blob: 627793e99f0dd92d5695e0a6c7904fba1bc97269 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <cmath>
#include <cstdlib>
#include <string>
#include <tuple>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_ports/mem.h"
#include "av1/common/common_data.h"
#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "test/function_equivalence_test.h"
using libaom_test::ACMRandom;
using libaom_test::FunctionEquivalenceTest;
using ::testing::Combine;
using ::testing::Range;
using ::testing::Values;
using ::testing::ValuesIn;
namespace {
const int kNumIterations = 10000;
static const int16_t kInt13Max = (1 << 12) - 1;
typedef uint64_t (*SSI16Func)(const int16_t *src, int stride, int width,
int height);
typedef libaom_test::FuncParam<SSI16Func> TestFuncs;
class SumSquaresTest : public ::testing::TestWithParam<TestFuncs> {
public:
~SumSquaresTest() override = default;
void SetUp() override {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<int16_t *>(aom_memalign(16, 256 * 256 * 2));
ASSERT_NE(src_, nullptr);
}
void TearDown() override { aom_free(src_); }
void RunTest(int isRandom);
void RunSpeedTest();
void GenRandomData(int width, int height, int stride) {
const int msb = 11; // Up to 12 bit input
const int limit = 1 << (msb + 1);
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
src_[ii * stride + jj] = rnd_(2) ? rnd_(limit) : -rnd_(limit);
}
}
}
void GenExtremeData(int width, int height, int stride) {
const int msb = 11; // Up to 12 bit input
const int limit = 1 << (msb + 1);
const int val = rnd_(2) ? limit - 1 : -(limit - 1);
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
src_[ii * stride + jj] = val;
}
}
}
protected:
TestFuncs params_;
int16_t *src_;
ACMRandom rnd_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SumSquaresTest);
void SumSquaresTest::RunTest(int isRandom) {
int failed = 0;
for (int k = 0; k < kNumIterations; k++) {
const int width = 4 * (rnd_(31) + 1); // Up to 128x128
const int height = 4 * (rnd_(31) + 1); // Up to 128x128
int stride = 4 << rnd_(7); // Up to 256 stride
while (stride < width) { // Make sure it's valid
stride = 4 << rnd_(7);
}
if (isRandom) {
GenRandomData(width, height, stride);
} else {
GenExtremeData(width, height, stride);
}
const uint64_t res_ref = params_.ref_func(src_, stride, width, height);
uint64_t res_tst;
API_REGISTER_STATE_CHECK(res_tst =
params_.tst_func(src_, stride, width, height));
if (!failed) {
failed = res_ref != res_tst;
EXPECT_EQ(res_ref, res_tst)
<< "Error: Sum Squares Test [" << width << "x" << height
<< "] C output does not match optimized output.";
}
}
}
void SumSquaresTest::RunSpeedTest() {
for (int block = BLOCK_4X4; block < BLOCK_SIZES_ALL; block++) {
const int width = block_size_wide[block]; // Up to 128x128
const int height = block_size_high[block]; // Up to 128x128
int stride = 4 << rnd_(7); // Up to 256 stride
while (stride < width) { // Make sure it's valid
stride = 4 << rnd_(7);
}
GenExtremeData(width, height, stride);
const int num_loops = 1000000000 / (width + height);
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < num_loops; ++i)
params_.ref_func(src_, stride, width, height);
aom_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
printf("SumSquaresTest C %3dx%-3d: %7.2f ns\n", width, height,
1000.0 * elapsed_time / num_loops);
