest_tile_sb, 1); |
| } |
| } |
| |
| void av1_calculate_tile_rows(AV1_COMMON *const cm) { |
| int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); |
| int sb_rows = mi_rows >> cm->seq_params.mib_size_log2; |
| int start_sb, size_sb, i; |
| |
| if (cm->uniform_tile_spacing_flag) { |
| size_sb = ALIGN_POWER_OF_TWO(sb_rows, cm->log2_tile_rows); |
| size_sb >>= cm->log2_tile_rows; |
| assert(size_sb > 0); |
| for (i = 0, start_sb = 0; start_sb < sb_rows; i++) { |
| cm->tile_row_start_sb[i] = start_sb; |
| start_sb += size_sb; |
| } |
| cm->tile_rows = i; |
| cm->tile_row_start_sb[i] = sb_rows; |
| |
| cm->tile_height = size_sb << cm->seq_params.mib_size_log2; |
| cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows); |
| } else { |
| cm->log2_tile_rows = tile_log2(1, cm->tile_rows); |
| } |
| } |
| |
| void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) { |
| assert(row < cm->tile_rows); |
| int mi_row_start = cm->tile_row_start_sb[row] << cm->seq_params.mib_size_log2; |
| int mi_row_end = cm->tile_row_start_sb[row + 1] |
| << cm->seq_params.mib_size_log2; |
| tile->tile_row = row; |
| tile->mi_row_start = mi_row_start; |
| tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_rows); |
| assert(tile->mi_row_end > tile->mi_row_start); |
| } |
| |
| void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) { |
| assert(col < cm->tile_cols); |
| int mi_col_start = cm->tile_col_start_sb[col] << cm->seq_params.mib_size_log2; |
| int mi_col_end = cm->tile_col_start_sb[col + 1] |
| << cm->seq_params.mib_size_log2; |
| tile->tile_col = col; |
| tile->mi_col_start = mi_col_start; |
| tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_cols); |
| assert(tile->mi_col_end > tile->mi_col_start); |
| } |
| |
| int av1_get_sb_rows_in_tile(AV1_COMMON *cm, TileInfo tile) { |
| int mi_rows_aligned_to_sb = ALIGN_POWER_OF_TWO( |
| tile.mi_row_end - tile.mi_row_start, cm->seq_params.mib_size_log2); |
| int sb_rows = mi_rows_aligned_to_sb >> cm->seq_params.mib_size_log2; |
| |
| return sb_rows; |
| } |
| |
| int av1_get_sb_cols_in_tile(AV1_COMMON *cm, TileInfo tile) { |
| int mi_cols_aligned_to_sb = ALIGN_POWER_OF_TWO( |
| tile.mi_col_end - tile.mi_col_start, cm->seq_params.mib_size_log2); |
| int sb_cols = mi_cols_aligned_to_sb >> cm->seq_params.mib_size_log2; |
| |
| return sb_cols; |
| } |
| |
| int get_tile_size(int mi_frame_size, int log2_tile_num, int *ntiles) { |
| // Round the frame up to a whole number of max superblocks |
| mi_frame_size = ALIGN_POWER_OF_TWO(mi_frame_size, MAX_MIB_SIZE_LOG2); |
| |
| // Divide by the signalled number of tiles, rounding up to the multiple of |
| // the max superblock size. To do this, shift right (and round up) to get the |
| // tile size in max super-blocks and then shift left again to convert it to |
| // mi units. |
| const int shift = log2_tile_num + MAX_MIB_SIZE_LOG2; |
| const int max_sb_tile_size = |
| ALIGN_POWER_OF_TWO(mi_frame_size, shift) >> shift; |
| const int mi_tile_size = max_sb_tile_size << MAX_MIB_SIZE_LOG2; |
| |
| // The actual number of tiles is the ceiling of the frame size in mi units |
| // divided by mi_size. This is at most 1 << log2_tile_num but might be |
| // strictly less if max_sb_tile_size got rounded up significantly. |
| if (ntiles) { |
| *ntiles = (mi_frame_size + mi_tile_size - 1) / mi_tile_size; |
| assert(*ntiles <= (1 << log2_tile_num)); |
| } |
| |
| return mi_tile_size; |
| } |
| |
| AV1PixelRect av1_get_tile_rect(const TileInfo *tile_info, const AV1_COMMON *cm, |
| int is_uv) { |
| AV1PixelRect r; |
| |
| // Calculate position in the Y plane |
| r.left = tile_info->mi_col_start * MI_SIZE; |
| r.right = tile_info->mi_col_end * MI_SIZE; |
| r.top = tile_info->mi_row_start * MI_SIZE; |
| r.bottom = tile_info->mi_row_end * MI_SIZE; |
| |
| // If upscaling is enabled, the tile limits need scaling to match the |
| // upscaled frame where the restoration units live. To do this, scale up the |
| // top-left and bottom-right of the tile. |
| if (av1_superres_scaled(cm)) { |
| av1_calculate_unscaled_superres_size(&r.left, &r.top, |
| cm->superres_scale_denominator); |
| av1_calculate_unscaled_superres_size(&r.right, &r.bottom, |
| cm->superres_scale_denominator); |
| } |
| |
| const int frame_w = cm->superres_upscaled_width; |
| const int frame_h = cm->superres_upscaled_height; |
| |
| // Make sure we don't fall off the bottom-right of the frame. |
| r.right = AOMMIN(r.right, frame_w); |
| r.bottom = AOMMIN(r.bottom, frame_h); |
| |
| // Convert to coordinates in the appropriate plane |
| const int ss_x = is_uv && cm->seq_params.subsampling_x; |
| const int ss_y = is_uv && cm->seq_params.subsampling_y; |
| |
| r.left = ROUND_POWER_OF_TWO(r.left, ss_x); |
| r.right = ROUND_POWER_OF_TWO(r.right, ss_x); |
| r.top = ROUND_POWER_OF_TWO(r.top, ss_y); |
| r.bottom = ROUND_POWER_OF_TWO(r.bottom, ss_y); |
| |
| return r; |
| } |