aom_usec_timer timer1;
aom_usec_timer_start(&timer1);
for (int i = 0; i < num_loops; ++i)
params_.tst_func(src_, stride, width, height);
aom_usec_timer_mark(&timer1);
const int elapsed_time1 = static_cast<int>(aom_usec_timer_elapsed(&timer1));
printf("SumSquaresTest Test %3dx%-3d: %7.2f ns\n", width, height,
1000.0 * elapsed_time1 / num_loops);
}
}
TEST_P(SumSquaresTest, OperationCheck) {
RunTest(1); // GenRandomData
}
TEST_P(SumSquaresTest, ExtremeValues) {
RunTest(0); // GenExtremeData
}
TEST_P(SumSquaresTest, DISABLED_Speed) { RunSpeedTest(); }
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, SumSquaresTest,
::testing::Values(TestFuncs(&aom_sum_squares_2d_i16_c,
&aom_sum_squares_2d_i16_sse2)));
#endif // HAVE_SSE2
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, SumSquaresTest,
::testing::Values(TestFuncs(&aom_sum_squares_2d_i16_c,
&aom_sum_squares_2d_i16_neon)));
#endif // HAVE_NEON
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, SumSquaresTest,
::testing::Values(TestFuncs(&aom_sum_squares_2d_i16_c,
&aom_sum_squares_2d_i16_avx2)));
#endif // HAVE_AVX2
//////////////////////////////////////////////////////////////////////////////
// 1D version
//////////////////////////////////////////////////////////////////////////////
typedef uint64_t (*F1D)(const int16_t *src, uint32_t N);
typedef libaom_test::FuncParam<F1D> TestFuncs1D;
class SumSquares1DTest : public FunctionEquivalenceTest<F1D> {
protected:
static const int kIterations = 1000;
static const int kMaxSize = 256;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SumSquares1DTest);
TEST_P(SumSquares1DTest, RandomValues) {
DECLARE_ALIGNED(16, int16_t, src[kMaxSize * kMaxSize]);
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
for (int i = 0; i < kMaxSize * kMaxSize; ++i)
src[i] = rng_(kInt13Max * 2 + 1) - kInt13Max;
const int N = rng_(2) ? rng_(kMaxSize * kMaxSize + 1 - kMaxSize) + kMaxSize
: rng_(kMaxSize) + 1;
const uint64_t ref_res = params_.ref_func(src, N);
uint64_t tst_res;
API_REGISTER_STATE_CHECK(tst_res = params_.tst_func(src, N));
ASSERT_EQ(ref_res, tst_res);
}
}
TEST_P(SumSquares1DTest, ExtremeValues) {
DECLARE_ALIGNED(16, int16_t, src[kMaxSize * kMaxSize]);
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
if (rng_(2)) {
for (int i = 0; i < kMaxSize * kMaxSize; ++i) src[i] = kInt13Max;
} else {
for (int i = 0; i < kMaxSize * kMaxSize; ++i) src[i] = -kInt13Max;
}
const int N = rng_(2) ? rng_(kMaxSize * kMaxSize + 1 - kMaxSize) + kMaxSize
: rng_(kMaxSize) + 1;
const uint64_t ref_res = params_.ref_func(src, N);
uint64_t tst_res;
API_REGISTER_STATE_CHECK(tst_res = params_.tst_func(src, N));
ASSERT_EQ(ref_res, tst_res);
}
}
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, SumSquares1DTest,
::testing::Values(TestFuncs1D(
aom_sum_squares_i16_c, aom_sum_squares_i16_sse2)));
#endif // HAVE_SSE2
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, SumSquares1DTest,
::testing::Values(TestFuncs1D(
aom_sum_squares_i16_c, aom_sum_squares_i16_neon)));
#endif // HAVE_NEON
typedef int64_t (*sse_func)(const uint8_t *a, int a_stride, const uint8_t *b,
int b_stride, int width, int height);
typedef libaom_test::FuncParam<sse_func> TestSSEFuncs;
typedef std::tuple<TestSSEFuncs, int> SSETestParam;
class SSETest : public ::testing::TestWithParam<SSETestParam> {
public:
~SSETest() override = default;
void SetUp() override {
params_ = GET_PARAM(0);
width_ = GET_PARAM(1);
isHbd_ =
#if CONFIG_AV1_HIGHBITDEPTH
params_.ref_func == aom_highbd_sse_c;
#else
0;
#endif
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<uint8_t *>(aom_memalign(32, 256 * 256 * 2));
ref_ = reinterpret_cast<uint8_t *>(aom_memalign(32, 256 * 256 * 2));
ASSERT_NE(src_, nullptr);
ASSERT_NE(ref_, nullptr);
}
void TearDown() override {
aom_free(src_);
aom_free(ref_);
}
void RunTest(int isRandom, int width, int height, int run_times);
void GenRandomData(int width, int height, int stride) {
uint16_t *pSrc = (uint16_t *)src_;
uint16_t *pRef = (uint16_t *)ref_;
const int msb = 11; // Up to 12 bit input
const int limit = 1 << (msb + 1);
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
if (!isHbd_) {
src_[ii * stride + jj] = rnd_.Rand8();
ref_[ii * stride + jj] = rnd_.Rand8();
} else {
pSrc[ii * stride + jj] = rnd_(limit);
pRef[ii * stride + jj] = rnd_(limit);
}
}
}
}
void GenExtremeData(int width, int height, int stride, uint8_t *data,
int16_t val) {
uint16_t *pData = (uint16_t *)data;
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
if (!isHbd_) {
data[ii * stride + jj] = (uint8_t)val;
} else {
pData[ii * stride + jj] = val;
}
}
}
}
protected:
int isHbd_;
int width_;
TestSSEFuncs params_;
uint8_t *src_;
uint8_t *ref_;
ACMRandom rnd_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SSETest);
void SSETest::RunTest(int isRandom, int width, int height, int run_times) {
int failed = 0;
aom_usec_timer ref_timer, test_timer;
for (int k = 0; k < 3; k++) {
int stride = 4 << rnd_(7); // Up to 256 stride
while (stride < width) { // Make sure it's valid
stride = 4 << rnd_(7);
}
if (isRandom) {
GenRandomData(width, height, stride);
} else {
const int msb = isHbd_ ? 12 : 8; // Up to 12 bit input
const int limit = (1 << msb) - 1;
if (k == 0) {
GenExtremeData(width, height, stride, src_, 0);
GenExtremeData(width, height, stride, ref_, limit);
} else {
GenExtremeData(width, height, stride, src_, limit);
GenExtremeData(width, height, stride, ref_, 0);
}
}
int64_t res_ref, res_tst;
uint8_t *pSrc = src_;
uint8_t *pRef = ref_;
if (isHbd_) {
pSrc = CONVERT_TO_BYTEPTR(src_);
pRef = CONVERT_TO_BYTEPTR(ref_);
}
res_ref = params_.ref_func(pSrc, stride, pRef, stride, width, height);
res_tst = params_.tst_func(pSrc, stride, pRef, stride, width, height);
if (run_times > 1) {
aom_usec_timer_start(&ref_timer);
for (int j = 0; j < run_times; j++) {
params_.ref_func(pSrc, stride, pRef, stride, width, height);
}
aom_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int j = 0; j < run_times; j++) {
params_.tst_func(pSrc, stride, pRef, stride, width, height);
}
aom_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
"c_time=%d \t simd_time=%d \t "
"gain=%d\n",
elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / elapsed_time_simd));
} else {
if (!failed) {
failed = res_ref != res_tst;
EXPECT_EQ(res_ref, res_tst)
<< "Error:" << (isHbd_ ? "hbd " : " ") << k << " SSE Test ["
<< width << "x" << height
<< "] C output does not match optimized output.";
}
}
}
}
TEST_P(SSETest, OperationCheck) {
for (int height = 4; height <= 128; height += 4) {
RunTest(1, width_, height, 1); // GenRandomData
}
}
TEST_P(SSETest, ExtremeValues) {
for (int height = 4; height <= 128; height += 4) {
RunTest(0, width_, height, 1);
}
}
TEST_P(SSETest, DISABLED_Speed) {
for (int height = 4; height <= 128; height += 4) {
RunTest(1, width_, height, 100);
}
}
#if HAVE_NEON
TestSSEFuncs sse_neon[] = {
TestSSEFuncs(&aom_sse_c, &aom_sse_neon),
#if CONFIG_AV1_HIGHBITDEPTH
TestSSEFuncs(&aom_highbd_sse_c, &aom_highbd_sse_neon)
#endif
};
INSTANTIATE_TEST_SUITE_P(NEON, SSETest,
Combine(ValuesIn(sse_neon), Range(4, 129, 4)));
#endif // HAVE_NEON
#if HAVE_NEON_DOTPROD
TestSSEFuncs sse_neon_dotprod[] = {
TestSSEFuncs(&aom_sse_c, &aom_sse_neon_dotprod),
};
INSTANTIATE_TEST_SUITE_P(NEON_DOTPROD, SSETest,
Combine(ValuesIn(sse_neon_dotprod), Range(4, 129, 4)));
#endif // HAVE_NEON_DOTPROD
#if HAVE_SSE4_1
TestSSEFuncs sse_sse4[] = {
TestSSEFuncs(&aom_sse_c, &aom_sse_sse4_1),
#if CONFIG_AV1_HIGHBITDEPTH
TestSSEFuncs(&aom_highbd_sse_c, &aom_highbd_sse_sse4_1)
#endif
};
INSTANTIATE_TEST_SUITE_P(SSE4_1, SSETest,
Combine(ValuesIn(sse_sse4), Range(4, 129, 4)));
#endif // HAVE_SSE4_1
#if HAVE_AVX2
TestSSEFuncs sse_avx2[] = {
TestSSEFuncs(&aom_sse_c, &aom_sse_avx2),
#if CONFIG_AV1_HIGHBITDEPTH
TestSSEFuncs(&aom_highbd_sse_c, &aom_highbd_sse_avx2)
#endif
};
INSTANTIATE_TEST_SUITE_P(AVX2, SSETest,
Combine(ValuesIn(sse_avx2), Range(4, 129, 4)));
#endif // HAVE_AVX2
//////////////////////////////////////////////////////////////////////////////
// get_blk sum squares test functions
//////////////////////////////////////////////////////////////////////////////
typedef void (*sse_sum_func)(const int16_t *data, int stride, int bw, int bh,
int *x_sum, int64_t *x2_sum);
typedef libaom_test::FuncParam<sse_sum_func> TestSSE_SumFuncs;
typedef std::tuple<TestSSE_SumFuncs, TX_SIZE> SSE_SumTestParam;
class SSE_Sum_Test : public ::testing::TestWithParam<SSE_SumTestParam> {
public:
~SSE_Sum_Test() override = default;
void SetUp() override {
params_ = GET_PARAM(0);
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<int16_t *>(aom_memalign(32, 256 * 256 * 2));
ASSERT_NE(src_, nullptr);
}
void TearDown() override { aom_free(src_); }
void RunTest(int isRandom, int tx_size, int run_times);
void GenRandomData(int width, int height, int stride) {
const int msb = 11; // Up to 12 bit input
const int limit = 1 << (msb + 1);
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
src_[ii * stride + jj] = rnd_(limit);
}
}
}
void GenExtremeData(int width, int height, int stride, int16_t *data,
int16_t val) {
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
data[ii * stride + jj] = val;
}
}
}
protected:
TestSSE_SumFuncs params_;
int16_t *src_;
ACMRandom rnd_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SSE_Sum_Test);
void SSE_Sum_Test::RunTest(int isRandom, int tx_size, int run_times) {
aom_usec_timer ref_timer, test_timer;
int width = tx_size_wide[tx_size];
int height = tx_size_high[tx_size];
for (int k = 0; k < 3; k++) {
int stride = 4 << rnd_(7); // Up to 256 stride
while (stride < width) { // Make sure it's valid
stride = 4 << rnd_(7);
}
if (isRandom) {
GenRandomData(width, height, stride);
} else {
const int msb = 12; // Up to 12 bit input
const int limit = (1 << msb) - 1;
if (k == 0) {
GenExtremeData(width, height, stride, src_, limit);
} else {
GenExtremeData(width, height, stride, src_, -limit);
}
}
int sum_c = 0;
int64_t sse_intr = 0;
int sum_intr = 0;
int64_t sse_c = 0;
params_.ref_func(src_, stride, width, height, &sum_c, &sse_c);
params_.tst_func(src_, stride, width, height, &sum_intr, &sse_intr);
if (run_times > 1) {
aom_usec_timer_start(&ref_timer);
for (int j = 0; j < run_times; j++) {
params_.ref_func(src_, stride, width, height, &sum_c, &sse_c);
}
aom_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int j = 0; j < run_times; j++) {
params_.tst_func(src_, stride, width, height, &sum_intr, &sse_intr);
}
aom_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
"c_time=%d \t simd_time=%d \t "
"gain=%f\t width=%d\t height=%d \n",
elapsed_time_c, elapsed_time_simd,
(float)((float)elapsed_time_c / (float)elapsed_time_simd), width,
height);
} else {
EXPECT_EQ(sum_c, sum_intr)
<< "Error:" << k << " SSE Sum Test [" << width << "x" << height
<< "] C output does not match optimized output.";
EXPECT_EQ(sse_c, sse_intr)
<< "Error:" << k << " SSE Sum Test [" << width << "x" << height
<< "] C output does not match optimized output.";
}
}
}
TEST_P(SSE_Sum_Test, OperationCheck) {
RunTest(1, GET_PARAM(1), 1); // GenRandomData
}
TEST_P(SSE_Sum_Test, ExtremeValues) { RunTest(0, GET_PARAM(1), 1); }
TEST_P(SSE_Sum_Test, DISABLED_Speed) { RunTest(1, GET_PARAM(1), 10000); }
#if HAVE_SSE2 || HAVE_AVX2 || HAVE_NEON
const TX_SIZE kValidBlockSize[] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32,
TX_64X64, TX_4X8, TX_8X4, TX_8X16,
TX_16X8, TX_16X32, TX_32X16, TX_64X32,
TX_32X64, TX_4X16, TX_16X4, TX_8X32,
TX_32X8, TX_16X64, TX_64X16 };
#endif
#if HAVE_SSE2
TestSSE_SumFuncs sse_sum_sse2[] = { TestSSE_SumFuncs(
&aom_get_blk_sse_sum_c, &aom_get_blk_sse_sum_sse2) };
INSTANTIATE_TEST_SUITE_P(SSE2, SSE_Sum_Test,
Combine(ValuesIn(sse_sum_sse2),
ValuesIn(kValidBlockSize)));
#endif // HAVE_SSE2
#if HAVE_AVX2
TestSSE_SumFuncs sse_sum_avx2[] = { TestSSE_SumFuncs(
&aom_get_blk_sse_sum_c, &aom_get_blk_sse_sum_avx2) };
INSTANTIATE_TEST_SUITE_P(AVX2, SSE_Sum_Test,
Combine(ValuesIn(sse_sum_avx2),
ValuesIn(kValidBlockSize)));
#endif // HAVE_AVX2
#if HAVE_NEON
TestSSE_SumFuncs sse_sum_neon[] = { TestSSE_SumFuncs(
&aom_get_blk_sse_sum_c, &aom_get_blk_sse_sum_neon) };
INSTANTIATE_TEST_SUITE_P(NEON, SSE_Sum_Test,
Combine(ValuesIn(sse_sum_neon),
ValuesIn(kValidBlockSize)));
#endif // HAVE_NEON
//////////////////////////////////////////////////////////////////////////////
// 2D Variance test functions
//////////////////////////////////////////////////////////////////////////////
typedef uint64_t (*Var2DFunc)(uint8_t *src, int stride, int width, int height);
typedef libaom_test::FuncParam<Var2DFunc> TestFuncVar2D;
const uint16_t test_block_size[2] = { 128, 256 };
class Lowbd2dVarTest : public ::testing::TestWithParam<TestFuncVar2D> {
public:
~Lowbd2dVarTest() override = default;
void SetUp() override {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<uint8_t *>(
aom_memalign(16, 512 * 512 * sizeof(uint8_t)));
ASSERT_NE(src_, nullptr);
}
void TearDown() override { aom_free(src_); }
void RunTest(int isRandom);
void RunSpeedTest();
void GenRandomData(int width, int height, int stride) {
const int msb = 7; // Up to 8 bit input
const int limit = 1 << (msb + 1);
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
src_[ii * stride + jj] = rnd_(limit);
}
}
}
void GenExtremeData(int width, int height, int stride) {
const int msb = 7; // Up to 8 bit input
const int limit = 1 << (msb + 1);
const int val = rnd_(2) ? limit - 1 : 0;
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
src_[ii * stride + jj] = val;
}
}
}
protected:
TestFuncVar2D params_;
uint8_t *src_;
ACMRandom rnd_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(Lowbd2dVarTest);
void Lowbd2dVarTest::RunTest(int isRandom) {
int failed = 0;
for (int k = 0; k < kNumIterations; k++) {
const int width = 4 * (rnd_(63) + 1); // Up to 256x256
const int height = 4 * (rnd_(63) + 1); // Up to 256x256
int stride = 4 << rnd_(8); // Up to 512 stride
while (stride < width) { // Make sure it's valid
stride = 4 << rnd_(8);
}
if (isRandom) {
GenRandomData(width, height, stride);
} else {
GenExtremeData(width, height, stride);
}
const uint64_t res_ref = params_.ref_func(src_, stride, width, height);
uint64_t res_tst;
API_REGISTER_STATE_CHECK(res_tst =
params_.tst_func(src_, stride, width, height));
if (!failed) {
failed = res_ref != res_tst;
EXPECT_EQ(res_ref, res_tst)
<< "Error: Sum Squares Test [" << width << "x" << height
<< "] C output does not match optimized output.";
}
}
}
void Lowbd2dVarTest::RunSpeedTest() {
for (int block = 0; block < 2; block++) {
const int width = test_block_size[block];
const int height = test_block_size[block];
int stride = 4 << rnd_(8); // Up to 512 stride
while (stride < width) { // Make sure it's valid
stride = 4 << rnd_(8);
}
GenExtremeData(width, height, stride);
const int num_loops = 1000000000 / (width + height);
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < num_loops; ++i)
params_.ref_func(src_, stride, width, height);
aom_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
aom_usec_timer timer1;
aom_usec_timer_start(&timer1);
for (int i = 0; i < num_loops; ++i)
params_.tst_func(src_, stride, width, height);
aom_usec_timer_mark(&timer1);
const int elapsed_time1 = static_cast<int>(aom_usec_timer_elapsed(&timer1));
printf("%3dx%-3d: Scaling = %.2f\n", width, height,
(double)elapsed_time / elapsed_time1);
}
}
TEST_P(Lowbd2dVarTest, OperationCheck) {
RunTest(1); // GenRandomData
}
TEST_P(Lowbd2dVarTest, ExtremeValues) {
RunTest(0); // GenExtremeData
}
TEST_P(Lowbd2dVarTest, DISABLED_Speed) { RunSpeedTest(); }
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(SSE2, Lowbd2dVarTest,
::testing::Values(TestFuncVar2D(&aom_var_2d_u8_c,
&aom_var_2d_u8_sse2)));
#endif // HAVE_SSE2
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, Lowbd2dVarTest,
::testing::Values(TestFuncVar2D(&aom_var_2d_u8_c,
&aom_var_2d_u8_avx2)));
#endif // HAVE_SSE2
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, Lowbd2dVarTest,
::testing::Values(TestFuncVar2D(&aom_var_2d_u8_c,
&aom_var_2d_u8_neon)));
#endif // HAVE_NEON
#if HAVE_NEON_DOTPROD
INSTANTIATE_TEST_SUITE_P(NEON_DOTPROD, Lowbd2dVarTest,
::testing::Values(TestFuncVar2D(
&aom_var_2d_u8_c, &aom_var_2d_u8_neon_dotprod)));
#endif // HAVE_NEON_DOTPROD
class Highbd2dVarTest : public ::testing::TestWithParam<TestFuncVar2D> {
public:
~Highbd2dVarTest() override = default;
void SetUp() override {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<uint16_t *>(
aom_memalign(16, 512 * 512 * sizeof(uint16_t)));
ASSERT_NE(src_, nullptr);
}
void TearDown() override { aom_free(src_); }
void RunTest(int isRandom);
void RunSpeedTest();
void GenRandomData(int width, int height, int stride) {
const int msb = 11; // Up to 12 bit input
const int limit = 1 << (msb + 1);
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
src_[ii * stride + jj] = rnd_(limit);
}
}
}
void GenExtremeData(int width, int height, int stride) {
const int msb = 11; // Up to 12 bit input
const int limit = 1 << (msb + 1);
const int val = rnd_(2) ? limit - 1 : 0;
for (int ii = 0; ii < height; ii++) {
for (int jj = 0; jj < width; jj++) {
src_[ii * stride + jj] = val;
}
}
}
protected:
TestFuncVar2D params_;
uint16_t *src_;
ACMRandom rnd_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(Highbd2dVarTest);
void Highbd2dVarTest::RunTest(int isRandom) {
int failed = 0;
for (int k = 0; k < kNumIterations; k++) {
const int width = 4 * (rnd_(63) + 1); // Up to 256x256
const int height = 4 * (rnd_(63) + 1); // Up to 256x256
int stride = 4 << rnd_(8); // Up to 512 stride
while (stride < width) { // Make sure it's valid
stride = 4 << rnd_(8);
}
if (isRandom) {
GenRandomData(width, height, stride);
} else {
GenExtremeData(width, height, stride);
}
const uint64_t res_ref =
params_.ref_func(CONVERT_TO_BYTEPTR(src_), stride, width, height);
uint64_t res_tst;
API_REGISTER_STATE_CHECK(
res_tst =
params_.tst_func(CONVERT_TO_BYTEPTR(src_), stride, width, height));
if (!failed) {
failed = res_ref != res_tst;
EXPECT_EQ(res_ref, res_tst)
<< "Error: Sum Squares Test [" << width << "x" << height
<< "] C output does not match optimized output.";
}
}
}
void Highbd2dVarTest::RunSpeedTest() {
for (int block = 0; block < 2; block++) {
const int width = test_block_size[block];
const int height = test_block_size[block];
int stride = 4 << rnd_(8); // Up to 512 stride
while (stride < width) { // Make sure it's valid
stride = 4 << rnd_(8);
}
GenExtremeData(width, height, stride);
const int num_loops = 1000000000 / (width + height);
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < num_loops; ++i)
params_.ref_func(CONVERT_TO_BYTEPTR(src_), stride, width, height);
aom_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
aom_usec_timer timer1;
aom_usec_timer_start(&timer1);
for (int i = 0; i < num_loops; ++i)
params_.tst_func(CONVERT_TO_BYTEPTR(src_), stride, width, height);
aom_usec_timer_mark(&timer1);
const int elapsed_time1 = static_cast<int>(aom_usec_timer_elapsed(&timer1));
printf("%3dx%-3d: Scaling = %.2f\n", width, height,
(double)elapsed_time / elapsed_time1);
}
}
TEST_P(Highbd2dVarTest, OperationCheck) {
RunTest(1); // GenRandomData
}
TEST_P(Highbd2dVarTest, ExtremeValues) {
RunTest(0); // GenExtremeData
}
TEST_P(Highbd2dVarTest, DISABLED_Speed) { RunSpeedTest(); }
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, Highbd2dVarTest,
::testing::Values(TestFuncVar2D(&aom_var_2d_u16_c, &aom_var_2d_u16_sse2)));
#endif // HAVE_SSE2
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, Highbd2dVarTest,
::testing::Values(TestFuncVar2D(&aom_var_2d_u16_c, &aom_var_2d_u16_avx2)));
#endif // HAVE_SSE2
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, Highbd2dVarTest,
::testing::Values(TestFuncVar2D(&aom_var_2d_u16_c, &aom_var_2d_u16_neon)));
#endif // HAVE_NEON
} // namespace